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ABSTRACT Teleoperating cyber-physical system (TCPS) has been considered as a promising technology
to stretch artificial intelligences to remote locations. Many applications of TCPS demand operator and
slaves to keep state consensus on the shared information. However, the cyber- and physical- constrained
characteristics on TCPS make it difficult to realize such a consensus. This paper investigates the consensus
problem for single-master-multi-slave TCPS with time-varying delay and actuator saturation. According to
the communication structures of slaves, centralized and decentralized controllers are, respectively, designed
to drive the consensus of master and slave robots. To simplify the information fusion in decentralized
controller design, we use min-weighted rigid graph-based topology optimization algorithm to reduce the
communication redundancy in slave site. Under time-varying delay and actuator saturation constraints, the
sufficient stability conditions are presented to show that the centralized and decentralized controllers can
stabilize the single-master-multi-slave TCPS. Moreover, the stability conditions are rearranged into a form
of linear matrix inequalities, and then, the required initial stability conditions for master and slaves are
developed. Finally, simulations and experiments are demonstrated to show the validity of the method. It is
shown that the consensus controllers can guarantee the asymptotic stability of single-master-multi-slave
TCPS, while the topology optimization can reduce the redundancy of communication links.

INDEX TERMS Consensus, cyber-physical system (CPS), teleoperation, time delay.

I. INTRODUCTION
With the advent of artificial intelligent technology,
autonomous physical devices have increasingly been used as
flexible sensing and computational platforms for a variety
of applications, such as AlphaGo game, port surveillance,
environment monitoring, disaster prevention and blind nav-
igation in unknown environments; see [1]–[3] and the refer-
ences. However, in some dangerous and dynamic scenarios
(e.g., neutron monitoring for nuclear power industry), pure
autonomy operation is not adequate for physical devices to
achieve complicated missions. In such scenarios, it becomes
favorable for multiple physical devices to cooperatively
achieve the tasks assisted by human operators. Teleoperating

cyber-physical system (TCPS), which is usually operated in
a master–slave configuration, stretches artificial intelligences
to remote locations and allows human to concentrate on
high-level reasoning and decision making.An illustration of
TCPS is shown in Fig. 1. The application of TCPS includes
multiple fields, e.g., space and deep sea exploiting systems,
telemedicine and robot-assisted surgery systems, hazardous
environment monitoring and rescue applications [4].

One important issue for TCPS is to design appropriate
controllers such that the group of physical devices can achieve
state consensus on the shared information. Recent studies
show that consensus capacitates numerous applications in
conventional research areas, e.g., flocking and formation
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FIGURE 1. A standard collaborative relationship for TCPS.

control in multi-agent systems [5], as well as other newly
emerging systems, for example, scheduling and optimiza-
tion in wireless networks [6], economic dispatch in smart
grid [7], privacy-preserving data aggregation [8], and so
on. In TCPS, consensus means that the states of master
and slave physical devices (i.e., robots) converge to the
same state value. To address this problem, consensus-based
tracking controllers for master and slaves were designed
in [9] and [10]. However, the influence of time delay between
human operator and slaves is not considered. For a remote
controlled TCPS, time delays associated with propagation
are inevitable to a certain extent. Although some literatures
have given time-delay based controllers for teleoperation sys-
tem [11], the proposed controllers cannot be directly adopted
to solve the consensus problem for multi-slave TCPS due to
the single-slave configuration. For seeking the cooperation
of physical devices, a multi-slave configuration is preferred
for TCPS. In multi-slave configuration setting, a consensus-
based state convergence problem was investigated in [12],
however the time delays in communication channel are
ignored. In [13], a consensus-based formation controller was
given to plan the trajectories of master and slaves, where
the time delays in communication channel are assumed to
be constant. In order to better capture the cyber-constrained
characteristics, time-varying delays of TCPS are preferred.
Moreover, in almost all control systems including TCPS,
the physical devices are inherently limited by the physical
nature of devices, i.e., the existence of actuator saturation.
If actuator saturation is ignored, undesirable responses and
even instability can occur [14]. Therefore, it is highly appreci-
ate to take the time-varying delays and actuator saturation into
the controller design process. Inspired by this, some methods
have been proposed, for example [15]–[17] and the references
therein. Nevertheless, the physical devices in the above lit-
eratures are single-master configurations, which cannot be
directly applied to multi-slave TCPS. Also of relevance, our
previous works [18]–[20] have investigated the formation
control for single-master-multi-slave TCPS. However, with
time delay and actuator saturation constraints, how to design
a consensus controller to stabilize the TCPS is still not well
addressed.

On the other hand, effective communication of master and
slaves is critical for the achievement of consensus, espe-
cially when the communication channel and transmission
power are limited. Normally, the communication structures
can be classified into centralized and decentralized ones.
Centralized structures (i.e., all slaves communicate with a
single master [13], [21]–[23]) are effective with the minimum
number of data transmission, however they are not practi-
cal in large-scale networks due to a variety of issues, e.g.,
the vulnerability to attacks, data traffic bottlenecks, and lack
of flexibility, and the incapability to scale. In contrast, decen-
tralized structures (i.e., neighbor rule is adopted to demon-
strate the topology of master and slaves [18], [24]) achieve
better performance on security, throughput, flexibility and
scalability. By analyzing the neighbor rule-based topology
relationship of slave robots, it reveals that some interactions
are unnecessary. This drawback makes the communication in
slave site complex and inefficient. In our previous work [19],
we design a rigid graph-based optimization scheme to save
the communication consumption in slave site. Nevertheless,
it is still unknownwhether the rigid graph-based optimization
scheme can improve the consensus performance in multi-
slave TCPS.

In this paper, we are concerned with a consensus problem
for multi-slave TCPS with time delay and actuator saturation
constraints. As shown in Fig. 1, master obtains the desired
trajectory through human operator. The position and velocity
signals are then sent to the slaves so that the slaves can
track the motion of master. It is not a simple task of con-
sensus tracking because the effect of environment force is
also transmitted back to the master site so that the human
operator can feel the presence of the remote environment.
Main contributions of this paper are summarized as follows.
• A centralized controller is designed to enforce the con-
sensus of master and slaves, and the sufficient stability
conditions are given to show that the centralized con-
troller can stabilize the master-slave TCPS. Compared
with [13], [22], time-varying delay and actuator satura-
tion are both incorporated in the controller design.

• To simplify the information fusion, a rigid graph based
topology optimization scheme is given to reduce the
redundancy of communication links. Then, a decentral-
ized consensus controller is designedwhile the sufficient
stability conditions are also presented.

• Rearrange the stability conditions into the form of linear
matrix inequalities (LMIs), and then we estimate the
domain of attraction (DOA). Based on this, the required
initial stability conditions for TCPS can be obtained,
such that master and slave robots can adjust the initial
states to guarantee the consensus stability.

Notation: Rn denotes the n-dimensional Euclidean space,
Rn×n denotes the set of n × n real matrices, I represents
the identity matrix, |·| denotes the absolute of a parameter,
“∗” denotes an ellipsis for the terms by symmetry, and super-
script “T ” is for matrix transposition. col(x1, · · · , xn) repre-
sents a column vector by stacking column vectors x1, · · · , xn
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together. X > 0 means X is real symmetric positive
definite.

II. PROBLEM FORMULATION
A. DYNAMIC MODEL OF MASTER AND SLAVE ROBOTS
In this paper, the TCPS is composed of a single n-degree-of-
freedom (DOF) master robot and N n-DOF slave robots. The
dynamics of master and slave robots are shown as

Mm(qm)q̈m + Cm(qm)q̇m + Gm(qm) = Fh−S(τm)

M1(q1)q̈1 + C1(q1)q̇1 + G1(q1) = S(τ 1)+ Fe1
...

...

MN (qN )q̈N + CN (qN )q̇N + GN (qN ) = S(τN )+ FeN (1)

where qi, q̇i, q̈i ∈ Rn are respectively the joint displace-
ment, velocity and acceleration. Mi(qi) is the inertia matrix,
Ci(qi, q̇i) is the centrifugal and Coriolis matrix, Gi(qi) ∈ Rn

represents the gravitational torque, and Fh ∈ Rn and Fi ∈
Rn are the human-operator force (torque) and environment
force (torque), respectively. τi ∈ Rn is the control torque
restricted by a given saturation bound T = [T1, · · · ,Tn]T ,
i.e., each element τir of τi satisfies |τir | ≤ Tr where Tr > 0
and r = 1, · · · , n. In addition, i = m denotes the master
robot, and i = 1, · · · ,N denotes the i th slave robot.
The system (1) has the following properties [25].
Property 1: Inertia matrix is bounded, i.e., for %̌i, %̂i ∈ R+

0 < %̌iI ≤ Mi(qi) ≤ %̂iI <∞. (2)

Property 2: Matrix Ṁi(qi)−2Ci(qi, q̇i) is skew-symmetric.
Property 3: For a manipulator with revolute joints,

the gravity vector Gi(qi) is bounded, i.e., there exist positive
constants ϑr such that every element of the gravity vector,
Gir (qi), r = 1, · · · , n, satisfies |Gir (q)| < ϑr .

In this paper, time delay from slave i to master can be
denoted as dim(t), while the time delay from master to
slave i can be denoted as dmi(t). For stability analysis, we give
the following assumptions and lemmas.
Assumption 1: In this paper, dim(t) and dmi(t) are both

lower and upper bounded, and there exist positive scalars
ďsm, d̂sm, µ̌sm, µ̂sm, ďms, d̂ms, µ̌ms and µ̂ms such that ďsm ≤
dim(t) ≤ d̂sm < ∞, µ̌sm ≤ ḋim(t) ≤ µ̂sm, ďms ≤ dmi(t) ≤
d̂ms < ∞ and µ̌ms ≤ ḋmi(t) ≤ µ̂ms for ∀i = 1, · · · ,N .
In addition, it is assumed that ďi = ďsm+ ďms, d̂i = d̂sm+ d̂ms,
di(t) = dim(t) + dmi(t), µ̌i = µ̌sm + µ̌ms < 1, µ̂i =
µ̂sm + µ̂ms < 1, and d2 = max{d̂sm, d̂ms}.
Assumption 2: Human operator and the environment in

this paper are passive, i.e., for non-redundant manipulator,∫ t

0
q̇Tm(σ )Fh(σ )dσ ≥ 0,

∫ t

0
−q̇Ti (σ )Fi(σ )dσ ≥ 0. (3)

Lemma 1 [14]: Given feedback matrices K ,H , if the
state vector x satisfies

∣∣hjx∣∣ ≤ Mmax,j, then

sat(Kx) ∈ co{DiKx + D
−

i Hx, i = 1, . . . .2n}

where hj is the jth row of H for all j = 1, . . . , n, sat(·)
denotes the saturation function with level Mmax, and co{·} is

the convex hull of a set. D denotes the set of n × n diagonal
matrices Di with 0 or 1 as its diagonal entries, i.e., D = {Di :
i = 1, · · · , 2n} and D−i = I − Di.
Lemma 2 [26]: Define lU (ω) =

∫ b
a ω

T (u)Uω (u)du for a
given matrix U > 0, then the following inequality holds for
all continuously differentiable function ω in [a, b]→ Rn

:

lU (ω̇) ≥
1

b− a
(ω (b)− ω (a))TU (ω(b)− ω (a))

+
3

b− a
�̃TU�̃,

where �̃ = ω (b)+ ω (a)− 2
b−a

∫ b
a ω(u)du.

The following example is given to explain Lemma 1.
Example 1: Since

∣∣hjx∣∣ ≤ Mmax,j, we have sat(kjx) ∈
co{kjx, hjx}, where kj denotes the j th row of K for all j =
1, . . . , n. If n = 1, sat(k1x) = α1k1x + α2h1x where α1 +

α2 = 1, i.e., sat(k1x) ∈ co{k1x, h1x}. If n = 2, sat
([
k1x
k2x

])
=[

α1(β1 + β2)k1x + α2(β1 + β2)h1x
β1(α1 + α2)k2x + β2(α1 + α2)h2x

]
= α1β1 ×

[
k1x
k2x

]
+

α1β2

[
k1x
h2x

]
+α2β1

[
h1x
k2x

]
+α2β2

[
h1x
h2x

]
. As β1+β2 = 1 and

2∑
i=1

2∑
j=1
αiβj = 1, we have sat

([
k1x
k2x

])
∈ co {

[
k1x
k2x

]
,

[
k1x
h2x

]
,[

h1x
k2x

]
,
[
h1x
h2x

]
}. If n = 3, sat

k1xk2x
k3x

 ∈ co {

 k1xk2x
k3x

,k1xk2x
h3x

,
k1xh2x
k3x

 ,
k1xh2x
h3x

 ,
h1xk2x
k3x

,
h1xk2x
h3x

,
h1xh2x
k3x

,
h1xh2x
h3x

}.
Finally, one obtains sat(Kx) ∈ co{DiKx + D−i Hx, i =
1, . . . .2n}. Then, sat(Kx) is refreshed as sat(Kx) =∑2n

i ηi(DiKx + D−i Hx), where 0 ≤ ηi ≤ 1,
∑2n

i=1 ηi = 1.
Specially, Fig. 2(a) is given to illustrate Lemma 1.

FIGURE 2. (a) Illustration for Lemma 1 where n = 2. (b) Relationship of
L(H), ε (Q, ρ) and the DOA where Mmax,j = Mmax.

For initial state vector x(0) = x0, the state trajectory is
denoted as ψ (t, x0), and the DOA of the origin is 0 = {x0 :
limt→∞ ψ (t, x0) = 0}. A set is said to be invariant if all
trajectories starting from the DOA will remain in it. With
Lemma 1, we can place sat(Kx) into the convex hull of a
group of linear feedbacks under the condition of L(H ) = {x :∣∣hjx∣∣ ≤ Mmax,j} where j = 1, . . . , n. Notice that a subset
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of the set L(H ) is chosen to be an ellipsoid with the form
ε (Q, ρ) = {x : xTQx ≤ ρ}, where Q > 0 and ρ ∈ R+.
Therefore, if ε (Q, ρ) is contractively invariant, it is inside
the DOA. If n = 2, the relationship among L(H ), ε (Q, ρ) and
the DOA is illustrated in Fig. 2 (b). In this paper, we attempt
to develop conditions under which ε (Q, ρ) is contractively
invariant, and thus an estimate of the DOA can be obtained.

B. TOPOLOGY RELATIONSHIP OF MASTER AND SLAVES
In order to achieve state consensus, this paper attempts to
design centralized and decentralized controllers for TCPS.
In centralized controller, each slave bilaterally communicates
with the master. Alternatively, decentralized controller relies
on neighbor rule to describe the topology relationship of
master and slaves, where each slave only communicates with
the slaves in its neighborhood. To reduce the redundancy of
communication links in slave site, the neighbor rule-based
topology relationship can be optimized by a rigid graph.
Inspired by this, some basic concepts of rigid graph are
introduced [27].

A graph G is a pair of vertices V = {1, . . . ,N } and edges
E ⊆ V × V . The graph is said to be undirected if (i, j) ∈ E and
(j, i) ∈ E . The number of vertices in V is shown as |V|#, while
the number of edges in E is |E |#. An edge denoted as (j, i)
means that node i can receive the information from node j.
For slave robot i (i = 1, · · · ,N ), sensing sensor is mounted
at the base of the manipulator, and the position of this sensor
is denoted by pi ∈ R3. The neighbor set of sensor i is denoted
by =i = {j ∈ V:

∥∥pi − pj∥∥ ≤ Er , j 6= i}, where Er > 0 is
the sensing range. When sensor j is a neighbor of sensor i,
it means that slave robot i can communicate with slave robot j.
Based on this, the adjacency matrix A = [aij] ∈ RN×N is
defined, where aij > 0 if j ∈ =i and aij = 0 otherwise. With
connectivity maintenance, we assume the master robot can
always transmit and access the state information of one slave
robot, and the graph describing the information structure of
salvers is assumed to be connected, where a graph is con-
nected if any two vertices can be joined with a path.
Given a graph G = (V, E) with N vertices, positions

pi ∈ <3 and i ∈ V , if ∀ (i, j) ∈ E satisfies ||pi − pj|| =
ϒ > 0, and (pi − pj)T (ṗi − ṗj) = 0 at the initial rotation
time, ṗ = (ṗ1, ṗ2, . . . , ṗN ) is called as an infinitesimal flex.
A graph is infinitesimally rigid graph if it only has trivial
infinitesimal flex. The detailed definition of the concept of
infinitesimal rigidity is presented in [28]. Correspondingly,
the rigidity matrix R(G) is defined as the |E |#×3 |V|# matrix,
i.e.,

...
. . .

...
...

... · · ·
...

...
...
. . .

...

0 · · · 0 pTi − p
T
j 0 · · · 0 pTj − p

T
i 0 · · · 0

...
. . .

...
...

... · · ·
...

...
...
. . .

...

 ,
where each row

[
0 · · · 0 pTi − p

T
j 0 · · · 0 pTj − p

T
i 0 · · · 0

]
corresponds to an edge (i, j) ∈ E , pTi − p

T
j is a row 3-vector

in the three columns corresponding to node i.

All infinitesimally rigid networks are rigid, and infinitesi-
mal rigidity of a graph is a stronger condition than rigidity.
The following proposition is given to show the rela-
tionship between infinitesimally rigid graph and rigidity
matrix.
Proposition 1: A graph with N > 3 vertices in R3 is

infinitesimally rigid if and only if rank(R(G)) = 3N − 6.
An infinitesimally rigid graph G = (V, E) with N > 3
vertices and 3N − 6 edges is minimally rigid. If every edge
of the graph G = (V, E) is weighted by its length, a min-
weighted rigid graph is the minimally rigid graph which
has the minimally weighted sum in all infinitesimally rigid
graphs.

C. PROBLEM FORMULATION
Two problems are considered in this paper, centralized con-
sensus controller design and rigid graph-based decentralized
consensus controller design.
Problem 1 (Centralized Consensus Controller Design):

In order to achieve state consensus, we attempt to design
a centralized consensus controller and give the stability
conditions, whose DOA is estimated to guarantee the state
consensus.
Problem 2 (Rigid Graph-Based Decentralized Consensus

Controller Design): To improve the flexility and scalabil-
ity, we attempt to design a decentralized consensus con-
troller while the stability conditions and DOA are also given.
Moreover, a rigid graph based topology optimization scheme
is provided to reduce the redundancy of communication
links.

III. MAIN RESULT
In this section, we detail the consensus controller design
process. We first design a centralized consensus controller
to enforce the state consensus of master and slaves. Then,
a decentralized consensus controller is designed, while a rigid
graph based topology optimization scheme is given to reduce
the redundancy of communication links.

A. DESIGN OF CENTRALIZED CONSENSUS CONTROLLER
Under centralized network topology, master robot tracks the
geometric center of slave robots, i.e., qm → 1

N

∑N
i=1 qi, and

slave robots move as a group along the states enforced by the
master robot, i.e., qi → qm. Then, the centralized consensus
controller for master and slave robot i (∀i = 1, · · · ,N ) is
designed as

τm = sat(Km(
1
N

∑N

i=1
qi(t − dim)− qm)− αmq̇m)

+Gm(qm)

τi = sat(Ki(qm(t − dmi)− qi)− αiq̇i)+ Gi(qi) (4)

where Km, αm, Ki, αi ∈ Rn×n are gain matrices. With
Property 3, one obtains that |Gir (q)| < ϑr for ∀r = 1, . . . , n.
Then, the r th element Mmax,r of Mmax satisfies Mmax,r ≤

Tr − ϑr . The control framework is shown in Fig. 3.
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FIGURE 3. Control framework of the centralized consensus controller.

To demonstrate the DOA, bounds of the initial values are
defined as

max
θ∈[−d2,0]

‖q̇m0(θ )‖ ≤ δm1,

max
θ∈[−d2,0]

‖q̇sr0(θ )‖ ≤ δsr1,

max
θ∈[−d2,0]

‖qm0(θ )− qsr0(θ )‖ ≤ δer1,

max
θ∈[−d2,0]

‖q̇m0(θ )− q̇sr0(θ )‖ ≤ δer2, r = 1, 2, . . . ,N (5)

where δm1, δsr1, δer1 and δer2 are positive parameters.
Remark 1: As the relative distances between slaves are

usually very small, time delay between slaves is omit-
ted in this paper. In contrast, the distance between mas-
ter and slaves is large, and thus time delay is considered
in (4).

Several notations are defined in Appendix A. With these
notations, the following theorem is given.
Theorem 1: Consider TCPS (1) with controller (4) and

Assumption 1. If there exist positive definite matrices Wr ,
Rmr , Rsr , Sr , Rr , P1, P2 and matrices Xr , Nr , Mr , Hαm, Hkm,
Hαr , Hkr , ∀r = 1, · · · ,N with proportional dimensions such
that the following matrix inequalities hold

8 < 0 (6)

81r =

[
R̃r Xr
∗ R̃r

]
> 0 (7)

and ε (Q, ρ) ⊂ {L(Hαm, 0,Hkm,Hkm) ∩ [∩Nr=1L(0,Hαr ,Hkr ,
Hkr )]} where L(Hαm, 0,Hkm,Hkm) = {q̇m, q̇r , qm, qr ∈
Rn
:

∣∣∣ 1N ∑N
r=1(hkmiqm − hkmiqr + hαmiq̇m)

∣∣∣ ≤ Mmax,i, i =
1, · · · , n} and L(0,Hαr ,Hkr ,Hkr ) = {q̇m, q̇r , qm, qr ∈ Rn

:

|hkriqm − hkriqr + hαriq̇r | ≤ Mmax,i, i = 1, · · · , n}, hkmi is
the ith row of Hkm, the same with hαmi, hkri and hαri, then
closed-loop TCPS (1) is stable. Moreover, the estimate of
DOA for (1) is 0 = {q̇m0, q̇sr0, qm0 − qsr0 : 0δ ≤ 1}.

Proof: Choose Lyapunov function V =
∑5

i=1 Vi with

V1 = q̇TmMm (qm) q̇m +
∑N

r=1
q̇Tr Mr (qr ) q̇r

+ 2
∫ t

0
(q̇Tm (σ )Fh (σ )−

∑N

r=1
q̇Tr (σ )Fr (σ ))dσ,

V2 =
∑N

r=1
eTr Wrer ,

V3 =
∑N

r=1

∫ t−dr (t)

t−d̂r
eTr (σ ) Srer (σ ) dσ,

V4 =
∑N

r=1

∫ 0

−d̂ms

∫ t

t+θ
q̇Tm (σ )Rmr q̇m (σ ) dσdθ

+

∑N

r=1

∫ 0

−d̂sm

∫ t

t+θ
q̇Tr (σ )Rsr q̇r (σ ) dσdθ

+

∑N

r=1

∫ 0

−d̂r

∫ t

t+θ
ėTr (σ )Rr ėr (σ ) dσdθ,

V5 = θT1 P1θ1 + θ
T
2 P2θ2,

where θT1 = [
∫ t
t−d1(t)

eT1 (σ )dσ, · · · ,
∫ t
t−dN (t)

eTN (σ )d σ ],

θT2 = [
∫ t−d1(t)
t−d̂1

eT1 (σ )dσ, · · · ,
∫ t−dN (t)
t−d̂N

eTN (σ )d σ ] and
er = qm − qr .
Obviously, it is obtained that V > 0.
Based on Property 2 and Assumption 2, V̇1 is given as

V̇1 = 2q̇Tmsat(
1
N

∑N

i=1
(−Km(qm − qi(t − dim))− αmq̇m)

+ 2
∑N

i=1
q̇Ti sat(Ki(qm(t − dmi)− qi)− αiq̇i). (8)

From Lemma 1, V̇1 can be expressed as

V̇1 = 2q̇Tm
∑2n

i=1
ηi
∑N

r=1

1
N
{(D−i Hkm − DiKm)(qm − qr

+

∫ t

t−drm(t)
q̇r (σ ) dσ )+ (−Diαm + D

−

i Hαm)q̇m}

+

∑2n

i=1

∑N

r=1
2q̇Tr ηi{(DiKr + D

−

i Hkr )(qm − qr

−

∫ t

t−dmr (t)
q̇m (σ ) dσ )+ (−Diαr + D

−

i Hαr )q̇r }. (9)
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The time derivative of V4 is given by

V̇4 =
∑N

r=1
[d̂msq̇TmRmr q̇m −

∫ t

t−d̂ms
q̇Tm (σ )Rmr q̇m (σ ) dσ

+ d̂smq̇Tr Rsr q̇r −
∫ t

t−d̂sm
q̇Tr (σ )Rsr q̇r (σ ) dσ

+ d̂r ėTr Rr ėr −
∫ t

t−d̂r
ėTr (σ )Rr ėr (σ ) dσ ]. (10)

By applying Lemma 2 and −
∫ t
t−d̂r

ėTr (σ )Rr ėr (σ ) dσ =

−
∫ t−dr (t)
t−d̂r

ėTr (σ )Rr ėr (σ ) dσ −
∫ t
t−dr (t)

ėTr (σ )Rr ėr (σ ) dσ ,

we have the following conclusion

−

∫ t

t−d̂r
ėTr (σ )Rr ėr (σ ) dσ

≤
−1
dr (t)

(
∫ t

t−dr (t)
ėr (σ ) dσ )TRr (

∫ t

t−dr (t)
ėr (σ ) dσ )

−
3

dr (t)
εT2 Rrε2

where ε2 = er (t)+ er (t − dr (t))− 2
dr (t)

∫ t
t−dr (t)

er (σ )dσ .
We apply the Jensen inequality, then we can have

−

∫ t

t−dmr (t)
q̇Tm (σ )Rmr q̇m (σ ) dσ

≤
−1

d̂ms
(
∫ t

t−dmr (t)
q̇m (σ ) dσ )TRmr (

∫ t

t−dmr (t)
q̇m (σ ) dσ ).

Similar results are obtained by
∫ t
t−d̂sm

q̇Tr (σ )Rsr q̇r (σ ) dσ .
If there exists a matrix Xr such that 81r > 0, one has

−

∫ t

t−d̂r
ėTr (σ )Rr ėrdσ ≤ −

1

d̂r
ξT0Tr 81r0rξ (11)

with ξT = [ξ1, · · · , ξ10] where ξ1 = [q̇Tm, q̇
T
1 , · · · , q̇

T
N ],

ξ2 = [
∫ t
t−dm1(t)

q̇Tm (σ ) dσ, · · · ,
∫ t
t−dmN (t)

q̇Tm (σ ) dσ ], ξ3 =
[
∫ t
t−d1m(t)

q̇T1 (σ ) dσ, · · · ,
∫ t
t−dNm(t)

q̇TN (σ ) dσ ], ξ4 = [eT1 ,
· · · , eTN ], ξ5 = [eT1 (t − d1(t)), · · · , eTN (t − dN (t))], ξ6 =
[eT1 (t − d̂1), · · · , e

T
N (t − d̂N )], ξ7 = [ 1

d1(t)

∫ t
t−d1(t)

eT1 (σ ) dσ ,

· · · , 1
dN (t)

∫ t
t−dN (t)

eTN (σ ) dσ ], ξ8 = [ 1
d̂1−d1(t)

∫ t−d1(t)
t−d̂1

eT1 (σ )

×dσ, · · · , 1
d̂N−dN (t)

∫ t−dN (t)
t−d̂N

eTN (σ ) dσ ], ξ9= [
∫ t
t−d1(t)

ėT1 (σ )

×dσ, · · · ,
∫ t
t−dN (t)

ėTN (σ ) dσ ], and ξ10= [
∫ t−d1(t)
t−d̂1

ėT1 (σ ) dσ ,

· · · ,
∫ t−dN (t)
t−d̂N

ėTN (σ ) dσ ].

With the above results, one has

V̇4 ≤
∑N

r=1
[d̂msq̇TmRmr q̇m −

1

d̂ms
(
∫ t

t−dmr (t)
q̇m (σ ) dσ )T

×Rmr (
∫ t

t−dmr (t)
q̇m (σ ) dσ )+ d̂smq̇Tr Rsr q̇r −

1

d̂sm

× (
∫ t

t−drm(t)
q̇r (σ ) dσ )TRrm(

∫ t

t−drm(t)
q̇r (σ ) dσ )

+ d̂r ėTr Rr ėr −
1

d̂r
ξT0Tr 81r0rξ ]. (12)

Calculation of V̇2, V̇3 and V̇5 is omitted due to the limited
space. For r = 1, · · · ,N , the following free-weightingmatri-
ces are considered, i.e., nr = 2ξTNr [er (t) − er (t − dr (t)) −∫ t
t−dr (t)

ėr (σ )dσ ] = 0 andmr = 2ξTMr [er (t−dr (t))−er (t−

d̂i)−
∫ t−dr (t)
t−d̂i

ėr (σ )dσ ] = 0. Therefore, we have

V̇ =
∑5

i=1
V̇i +

∑N

r=1
(nr + mr ) ≤

∑2n

i=1
ηiξ

T8ξ. (13)

Under (6) and (7), we have V̇ < 0 for ∀x ∈ ε (Q, ρ)\{0}
∈ L(Hαm, 0,Hkm,Hkm) ∩ [∩Nr=1L(0,Hαr ,Hkr ,Hkr )]. Then,
xTQx ≤ V (x0) ≤ (%̂m +

∑N
r=1

1
2 d̂

2
msλmax(Rmr ))δ2m1 +∑N

r=1 %̂rδ
2
sr1+

∑N
r=1

1
2 d̂

2
smλmax(Rsr )δ2sr1+

∑N
r=1(λmax(Wr )+

(d̂r − ďr )λmax(Sr ) + d̂2r λmax(P1) + (d̂r − ďr )2λmax(P2))

δ2er1 +
∑N

r=1
1
2 d̂

2
r λmax(Rr )δ2er2 = 0δ . The estimation of

DOA is obtained from 0δ ≤ 1.
Remark 2: In Theorem 1, V̇ < 0 with8 < 0 and81r > 0

for all (di(t), ḋi(t)) ∈ [ďi, d̂i] × [µ̌i, µ̂i]. As 8 is a convex
matrix with respect to di(t) and ḋi(t), it is required to guar-
antee 8 < 0 at the vertices of the interval [ďi, d̂i]× [µ̌i, µ̂i].
Thus, 8 < 0 can be solved as LMIs optimization problem.
With the LMIs Toolbox in MATLAB, the above inequalities
are feasible and easily computed.

It is interesting to come up with a solution such that the
estimate of DOA is maximized. In our previous work [16],
we have provided an LMI-based strategy to choose the
desired parameters for the single-slave TCPS. The proposed
strategy in [16] can provide a guideline to choose the desired
parameters, and then the following optimization problem is
obtained.

min $

s.t. a) ωi > 0, i = 1, 2, . . . , 7,

Wr > 0, Sr > 0, Rmr > 0, Rsr > 0,

Rr > 0, P1 > 0, P2 > 0, r = 1, 2, . . . ,N

b) ωr I −Wr ≥ 0, αr I − Sr ≥ 0,

βr I − Rmr ≥ 0, %r I − Rsr ≥ 0,

~r I − Rr ≥ 0, υ1I − P1 ≥ 0,

υ2I − P2 ≥ 0

c) ε (Q, 1) ⊂ {L(Hαm, 0,Hkm,Hkm)

∩ [∩Nr=1L(0,Hαr ,Hkr ,Hkr )]}

d) LMIs (6) and (7),

where $ =
∑N

r=1 ωr + (d̂r − ďr )αr + 1
2 d̂

2
msβr +

1
2 d̂

2
sm%r +

1
2 d̂

2
r ~r + d̂

2
r υ1 + (d̂r − ďr )2υ2.

The constraint b) is equivalent to λmax(Wr ) ≤ ωr .
The same holds for others. With Property 1, we get∑N

r=1 λmax(Wr ) + (d̂r − ďr )λmax(Sr ) + 1
2 d̂

2
msλmax(Rmr ) +

1
2 d̂

2
smλmax(Rsr ) + 1

2 d̂
2
r λmax(Rr ) + d̂2r λmax(P1) + (d̂r −

ďr )2λmax(P2) ≤ $ . Then a maximized estimate of DOA is
obtained by δmax =

1
√
$
. Furthermore, if the lower bound

of delay is fixed, the estimate of DOA varies inversely with
the size of time delay, i.e., the larger the range of delay is,
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the smaller the estimate of DOA is. For simplicity, the opti-
mization is considered for the case δm1 = δsr1 = δer1 = δer2.
We can fix some parameters and optimize others by the same
way.

B. DESIGN OF DECENTRALIZED CONSENSUS
CONTROLLER
In Section III-A, the consensus controller (4) is based on
a centralized mode, where master is required to acquire all
slaves’ state information and there is no cooperation among
slaves. However, the applications of centralized implemen-
tation are not feasible in large-scale networks. To overcome
this shortage, this section designs a decentralized consensus
controller, where each slave cooperates with its neighbors to
accomplish the cooperative consensus.

The prerequisite of cooperation is connectivity main-
tenance through the installed sensors. As mentioned in
Section II-B, sensing sensor for each slave robot i
(i = 1, · · · ,N ) is mounted at the base of each manipulator,
and the position of this sensor is denoted by pi ∈ R3.
Combining with connectivity maintenance, this section uses
min-weighted rigid graph to optimize the neighborhood rela-
tionship of slave robots. With the optimized communication
topology, a decentralized consensus controller is designed
to compensate the time-varying delay and saturation effects.
As it is mentioned above, the min-weighted rigid graph
is infinitesimally rigid. Then, referring to the properties of
infinitesimally rigidity, we know that the topology in min-
weighted rigid graph is connected. Thus, the min-weighted
rigid graph can guarantee the connectivity maintenance.

In the following, we attempt to design a topology opti-
mization scheme. By analyzing the relationship between local
rigidity and global rigidity of a graph, we give the following
properties.
• If an arbitrary vertex i ∈ V and its neighbors
Ni(|Ni|# ≥ d) compose the min-weighted rigid sub-
graph Ǵ = (V́, É), then it is concluded that G = (V, E)
is rigid, where V́ = {i,Ni} and É ⊆ E .

• If any framework Ǵ = (V́, É) of a rigid graphG = (V, E)
is replaced with any other rigid graph G̃ = (Ṽ, Ẽ), it is
concluded that the obtained global graph is still rigid.

With above properties, we have the following lemma.
Lemma 3: [19] For vertex i ∈ V , Gi = (V̆i, Ĕi) is denoted

as local min-weighted rigid graph which consists of vertex
i and Ni(|Ni|# ≥ d), and G = (V, E) = ∪i∈VGi. Define
another edge set EE = {e = (k, l) ∈ E : k, l ∈ V̆i, and e /∈ Ĕi}.
Then, Gm = (V, E/ EE) is the global min-weighted rigid graph.
With Lemma 3, Algorithm 1 is provided to obtain the min-

weighted rigid graph for slave robots. Compared with “neigh-
borhood rule” based topology, the communication links of
slave robots in min-weighted rigid graph are minimum on the
condition of rigidity retaining. Additionally, the sum of the
energy balance weights for sensor nodes is also the minimum.
Algorithm 1 is summarized as: 1) Obtain the local min-
weighted rigid graph for slave robots; 2) Delete the edges
which are not in the global min-weighted rigid graph.

Algorithm 1 Design of Topology Optimization Scheme
Input: A local unoptimized graph Goi = (Vi, Eoi ), and E

o
i

is defined as follows: if
∥∥pi − pj∥∥ < r ,

(i, j) ∈ Eoi ; otherwise, (i, j) /∈ Eoi
Output: The global min-weighted rigid graph

1 for i = 1 : N do
2 Sequence the edges in Eoi based on the length sizes

from small beginnings, and then build the rigidity
matrix R(Goi )

3 Initialize R(Gmi ) as the first row of R(Goi )
4 for j = 1 :

∣∣Eoi ∣∣# do
5 while rank(R(Gmi )) ≤ 3N − 6 do
6 Add the next row of R(Goi ) to R(G

m
i ) to form

a new matrix ER(Gmi )
7 if ER is full rank then
8 R(Gmi ) = ER(G

m
i ) and record Emi in ER(Gmi )

corresponding to the row

9 Delete the edges satisfying the conditions in
Lemma 3

10 return Gm = (V, Em)

Under the optimized communication topology, the decen-
tralized consensus controller is designed as

τm = sat(
∑N

i=1
biKm(qi(t − dim)− qm)− αmq̇m)+ Gm(qm)

τi = sat(
∑N

j=1
aijKi(qi − qj)+ biKi(qm(t − dmi)

− q̄i)− αiq̇i)+ Gi(q̄i), (14)

where ∀i = 1, · · · ,N . Km ∈ Rn×n, αm ∈ Rn×n, Ki ∈ Rn×n

and αi ∈ Rn×n are gain matrices to be designed. bi > 0 if
master can exchange information with slave i, and bi = 0
otherwise. With Property 3, one obtains that |Gir (q)| < ϑr
for ∀r = 1, . . . , n. As such, the r th element Mmax,r of Mmax
satisfiesMmax,r ≤ Tr − ϑr . The control framework is shown
in Fig. 4.

The property of connectivity maintenance in Algorithm 1
is given by the following theorem.
Theorem 2: After the neighborhood topology relationship

of slave robots is schematically denoted by a min-weighted
rigid graph Gm with Algorithm 1, we have the following con-
clusions: 1) The topology Gm is 3-connected; 2)The average
degree of each slave robot is 6.

Proof: With Algorithm 1, min-weighted rigid graph Gm
is generated. As mentioned above, a graph is rigid if the only
smooth motions are those corresponding to translation and
rotation of the whole formation (see [29], [30] for a precise
definition), thus each slave in rigid graph has at least three
neighbors for rigidity requirement. Thismeans any two slaves
have at least three connected paths, i.e., the topology Gm is
3-connected.

There are 3N − 6 communication links for N slave robots.
It is noticed that the sum of the degree for all slaves is
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FIGURE 4. Control framework of the decentralized consensus controller.

the twice of the number of communication links. Denote
the average degree of each slave robot as D̄, thus we have
D̄ = 2(3N − 6)/N . Therefore, limN→∞D̄ = 6.
The bounds of the initial values are defined as (5),

maxθ∈[−d2,0]
∥∥qi0(θ )− qj0(θ )∥∥≤ δeij3, and maxθ∈[−d2,0]∥∥q̇i0(θ )− q̇j0(θ )∥∥≤ δeij4, where δm1, δsr1, δer1, δer2,

δeij3, δeij4 are positive parameters. The stability conditions
for (14) is given in Theorem 3. Several notations are defined
in Appendix B.
Theorem 3: Consider the TCPS (1) with decentralized

controller (14) and optimized topology. The TCPS (1) is
stable, if there exist positive definite matrices Rmr , Rsr , Sr ,
Wr ,Zr ,Ur ,Qr ,Rr ,P1r ,P2r ,P3r ,P4r andmatricesXr ,Yr ,N ,
M , G,H ,Hαm, Hkm, Hkαr , Hkbr ,Hαr ∀r = 1, · · · ,N
with proportional dimensions such that the following matrix
inequalities hold

8̂ < 0, R̆i > 0, Q̆i > 0 (15)

and ε (�, ρ)⊂{L(Hαm,Hkm) ∩ [∩Nr=1L(Hkαr ,Hkbr , Hαr )]},
where L(Hαm,Hkm) = {q̇m, q̇r , qm, qr ∈ Rn

:∣∣∣∑N
r=1 br (hkmiqm − hkmiqr )+ hαmiq̇m)

∣∣∣ ≤ Mmax,i, i =
1, · · · , n}, L(Hkαr ,Hkbr ,Hαr ) = {q̇m, q̇r , qm, qr ∈

Rn
:

∣∣∣∑N
r=1

∑N
p=1 arp(hkariqr − hkariqp)+

∑N
r=1 br (hkbriqm

−hkbriqr )+ hαriq̇r | ≤ Mmax,i, i = 1, · · · , n}, hkmi, hαmi,
hkari, hkbri and hαri are the ith row of Hkm,Hkm,Hkαr ,Hkbr
and Hαr respectively. The estimate of DOA for (14) is 0 =
{q̇m0, q̇sr0, qm0, qsr0 : 0̂δ ≤ 1}.

Proof: Choose Lyapunov function V =
∑5

i=1 Vi with

V1 = q̇TmMm (qm) q̇m +
∑N

i=1
q̇Ti Mi (qi) q̇i

+ 2
∫ t

0
(q̇Tm (σ )Fh (σ )−

∑N

i=1
q̇Ti (σ )Fr (σ ))dσ,

V2 =
∑N

i=1

{
bieTmiWiemi +

∑N

j=1
aijeTijZieij

}
,

V3 =
∑N

i=1

{
bi

∫ t−di(t)

t−d̂i
eTmi (σ ) Siemi (σ ) dσ

+

∑N

j=1
aij

∫ t−di(t)

t−d̂i
eTij (σ )Uieij (σ ) dσ

}
,

V4 =
∑N

i=1

{
bi

∫ 0

−d̂ms

∫ t

t+θ
q̇Tm (σ )Rmiq̇m (σ ) dσdθ

+ bi

∫ 0

−d̂sm

∫ t

t+θ
q̇Ti (σ )Rsiq̇i (σ ) dσdθ

+ bi

∫ 0

−d̂i

∫ t

t+θ
ėTmi (σ )Riėmi (σ ) dσdθ

+

∑N

j=1
aij

∫ 0

−d̂i

∫ t

t+θ
ėTij (σ )Qiėij (σ ) dσdθ

}
,

V5 =
∑N

i=1

{
bi(
∫ t

t-di(t)
emi (σ ) dσ )TP1i(

∫ t

t-di(t)
emi (σ )

× dσ )+bi(
∫ t-di(t)

t-d̂i
emi (σ ) dσ )TP2i(

∫ t-di(t)

t-d̂i
emi (σ )

× dσ )+
∑N

j=1
aij(
∫ t

t-di(t)
eij (σ ) dσ )TP3i

× (
∫ t

t-di(t)
eij (σ ) dσ )+

∑N

j=1
aij(
∫ t−di(t)

t−d̂i
eij (σ )

× dσ )TP4i(
∫ t−di(t)

t−d̂i
eij (σ ) dσ )

}
, (16)

where emi = qm − qi and eij = qi − qj.
Clearly,V > 0.With Property 2 andAssumption 2, V̇1, V̇2,

and V̇3 are given as

V̇1 = 2q̇Tm[
∑N

i=1
bi(−DrKm + D−r Hkm)(qi(t − dim(t))

− qm)+ (−Drαm + D−r Hαm)q̇m]+ 2
∑N

i=1
q̇Ti

× [
∑N

j=1
aij(DrKi + D−r Hkai)(qi − qj)

+ bi(DrKi + D−r Hkbi)(qm(t − dmi(t))− qi)
× (−Drαi + D−r Hαi)qi].

17278 VOLUME 5, 2017



J. Yan et al.: Consensus of TCPS via Centralized and Decentralized Controllers

V̇2 = 2
∑N

i=1
bi[q̇TmWiemi − q̇Ti Wiemi]

+ 2
∑N

i=1

∑N

j=1
aij[q̇Ti Zieij − q̇

T
i Zieij],

V̇3 =
∑N

i=1
bi[(1− ḋi(t))eTmi(t − di(t))Wiemi(t − di(t))

− eTmi(t − d̂i)Wiemi(t − d̂i)+
∑N

i=1

∑N

j=1
aij

× [(1− ḋi(t))eTij (t − di(t))Uiemi(t − di(t))

− eTij (t − d̂i)Uieij(t − d̂i)]. (17)

With Lemma 1 and ε (�, ρ) ⊂ {L(Hαm,Hkm) ∩
[∩Nr=1L(Hkαr ,Hkbr ,Hαr )]}, V̇1 can be further expressed as

V̇1 =
∑2n

r=1
ηr {2q̇Tm[

∑N

i=1
bi(−DrKm + D−r Hkm)(emi

+

∫ t

t−dim(t)
q̇i(σ )dσ )+ (−Drαm + D−r Hαm)q̇m]

+ 2
∑N

i=1
q̇Ti [

∑N

j=1
aij(DrKi + D−r Hkai)eij

+ bi(DrKi + D−r Hkbi)(emi −
∫ t

t−dmi(t)
q̇m(σ )dσ )

+ (−Drαi + D−r Hαi)q̄i]}, (18)

where 0 < ηr ≤ 1 and
∑2n

r=1 ηr = 1.
The time derivative of V4 is

V̇4 =
∑N

i=1

{
bi[d̂msq̇TmRmiq̇m −

∫ t

t−d̂ms
q̇Tm(σ )Rmi

× q̇m(σ )dσ + d̂smq̇Ti Rsiq̇i −
∫ t

t−d̂sm
q̇Ti (σ )

×Rsiq̇i(σ )dσ + d̂iėTmiRiėmi −
∫ t

t−d̂i
ėTmi(σ )

×Riėmi(σ )dσ ]+
∑N

j=1
aij[d̂iėTijQiėij

−

∫ t

t−d̂i
ėTij (σ )Qiėij(σ )dσ ]

}
. (19)

Based on Newton-Leibniz formula, the following equali-
ties hold

ni = 2ξTNi[emi(t)− emi(t − di(t))−
∫ t

t−di(t)
ėmi(σ )dσ ]

= 0,

mi = 2ξTMi[emi(t − di(t))− emi(t − d̂i)

−

∫ t−di(t)

t−d̂i
ėmi(σ )dσ ]

= 0,

gi = 2ξTGi[eij(t)− eij(t − di(t))−
∫ t

t−di(t)
ėij(σ )dσ ]

= 0,

hi = 2ξTMi[emi(t − di(t))− emi(t − d̂i)

−

∫ t−di(t)

t−d̂i
ėmi(σ )dσ ]

= 0, (20)

with

ξT = [q̇Tm, ξ1, · · · , ξ17] (21)

where ξ1 = [q̇T1 , · · · , q̇
T
N ], ξ2 = [

∫ t
t−dmiν (t)

q̇Tm (σ ) dσ ]n×=̄mn,

ξ3 = [
∫ t
t−diνm(t)

q̇Tiν (σ ) dσ ]n×=̄mn, ξ4 = [eTmiν ]n×=̄mn,

ξ5 = [eTmiν (t − diν (t))]n×=̄mn, ξ6 = [eTmiν (t − d̂iν )]n×=̄mn,
ξ10 = [ 1

diν (t)
×
∫ t
t−diν (t)

eTmiν (σ ) dσ ]n×=̄mn, ξ11 =

[ 1
d̂iν−diν (t)

×
∫ t−diν (t)
t−d̂iν

eTmiν (σ )]n×=̄mn, ξ12 = [
∫ t
t−diν (t)

ėTmiν (σ )

×dσ ]n×=̄mn, ξ13 = [
∫ t−diν (t)
t−d̂iν

ėTmiν (σ )]n×=̄mn, iν ∈

{1, 2, . . . ,N |iν ∈ =m}, ν = 1, 2, . . . , =̄m, iν+1 =

ceil(iν), and ceil(·) is the ceil function (the smallest inte-
ger greater than or equal to). ξ7 = [eTνjνp ]n×

∑N
i=1 =̄in

,

ξ8 = [eTνjνp (t − dν(t))]n×∑N
i=1 =̄in

, ξ9 = [eTνjνp (t −

d̂ν)]n×∑N
i=1 =̄in

, ξ14 = [ 1
dν (t)

∫ t
t−dν (t)

eTνjνp (σ ) dσ ]n×
∑N

i=1 =̄in
,

ξ15 = [ 1
d̂ν−dν (t)

∫ t−dν (t)
t−d̂ν

eTνjνp (σ )]n×
∑N

i=1 =̄in
, jνp+1 =

ceil(jνp), ξ16 = [
∫ t
t−dν (t)

ėTνjνp (σ ) dσ ]n×
∑N

i=1 =̄in
, and ξ17 =

[
∫ t−dν (t)
t−d̂ν

ėTνjνp (σ )]n×
∑N

i=1 =̄in
, jνp ∈ {1, 2, . . ., N |aνjνp 6= 0},

p = 1, 2, . . . , =̄ν , ν = 1, 2, . . . ,N .
From (18) to (21), we have V̇ =

∑5
i=1 V̇i +

∑N
r=1(nr +

mr + gr + hr ) ≤
∑2n

i=1 ηiξ
T 8̂ξ for x ∈ L(Hαm,Hkm) ∩

[∩Nr=1L(Hkαr ,Hkbr ,Hαr )]. If (15) is satisfied, we have
V̇ < 0 for ∀x ∈ ε (�, ρ)\{0} ∈ L(Hαm,Hkm) ∩
[∩Nr=1L(Hkαr ,Hkbr ,Hαr )] . Then, xT�x ≤ V (xt ) <

V (x0) ≤ 0δ .The estimate of DOA is obtained from
0δ ≤ 1. �
Similar to the optimization in Section III-A, the following

optimization problem is obtained

min $

s.t. a) ωji > 0, i ∈ =m, j = 1, 2, . . . , 7

α j̄r > 0, r = 1, 2, . . . ,N , j̄ = 1, 2, . . . , 5

Wi > 0, Si > 0, Rmi > 0, Rsi > 0,

Ri > 0, P1i > 0, P2i > 0,

Zr > 0, Ur > 0, Qr > 0, P3r > 0, P4r > 0

b) ω1
i I −Wi ≥ 0, ω2

i I − Si ≥ 0,

ω3
i I − Rmi ≥ 0, ω4

i I − Rsi ≥ 0,

ω5
i I − Ri ≥ 0, ω6

i I − P1i ≥ 0, ω7
i I − P2i ≥ 0,

α1r I − Zr ≥ 0, α2r I − Ur ≥ 0, α3r I − Qr ≥ 0,

α4r I − P3r ≥ 0, α5r I − P4r ≥ 0

c) ε (�, ρ)⊂{L(Hαm,Hkm)

∩[∩Nr=1L(Hkαr ,Hkbr ,Hαr )]}

d) LMI (15),

where$ =
∑

i∈=m (ω
1
i + (d̂r − ďr )ω2

i +
1
2 d̂

2
msω

3
i +

1
2 d̂

2
smω

4
i +

1
2 d̂

2
i ω

5
i + d̂

2
i ω

6
i + (d̂r − ďr )2ω7

i )+
∑N

r=1(α
1
r + (d̂r − ďr )α2r +

1
2 d̂

2
r α

3
r ++d̂

2
i α

4
r + (d̂r − ďr )2α5r ).
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FIGURE 5. Simulation results for the centralized consensus controller (4). (a) Communication topology of master and
slaves. (b) Angles of manipulators. (c) Consensus errors of angles. (d) Control torque for manipulators.

Similarly,
∑

i∈=m (λmax(Wi) + (d̂r − ďr )λmax(Si) +
1
2 d̂

2
msλmax(Rmi) + 1

2 d̂
2
smλmax(Rsi) + 1

2 d̂
2
i λmax(Ri) + d̂2i

λmax(P1i) + (d̂r − ďr )2λmax(P2i)) +
∑N

r=1(λmax(Zr ) +
(d̂r − ďr )λmax(Ur ) + 1

2 d̂
2
r λmax(Qr ) + d̂2i λmax(P3r ) + (d̂r −

ďr )2λmax(P4r )) ≤ $ holds. Then a maximized estimate of
DOA is obtained as δmax = 1/

√
$ .

IV. SIMULATION AND EXPERIMENT RESULTS
This section gives the simulation and experiment results
to verify the effectiveness of the proposed consensus
controllers.

A. SIMULATION ON A SINGLE-MASTER-MULTI-SLAVE
TCPS
In the simulation, a single-master-multi-slave TCPS consists
of seven 3-DOF manipulators (i.e., one master robot and six
slave robots), and the model is given as

Mm(qm)q̈m + Cm(qm, q̇m)q̇m + Gm(qm) = τm − Fh
Mi(qi)q̈i + Ci(qi, q̇i)q̇i + Gi(qi) = τi + Fi

whose components of motion dynamics are given
in [31] and [32] and i ∈ {1, 2, 3, 4, 5, 6}. For clear

illustration, model parameters of an arbitrary manipula-
tor 1 are given as follows. Define q1 = [q11, q12, q13]T ,
G1 = [G11,G12,G13]T , τ1 = [τ11, τ12, τ13]T and F1 =
[F11,F12,F13]T , then model of PhantomTM robotic system
is given asm11 m12 m13
m21 m22 m23
m31 m32 m33

 q̈11q̈12
q̈13

+
 c11 c12 c13
c21 c22 c23
c31 c32 c33


×

 q̇11q̇12
q̇13

 =
 τ11τ12
τ13

+
F11F12
F13

−
G11
G12
G13


where m11 = θ1 + θ2 cos2 q12 + (θ3 + θ5) sin3 q13 +
2θ6 cos q12 sin q13, m12 = 0, m13 = 0, m21 = 0,
m22 = θ4 + θ5 − 2 sin(q12 − q13), m31 = 0, m23 =

m32 = θ5 − θ6 − 2 sin(q12 − q13), m33 = θ5,
c11 = −(θ2 sin q12 cos q12 + θ6 sin q12 sin q13)q̇12 +
((θ3 + θ5) sin q13 cos q13 + θ6 cos q12 cos q13)q̇13, c12 =
−(θ2 sin q12 cos q12 + θ6 sin q12 sin q13)q̇11, c13 = ((θ3 +
θ5) sin q13 cos q13 + θ6 cos q12 cos q13)q̇11, c21 = (θ2 sin q12
cos q12+θ6 sin q12 sin q13)q̇11, c22 = θ6 cos (q12−q13)(q̇13−
q̇12), c23 = θ6 cos (q12 − q13)(q̇12 − q̇13), c31 = −(θ3 +
θ5) sin q13 cos q3q̇11−θ6 cos q12 cos q13q̇11, c32 = 0, c33 = 0,
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FIGURE 6. Simulation results for the decentralized consensus controller (14) under neighbor rule modes.
(a) Communication topology of master and slaves. (b) Angles of manipulators. (c) Consensus errors of angles.
(d) Control torque for manipulators.

G1 = 0, G2 = θ7 cos q12 and G3 = θ8 sin q13. In special,
θ1 = 32, θ2 = 34, θ3 = 20, θ4 = 74, θ5 = 1, θ6 = 2,
θ7 = −926 and θ8 = −685.
Some parameters used for the simulation are designed

as follows: Km = Ki = αm = αi = diag{30, 30, 30},
and the saturation level is ±6 for i ∈ {1, 2, 3, 4, 5, 6}.
The single-way forward and backward time delays are cho-
sen to be random variables with uniform distributions. The
initial conditions for master and slave robots are given
as: qm = (π/6, π/6,−0.2)T , q1 = (0, π/2,−π/2)T ,
q2 = (π/4, π/4, π/6)T , q3 = (π/8, π/5, π/9)T , q4 =
(π/2, π/2,−π/6)T , q5 = (−π/4,−π/4, 0)T , q6 =

(π/3, 0, π/6)T , q̇m = (1, 0, 0)T and q̇m = q̇i = (0, 0, 0)T

for i ∈ {1, 2, 3, 4, 5, 6}. Human operator exerts forces F =
[Fx ,Fy, Fz]T on the master, where Fx , Fy and Fz are the force
components in X-axis, Y-axis and Z-axis, respectively. The
human exerted forces F are designed as: Fx = 20t − 10, if
t ∈ [0.5, 1); Fx = 10, if t ∈ [1, 2); Fx = −20t + 50, if t ∈
[2, 2.5); Fx = 0, if t ∈ [0, 0.5) ∪ [2.5, 40]; Fy = 20t − 30,
if t ∈ [1.5, 2); Fy = 10, if t ∈ [2, 3); Fy = −20t + 70,
if t ∈ [3, 3.5); Fy = 0, if t ∈ [0, 1.5) ∪ [3, 40]; Fz = 0,
if t ∈ [0, 40].

We first investigate the performance of centralized consen-
sus controller (4). With the centralized mode (e.g., [13], [21],
[22]), the communication topology of master and slave robots
is shown in Fig. 5 (a). It can be seen that each slave robot
bilaterally communicates with the master robot, while there
is no cooperation among slave robots. Under the centralized
topology relationship, we adopt centralized consensus con-
troller (4) to drive the states of master and slave robots. With
the centralized consensus controller, angles of manipulators,
i.e., qm, q1, q2, q3, q4, q5 and q6, are shown in Fig. 5(b).
Consensus errors of angles, i.e., qm − q1, q1 − qm, q2 − qm,
q3−qm, q4−qm, q5−qm and q6−qm, are shown in Fig. 5(c).
Clearly, state consensus can be achieved because all the con-
sensus errors approximately converge to the value of zero.
Moreover, the control torques for master and slave robots
with the centralized consensus controller are provided by
Fig. 5 (d). When the sufficient stability conditions are sat-
isfied for the centralized consensus controller (4), it can be
shown that control torques in Fig. 5(d) are smooth,and they
are restricted by the saturation bounds.

In the following, we investigate the performance of decen-
tralized consensus controller (14). As mentioned above,

VOLUME 5, 2017 17281



J. Yan et al.: Consensus of TCPS via Centralized and Decentralized Controllers

FIGURE 7. Simulation results for the decentralized consensus controller (14) under the optimized topology in this paper.
(a) Communication topology of master and slaves. (b) Angles of manipulators. (c) Consensus errors of angles. (d) Control
torque for manipulators.

FIGURE 8. Comparison between the unoptimized topology in [18] and [24]) and the optimized topology in this paper.
(a) Average degree for each slave robot. (b) Number of communication edges in slave site.

the neighbor rule-based network topology can increase some
unnecessary interactions, and the redundancymakes the com-
munication complex and inefficient. Fig. 6(a) shows the
topology relationships of the slave robots in neighbor rule

decentralized modes (e.g., [18], [24]). With the unoptimized
topology, we use the decentralized controller (14) to achieve
state consensus. The angles of manipulators, i.e., qm, q1, q2,
q3, q4, q5 and q6, are shown in Fig. 6(b). Consensus errors of
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FIGURE 9. Experimental results, where real, dotted and dashed lines denote the relevant states for master, slave 1 and
slave 2, respectively. (a) Experimental setup. (b) Consensus of robots. (c) Position trajectories. (d) Position errors.

angles, i.e., qm−q1, q1−qm, q2−qm, q3−qm, q4−qm, q5−qm
and q6−qm, are shown in Fig. 6 (c). Clearly, consensus can be
achieved because consensus errors approximately converge
to zero. Fig. 6(d) shows the control torques, and control
torques are smooth while being restricted by the saturation
bounds.

When Algorithm 1 is adopted to optimize the network
topology, we can obtain the optimized topology of master and
slave robots, as shown in Fig. 7(a). Obviously, communica-
tion complexity in this paper is the least, as the communicate
links in this paper is 12, while Fig. 6 (a) 15. With the opti-
mized min-weighted rigid graph, we use the decentralized
controller (14) to achieve state consensus. The angles of
manipulators are shown in Fig. 7(b), and the consensus errors
of angles are shown in Fig. 7(c). Similar to the unoptimized
network topology, consensus can be guaranteed as all con-
sensus errors approximately converge to the value of zero.
Control torques for master and slaves with the centralized
consensus controller are provided by Fig. 7(d). When the
sufficient stability conditions are satisfied for our controllers,
it can be shown that control torques in Fig. 7(d) are smooth,
and they are restricted by the saturation bounds. Notice that
the topologies in centralized and decentralized modes are

different, and this characteristic leads to the differences of
stress points for human operator. Thus, the final convergence
values are different with the centralized and decentralized
modes. As our objective is to ensure the state consensus
of master and slave robots, thereby the difference of final
convergence values does not affect the whole performance of
state consensus for multi-slave TCPS.

Finally, we give the comparison results. Fig. 8(a) shows
the average degree for each slave robot, and the degree in
unoptimzied topology is fixed as 6. It can be seen that the
degree in this paper converges to 6with the number increasing
of slave robots, i.e., the degree in this paper can meet the
demand of connectivitymaintenance. In Fig. 8(b), the number
of communication edges in slave site is given. It can be seen
that the topology in this paper can reduce some redundancy
links by comparing with the unoptimized topology.

B. EXPERIMENT ON A MULTI-SLAVE TCPS
Experimental results are presented in this section. The exper-
iment platform is composed of three Phantom Premium
1.5HF robotic arms, i.e., one master robot and two slave
robots with 3-DOF positional sensing. This platform is
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provided by SensAble Technologies, Inc, which is shown
in Fig. 9(a). In this section, we only check the effectiveness
of the proposed centralized consensus controller, due to the
limited number of slave robots in our lab.

In the communication channel, the time delays between
master and slave robots are deigned to be random variables,
which are with uniform distributions. Master robot is oper-
ated by human operator to obtain the desired state trajectory,
and two slave robots are enforced to track the trajectory of
master robot. With the Jacobian coordinate transformation,
the experiment is transformed from angles to position space.

Under the consensus tracking controller (4), the two slave
robots can effectively track the trajectory of the master robot
as shown by Fig. 9(b). To show more clearly, Fig. 9(c) show
the position trajectories of master and slave robot. In addi-
tion, position errors during the consensus process are shown
in Fig. 9(d). Obviously, consensus task is achieved, because
all the states errors approximately converge to zero.

V. CONCLUSION AND FUTURE WORKS
In this paper, we investigate the consensus problem for
delayed single-master-multi-slave TCPS in the presence
of actuator saturation. To achieve consensus task, central-
ized and decentralized consensus controllers are respectively
designed for TCPS, such that the master robot can track
the slave robots while each slave robot keeps state consen-
sus with the master robot. Stability conditions are given to
illustrate that the consensus tracking controller can stabilize
the TCPS. We also give a min-weighted rigid graph based
topology optimization scheme to simplify the information
fusion in decentralized controller design. Finally, simulation
and experiment results are performed to show the validity of
our proposed methods.

In future, more complex environments will considered,
such as the consensus control in underwater environment.
Moreover, how to describe the time delay in underwater
environment is also our future work.

APPENDIX A
NOTATIONS FOR THEOREM 1

0δ = (%̂m +
∑N

r=1

1
2
d̂2msλmax(Rmr ))δ2m1 +

∑N

r=1
%̂rδ

2
sr1

+

∑N

r=1

1
2
d̂2smλmax(Rsr )δ2sr1 +

∑N

r=1
(λmax(Wr )

+ (d̂r − ďr )λmax(Sr )+ d̂2r λmax(P1)+ (d̂r − ďr )2

× λmax(P2))δ2er1 +
∑N

r=1

1
2
d̂2r λmax(Rr )δ2er2.

8 = 80 −
∑N

r=1

1

d̂i
0Tr 81r0r ,

80 = Ŵ + Ŝ + R̂m + R̂s + R̂

+

∑N

r=1
(N̂r + M̂r + N̂T

r + M̂
T
r )+ J

T
0 P1J1

+ JT1 P1J0 + J
T
2 P2J3 + J

T
3 P2J2 +83Ŵ

=
[
0n(10N+1)×n(3N+1) 2w̃1 0n(10N+1)×n(3N+1)

]

with w̃1 = col{$,−2W1ẽ1, . . . ,−2WN ẽN , 09nN×nN } and ẽTr
is block entry matrix such as ẽ2 =

[
0, I , 0, · · · , 0

]
n×nN ,

Ŝ = diag{0n(4N+1), (1 − ḋ1(t))S1, · · · , (1 − ḋN (t))SN ,
−S1, · · · ,−SN , 04nN } and R̂m = diag{

∑N
r=1 d̂msRmr , 0nN ,

−
Rm1
d̂ms
, · · · ,−RmN

d̂ms
, 08nN }, where diag{. . .} denotes a block-

diagonal matrix,

R̂s = diag{0n, d̂smRs1, · · · , d̂smRsN , 0nN ,−
1

d̂sm
Rs1, · · · ,

−
1

d̂sm
RsN , 07nN },

R̂ =

∑N
r=1 d̂rRr

∑N
r=1 d̂rRr ẽr 0n×9nN

0N×n diag{d̂1R1, . . . d̂NRN } 0nN×9nN
09nN×n 0n×nN 09nN×9nN


N̂r = NrJ2r , M̂r = MrJ3r
J2r =

[
0n×n(3N+1) −ẽr ẽr 0n×3nN −ẽr 0n×nN

]
J3r =

[
0n×n(4N+1) ẽr −ẽr 0n×3nN −ẽr

]
J0 =

[
0nN×n(3N+1) j̃1 −j̃2 0nN×5nN

]
,

J1 =
[
0nN×n(6N+1) j̃3 0nN×3nN

]
,

J2 =
[
0nN×n(4N+1) j̃2 −j̃1 0nN×4nN

]
,

J3 =
[
0nN×n(7N+1) j̃4 0nN×2nN

]
with j̃1 = col{ẽ1, · · · , ẽN }, j̃2 = col{(1 − ḋ1(t))ẽ1, . . ., (1 −
ḋN (t))ẽN }, j̃3 = col{d1(t)ẽ1, · · · , dN (t)ẽN }, j̃4 = col{(d̂1 −
d1(t))ẽ1, · · · , (d̂N − dN (t))ẽN }, where col(·) stands for a
column vector by stacking them together. 83, as shown at
the top of the next page.
with ϕ̃1 =

1
N

∑N
r=1[(−Diαm + D−i Hαm) + (−Diαm +

D−i Hαm)
T
}, ϕ̃2 = col{[(−Diα1 + D−i Hα1) + (−Diα1 +

D−i Hα1)]
T ẽ1, · · · , [(−DiαN + D−i HαN ) + (−DiαN + D−i

HαN )]T ẽN }, ϕ̃3 = col{(Dik1 + D−i Hk1)ẽ1, · · · , (DikN +
D−i HkN )ẽN }, ϕ̃4 =

1
N (−DiKm + D

−

i Hkm)Īn×nN .

0Tr =
[
0T1r 0

T
2r 0

T
3r 0

T
4r

]T
,

01r = [0n(9N+1)×n, ẽr ],

02r = [0n×n(4N+1), ẽr , ẽr , 0n×nN , fr , 0n×2nN ],

03r =
[
0n×n(8N+1), ẽr , 0n×nN

]
,

04r = [0n×n(3N+1), ẽr , ẽr , 0n×nN , fr , 0n×3nN ].

fr = [0, · · · ,−2I , · · · , 0]n×nN such as f2 = [0,−2I ,
0, · · · , 0]n×nN , R̃r = diag{Rr , 3Rr }, Q = diag{%̂mI , %̂1I ,· · ·,
%̂N I ,W1, · · · ,WN }

APPENDIX B
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83 =

 ϕ̃1 0n×nN 0n×nN ϕ̃4 ϕ̃4 0n×6nN
0nN×n ϕ̃2 −ϕ̃3 0nN×nN
09nN×n 09nN×nN 09nN×nN 09nN×nN 09nN×nN 09nN×nN
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where [eii]n×=̄mn is block entry matrix such as [ei2]n×=̄mn =[
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, =m is the set of neighbours of master and

=̄m is the number of neighbours of master.
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 .

The terms of 8̄ are 8̄1,1 = (−Drαm + D−r Hαm) +∑N
i=1 bi(d̂iRi + d̂msRmi) + (−Drαm + D−r Hαm)

T , 8̄1,2 =[
ε1 . . . εN

]
n×Nn with εi = bid̂iRi, if i ∈ =m; εi = 0,

otherwise,

8̄1,4 = [bi1 (−DrKm + D
−
r Hkm), . . . , bi=̄m

(−DrKm + D−r Hkm)]n×=̄mn,

8̄1,5 = [bi1 (−DrKm + D
−
r Hkm +Wi1 ), . . . , bi=̄m

(−DrKm + D−r Hkm +Wi
=̄m
)]n×=̄mn,

8̄6,6 = diag{biν (1− ḋiν (t))Wiν }=̄mn×=̄mn,

8̄7,7 = diag{−biνWiν }=̄mn×=̄mn,

8̄5,11 = diag{diν(t)biνP1iν}=̄mn×=̄mn,

8̄6,11 = diag{−(1− ḋiν (t))diν (t)biνP1iν }=̄mn×=̄mn,

8̄6,12 = diag{(1− ḋiν(t))(d̂iν − diν (t))biνP2iν }=̄mn×=̄mn,

8̄7,12 = diag{(d̂iν − diν (t))biνP2iν }=̄mn×=̄mn,

8̄3,3 = diag{−Rmiνbiν/d̂ms}=̄mn×=̄mn,

8̄4,4 = diag{−Rsiνbiν/d̂sm}=̄mn×=̄mn,

where the subscript iν ∈ {1, 2, . . . ,N |biν 6= 0}, ν =
1, 2, . . . , =̄m, and iν+1 is the smallest integer lager than iν ,
i.e., iν+1 = ceil(iν).

8̄2,2 = diag{−Drαi + D−r Hα + ιi +
∑N

j=1
aijQi

+

∑N

j=1
ajiQi}N×N +3N×N , i = 1, 2, . . . ,N ,

ιi = bi(d̂smRsi + d̂iRi),

if i ∈ =m, and 0 otherwise, 3 = [~1,1, . . . , ~1,N ; . . . ;
~N ,1, . . . , ~N ,N ] with ~p,ν = −aνpQν , if p ∈ =ν , and 0 other-
wise, 8̄2,3 = [ϕ1,1, . . . , ϕ1,=̄m; . . . ;ϕN ,1, . . . , ϕN ,=̄m ]Nn×=̄mn
with ϕp,ν = −bp(DrKp+D−r Hkbp), if p ∈ {1, 2, . . . ,N |bp 6=
0}, ν is the number of neighbours of master from 1 to p;
ϕp,ν = 0 otherwise, 8̄2,5 = [ϕ̄1,1, . . . , ϕ̄1,=̄m; . . . ; ϕ̄N ,1, . . . ,
ϕ̄N ,=̄m ]Nn×=̄mn with ϕ̄p,ν = −ϕp,ν − bpWp if p ∈

{1, 2, . . . ,N |bp 6= 0}, ν is number of neighbours of master
from 1 to p; ϕ̄p,ν = 0, otherwise,

8̄2,8 =


a1j11

Ă1 . . . a1j1
=̄1

Ă101×=̄2 . . . 01×=̄N
01×=̄1a2j21

Ă2 . . . a2j2
=̄2

Ă201×=̄3 . . . 01×=̄N
...

01×=̄1 . . . 01×=̄N−1aNjN1
ĂN . . . aNjN

=̄N

ĂN

+1
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with Ăi = DrK1 + D−r Hkai and i ∈ {1, . . .N },

1 =


[a1jZ1] . . . . . . ε1,

∑N
i=1 =̄i

ε2,1 [a2jZ2] . . .
...

...
...

. . .
...

εN ,1 . . . . . . [aNjZN ]


and εp,ν = −aνpZν , if p ∈ =ν , and 0 otherwise,

8̄9,9 = diag{aνjνp (1− ḋν(t))Uν}∑N
i=1 =̄in×

∑N
i=1 =̄in

,

8̄10,10 = diag{−aνjνpUν}∑N
i=1 =̄in×

∑N
i=1 =̄in

,

8̄8,15 = diag{aνjνpdν(t)P3ν}∑N
i=1 =̄in×

∑N
i=1 =̄in

,

8̄9,15 = diag{−aνjνp (1− ḋν(t))dν(t)P3ν}
∑N

i=1 =̄in×
∑N

i=1 =̄in
,

8̄9,16 = diag{−aνjνp (1−ḋν(t))(d̂ν−dν(t))P4ν} N∑
i=1
=̄in×

N∑
i=1
=̄in
,

8̄10,16 = diag{−aνjνp (d̂ν − dν(t))P4ν}∑N
i=1 =̄in×

∑N
i=1 =̄in

,

where jνp ∈ {1, 2, . . . ,N |aνjνp 6= 0}, p = 1, 2, . . . , =̄ν, ν =
1, 2, . . . ,N , jνp+1 = ceil(jνp), the other 8̄ are zero.

� = diag{%̂mI , %̂r I , biνWiν , arjrpZrjrp},

iν ∈ {1, 2, . . . ,N |biν 6= 0}, ν = 1, 2, . . . , =̄m,

iν+1 = ceil(iν), jrp ∈ {1, 2, . . . ,N |arjr 6= 0},

p = 1, 2, . . . , =̄r , r = 1, 2, . . . ,N ,

jrp+1 = ceil(jrp),

0̂δ = (%̂m +
1
2

∑N

i=1
bid̂2msλmax(Rmi))δ

2
m1

+(
∑N

i=1
%̂i +

1
2

∑N

i=1
bi × d̂2smλmax(Rsi))δ

2
si1

+

∑N

i=1
bi(λmax(W i)+ d̂

2
i λmax(P1i)

+ (d̂ i−ď i)
2λmax(P2i)+ (d̂ i−ď i)λmax(S i))δ

2
ei1

+

N∑
i=1

N∑
j=1

aij(λmax(Z i)+ (d̂ i−ď i)λmax(U i)

+ d̂2i λmax(P3i)+ (d̂ i−ď i)
2λmax(P4i))δ

2
eij3

+

∑N

i=1
bi(

1
2
d̂2i λmax(Ri))δ

2
ei2

+

∑N

i=1

∑N

j=1
aij(

1
2
d̂2i λmax(Qi))δ

2
eij4.
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