IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 10, 2017, accepted August 1, 2017, date of publication August 17, 2017, date of current version September 19, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2739749

An Efficient Parallel Method for Mining Frequent
Closed Sequential Patterns

BAO HUYNH'-23, BAY VO*5, (Member, IEEE), AND VACLAV SNASEL3

! Center for Applied Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam

2Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam

3Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava 70800, Czech Republic
“Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam

SCollege of Electronics and Information Engineering, Sejong University, Seoul 143747, Republic of Korea

Corresponding author: Bay Vo (bayvodinh@gmail.com)

ABSTRACT Mining frequent closed sequential pattern (FCSPs) has attracted a great deal of research
attention, because it is an important task in sequences mining. In recently, many studies have focused on
mining frequent closed sequential patterns because, such patterns have proved to be more efficient and
compact than frequent sequential patterns. Information can be fully extracted from frequent closed sequential
patterns. In this paper, we propose an efficient parallel approach called parallel dynamic bit vector frequent
closed sequential patterns (pDBV-FCSP) using multi-core processor architecture for mining FCSPs from
large databases. The pDBV-FCSP divides the search space to reduce the required storage space and performs
closure checking of prefix sequences early to reduce execution time for mining frequent closed sequential
patterns. This approach overcomes the problems of parallel mining such as overhead of communication,
synchronization, and data replication. It also solves the load balance issues of the workload between the
processors with a dynamic mechanism that re-distributes the work, when some processes are out of work to
minimize the idle CPU time.

INDEX TERMS Data mining, dynamic bit vectors, dynamic load balancing, multi-core processors, closed

sequential patterns.

I. INTRODUCTION

Mining sequential patterns is a core problem in data min-
ing, which was first introduced by Agarwal and Srikant [1].
It has been applied to various domains, such as market basket
analysis [1], weblog analysis [12], [37], prediction [24] and
bioinformatics analysis [27], [40].

Mining sequential patterns generates an exponential num-
ber of patterns when the database contains long sequences
which need high computational cost in both time and space.
Therefore, in some cases, mining closed sequential patterns
is a better solution than mining the complete set of sequen-
tial patterns because it is more compact while information
can still be fully extracted. A closed sequential pattern is a
sequential pattern having no supersequence with the same
support and mining of frequent closed sequential patterns
has not been extensively studied as the general mining of
frequent sequential patterns. Although some algorithms have
been proposed, such as CloSpan [38], BIDE [36], ClaSP [11]
and CloFS-DBYV [32], their performance is not good for pro-
cessing on large databases. CloSpan is not scalable because

it works under candidate maintenance-and-test paradigm.
BIDE follows a strict depth-first search order to generate the
closed sequential patterns; it does not need to keep track of
any single historical frequent closed sequential (or candidate)
patterns for a new pattern’s closure checking. ClaSP uses a
heuristic to prune non-closed sequences. CloFS-DBV uses
dynamic bit vector (DBV) structure and a vertical data format
to mine frequent closed sequences. However, the compu-
tational cost of these algorithms is still high because they
have to explore a huge search space. Moreover, they require
very expensive computations, especially for long sequence
databases.

To solve this problem, developing parallel methods is
necessary. Parallel processing has been attracted a lot
of research and widely applied to improve processing
speed for various problems. In that, multi-core processors
architectures have been used to speed up processing, but
there is no existing method that uses multi-core proces-
sors architecture for FCSP mining. Some of mining meth-
ods are used multi-core processors architectures include

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.

17392 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 5, 2017

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

B. Huynh et al.: Efficient Parallel Method for Mining FCSPs

IEEE Access

PGP-mc [18], GapMis-OMP [8], SW [28]. Also based on
multi-core processors architecture, two methods for mining
FSPs were proposed, PIB-PRISM [15] used prime theory and
pDBV-SPM [17] used dynamic bit vector data structure.

Besides speed-up processing, a multi-core system requires
software programmers to make efficient use of the multiple
computing cores. These challenges include determining how
to divide applications into separate tasks and minimizing
CPU idle time. Data partition mechanism can be accessed by
the tasks running on separate cores and these tasks must be
balanced workload.

Although there have been many parallel methods based
on distributed system or shared memory system for min-
ing frequent itemsets [42], frequent closed sequential
patterns [7], [43], sub-graph mining [31], there are no meth-
ods for mining frequent closed sequential pattern on multi-
core processors architecture.

In this paper, we propose an efficient algorithm, called
pDBV-FCSP (Parallel Dynamic Bit Vector Frequent Closed
Sequential Patterns), for mining frequent closed sequential
patterns. This method overcomes disadvantages of existing
methods for parallel mining. They do not need to synchronize
because the communication between computing nodes are
eliminated. They do not require data transfer among pro-
cessing units either and avoid data replication. The main
contributions of this paper are summarized as follows:

1. We propose the first parallel method for mining closed
sequential patterns using multi-core processors architecture
and a DBV data structure.

2. We partition the work into multiple independent tasks to
minimize the overhead of inter-processor communication.

3. Load balance of the workload among cores using a
dynamic mechanism is re-distributed the work when some
processes are out of work.

4. We early perform closure checking of prefix sequences
to prune infrequent and non-closed sequences.

The rest of the paper is organized as follows. Section II
gives the problem definition and related works. Section III
summarizes the DBV data structure and multi-core proces-
sors architecture. The pDBV-FCSP algorithm is proposed in
Section IV. Experimental results are discussed in Section V.
Finally, conclusions and ideas for future work are given in
Section VI.

Il. BACKGROUND

A. PRELIMINARIES

Let I = {iy, ip, ..., iy} be a set of m distinct attributes, also
called items. An itemset X is a set of items such that X C I,
itemset X is called k-itemset or length k if it contains k items.
Each itemset is given in brackets, the brackets are omitted
for itemsets that contain only a single item. A sequence
S = (I11...1I,) is an ordered list of itemsets, where I; C [
(1 < k < n). A sequence of length [is called a /-sequence.
A sequence § = (b b>...by) is called a subsequence of
sequence A = (aj az...a,) and A is a super sequence of 4,

VOLUME 5, 2017

denoted as § C A, if there exist integers 1 < i] < ip <

< i, < msuch that by C ai, 1 < k < n. For
example, the sequence (H(GK)) is a 3-sequence of size 2 and
it is a subsequence of ((GH)M (GKL)), but (GH)M) is not a
subsequence of (GHM).

A sequence database DB is a set of sequences, denoted
DB = {S1, S2, ..., S,}, where n is the number of sequences,
each sequence has the form (sid, S), where sid is a unique
sequence identifier and S is a ordered list of itemsets.
A pattern is a subsequence of ordered itemsets, and each
itemset in a pattern is called an element. The absolute sup-
port of a sequence p in a database DB is defined as the
total number of sequences in DB that contain p, denoted
as o(p) = |{S; € DB|p C S;}|. The relative support of p is
ratio (in percent) of the sequences that contain p to the total
number of sequences in the database.

_ |{Si € DB|p < Si}|
B DB

o(p)

Sometimes, absolute and relative supports are used inter-
changeably. A sequence p is said to be a frequent sequence
pattern if its support is greater or equal to a given sup-
port threshold minsup, that is o (p) > minsup. A frequent
sequence A is closed if it is not a subsequence of any other
frequent sequence with the same support, i.e., there does not
exist § such that .. € § and o (§) = o(A). The problem of
mining FCSPs is to find all frequent closed sequences in the
database DB.

FCSP = {1 € SP|#8: A C 8 A sup(L) = sup(8)}, where SP
is the set of sequential patterns.

Example 1: The sequence database DB in Table 1 has a
set of items is {A, B, C, D, E, F}. Assume that minsup = 3
(50%), if all frequent sequences patterns in database DB are
mined with the given minsup, we have result of 30 sequences,
FSP={A:6, B:5, C:5, D:3, E:5,AA:4, BB:4, AB:5,
BA:5,(CE):3, BE:4, (AE):3,AE:5,AD:3, CC:3, (BC):3, BC:4,
CB:3, AC:5, CA:3, CAC:3, BAB:4, BAC:4, BCB:3, ABA:3,
AAC:3, A(AE):3, ABC:3, ABE:3, A(CE):3}.

TABLE 1. Example of sequence database.

SID Sequence database
S| CAAC(CADEF)D
S, AB(AE)CB
S3 (BC)CABC
Sy ABBCA(BCE)
Ss BA(BCE)D
Ss AB(ADE)A

In contrast, mining frequent closed sequential patterns has
only 19 sequences. FCSP = {A:6, BE:4, AE:5, AB:5, BA:S,
AD:3, AA:4, AC:5, (BC):3, AAC:3, CAC:3, A(AE):3, ABC:3,
BCB:3, A(CE):3, ABA:3, ABE:3, BAB:4, BAC:4}, so FCSP is
more compact than FSP in general.

17393

IEEE Access

B. Huynh et al.: Efficient Parallel Method for Mining FCSPs

Definition 1: Sequence A is a prefix of § if and only if
a; = b; for all 1 < j < n. After eliminating the prefix part
A of sequence &, the remainder of § is a postfix of §. From the
above definition, we know that a sequence of size k has (k—1)
prefixes. For example, a sequence (A(CD)E) has 2 prefixes:
(A) and (A(CD)). Therefore, ((CD)E) is the postfix for prefix
(A), and (E) is the postfix for prefix (A(CD)).

Definition 2: Let S, be a sequence. Then, suby ;(S;)
(k < h) is defined as a substring of length (h — k + 1) from
position k to position & of S,. For example, subz 4(CBDAD)
is BDA and sub; 3(CBDBA) is CBD.

Definition 3: Let A and § be two frequent 1-sequences.
{t,,p»} and {t5, ps} are the transaction and position of
sequences A and &, respectively. Two forms of sequence
extension.

Itemset extension:((Ad)){zs, ps}, if (A < §)
At =15) NP =ps) (1)
Sequence extension:(A8){ts, ps}, if (tn = 15) A (pr < ps)
(2)

For example, consider database DB in Table 1, A and E are
two frequent 1-sequences. Itemset extension produces (AE)
because A < FE and (t4 = tg)is 1 and (pa = pE)
is 5. Sequence extension produces AE because (t4 = 1tp)
is 1 and the position of sequence E is {5}, the position of
sequence A are {2, 3, 5}, which is smaller than all positions
of sequence E.

Definition 4: Let A and § be two frequent k-sequences
(k > 1), x = subgr(A), and y = subg (5). {t;, p»} and
{ts, ps} are the transaction and position of sequences A and §,
respectively. Two forms of sequence extension.

Itemset extension:

A+ 8 = suby k1 (VO {tn, pat, if(x <Y A (L =15)
APy =ps) A (suby —1(A) = suby ;—1(8)) (3)

Sequence extension:

A+ = ayltn, pads if (6 = 15)
APr < ps) A (subi g—1(X) = suby x-1(8)) (4)

For example, DE and DF are two frequent 2-sequences.
Sequence extension produces DED, DEE, DEF and itemset
extension produces D(EF) because DE and DF have the same
prefix (D).

Definition 5: Let S = (p1p2...pn). An item p; can be
added to one of three positions of sequence S for extension.

§* = @1p2---papr) A (0 () =0 (S) (5)
i(1<i<n):S* = (Pip2...Pipk---pn) A (0 (§F)=0 (5))
(6)

§* = (prp1p2 - -p) A (0(S¥) = 0(8)) (7)

In (5), S* is called a forward extension sequence and item

pr is called a forward extension because it appears after p,,.
In (6) and (7), S* is called a backward extension sequence

17394

and item py is called a backward extension because it appears
before p,. For example, sequence BE:4 is a forward exten-
sion of sequence B:4 because sequence E is extended after
sequence B. Sequence EBE:2 is a backward extension of
sequence EE:2 because sequence B is extended in the middle
of sequence EE.

Definition 6: Consider S = (p1 p2...pn), the start-
ing position of sequence S is the position of the first
appearance of itemset p;. For example, in the sequence
AB(BC)AD, the starting position of sequence (BC) is 3, and
sequence ABD is 1.

B. RELATED WORKS

Sequential pattern mining was first proposed by Agrawal
and Srikant in 1995 [1], the goal of it is to discover the full
set of SPs from a sequence database, especially from large
databases. The basic method for SP mining is candidate-
generation-and-test strategy based on the Apriori-property,
stated as follows: ““every nonempty subsequence of a sequen-
tial pattern is a sequential pattern”.

The general idea of all existing methods is to begin from
short sequences and then extend them to gain long sequences.
Three main types for existing methods can be categorized as
following.

1) HORIZONTAL METHODS

A sequence database in the horizontal format is a database
where each row is a transaction in the form sid-itemset,
where sid is a sequence ID and itemset is a set of items.
Some particular algorithms use this method were proposed:
AprioriAll [1], GSP [2] and PSP [20]. In this type, the runtime
and memory usage are high because the database must be
scanned many times.

2) VERTICAL METHODS

A sequence database in vertical format is a database where
each row has a transaction in the form (item, sid), where
sid is a set of sequence IDs containing itern. The main
advantage of this type of method is that it reduces the num-
ber of database scans. Some representative approaches are
SPAM [4], SPADE [41], PRISM [10], PIB-PRISM [15],
pDBV-SPM [17].

3) PROJECTION METHODS

Projection methods are hybrid methods between hor-
izontal and vertical methods. The general idea is to
examine only the prefix subsequences and project only
their corresponding postfix subsequences into projec-
tion databases. Some algorithms based on these meth-
ods are FP-growth [14], PrefixSpan [26], an extension of
FreeSpan [13], IMSR_PreTree [33] and MNSR_PreTree [25].
Sequential patterns are grown by exploring only local fre-
quent patterns in projection database. The projection is based
only on frequent prefixes instead of projecting sequence
databases because any frequent subsequence can always
be found by growing a frequent prefix. The prefix tree

VOLUME 5, 2017

B. Huynh et al.: Efficient Parallel Method for Mining FCSPs

IEEE Access

architecture is efficient for organizing and storing candidate
sequences.

To reduce the computational cost, instead of mining a full
set of frequent patterns, many algorithms for mining frequent
closed sequential patterns have been proposed. Popular algo-
rithms for closed sequential pattern mining are CloSpan [38],
ClaSP [11], BIDE [36], and CloFS-DBV [32]. CloSpan uses
candidate-generation-and-test strategy and combines a hash-
index structure with a tree structure for storing sequences.
With techniques Common Prefix and Backward Sub-Pattern,
this algorithm reduces the search space by prunes the patterns.
The ClaSP algorithm uses a heuristic to prune non-closed
sequences, this algorithm maintains previous candidates to
test the closure of sequences and remove them later. The
main disadvantage of maintenance of candidates is that it
requires a lot of memory and explosive the number of test
candidates.

BIDE uses bi-directional extension techniques to examine
frequent closed patterns as candidates before extending a
sequence. It reduces mining time by uses a BackScan process
to determine candidates that cannot be extended sequence
and pseudo projection techniques to reduce database stor-
age space and is efficient for low support thresholds.
However, this method is not efficient because it has to
project and scan databases many times for each prefix.
In addition, using dynamic bit vector (DBV) [35] data
structure combined with location information in the struc-
ture of the transaction, CloFS-DBV [36] perform prunes
of prefix sequences early, checks the backward-extension
and forward-extension quickly based on CloFS-DBVPattern
structure.

All FSP and FCSP mining methods are implemented based
on single-task processing and in a sequential maner. Hence,
they are very time-consuming for large databases, especially
long or dense databases. To improve performance, some
researchers have applied parallel computing is to cut down on
the execution time of processor. Based on distributed memory
system, some parallel methods such as pSPADE [41], which
is based on SPADE [40], Par-CSP [7] and Par-ClosP [43]
were proposed. In modern processor architecture, multi-core
processors [3], [30] allow for multiple tasks to be executed
in parallel to enhance performance. A multi-core processor
has many advantages especially for multitasking computing
power of system. Some parallel algorithms were proposed
based on multi-core processor architectures, such as cache-
conscious optimization and lock-free parallel [19] and an
effective load balancing strategy [39] for frequent itemsets
mining. Parallel mining has been applied to closed item-
set mining [19], [21] [29], [39] correlated pattern mining [5],
parallel method for CAR mining [23], parallel method for
sub-graph mining [16], generic pattern mining [22] and fre-
quent sequential pattern mining [15], [17].

Although the performance of these approaches is better
than serial counterpart methods, these approaches still require
large storage space and produce redundant results, especially
for large or long sequence databases.

VOLUME 5, 2017

lll. DATA STRUCTURE FOR PARALLEL MINING

A. MULTI-CORE PROCESSOR ARCHITECTURE

A multi-core processor is a single computing component that
has two or more independent cores in the same physical pack-
age [30], [34], with each core having its own resources. Multi-
core processors allow executed multiple tasks simultaneously
to increase performance.

A multi-core processor may have a separate L1 cache and
execution unit for each core, while it has a shared L2 cache
for the entire processor, this is make the best use of the
resources and to make inter-core communication efficient
and more resources will be shared between the cores on the
die. If multiple processes run on different cores of the same
physical package and if they share data that fit in the cache,
then the shared last-level cache between cores will mini-
mize the data duplication. Therefore, it is more efficient in
communication.

Multi-core processors are an improvement over the defi-
ciencies of single-core processors. Multi-core processors can
perform more works in parallel on separate operations, while
reducing the power consumption and dissipate the heat [7].
Applications of multi-core processors are to speed up the
work of operating systems and to support multithreading.
Fig. 1 shows an example of a dual-core, dual-processor
system.

Processor 0 Processor 1

Core 0 Cora 1 Core 2 Core 3

|CPU||CPU| |CPU“CPU‘

|L1 Cache | |L1 Cache| | L1 Cache ‘ |L1 Cache ‘

L2 Cache

l—’ System Bus

FIGURE 1. A dual-core, dual-processor system.!

L2 Cache

System Memory

v

The main advantage of multi-core processors is lessening
the heat coming off CPU and to significantly increase the
speed of processing while it is cheaper than multi-processor
system so it widely used in many fields including embedded,
network, digital signal processing, and graphics.

The present study proposes a method for parallel mining
FCSPs to improving the efficiency of systems and reduc-
ing computational cost based on a multi-core processor
architecture.

B. BIT VECTORS
A bit vector is an array of bits that compactly stores bits.
A bit vector is built to represent the positions of an item X

1 https://software.intel.com/en-us/articles/software-techniques-for-
shared-cache-multi-core-systems

17395

IEEE Access

B. Huynh et al.: Efficient Parallel Method for Mining FCSPs

appearing in a sequence S. If the i-th itemset in S contains
item X, then the i-th bit in the bit vector is 1; otherwise, it is 0.

However, the sizes of bit vectors for itemsets are always
equal to the number of transactions in the database. It is
difficult to store them all in main memory when the number
of transactions is large. In addition, a lot of time and mem-
ory are needed for computing the intersection between bit
vectors. The bit vector of an itemset with many ‘0’ bits can
be shortened to reduce storage space and computation time.
To address this issue, dynamic bit vector (DBV) were thus
proposed [35], it represents a bit vector after removing the ‘0’
bits at the front and end of the vector thus it is more efficiently
for itemsets with many ‘0’ bits.

C. DYNAMIC BIT VECTOR DATA STRUCTURE
The DBV data structure [35] is used vertical format layout
so it quickly calculates the supports count by perform AND
operations on the two DBVs from larger position value of
two DBVs. If resulting value is 0, then the position value of
the outcome DBV is increased by 1 until the first non-zero
resulting value is reached. Next, from the position of non-zero
byte, all the resulting bytes by the AND operation are kept
unless the last continuous zero bytes.

A DBV consists of two parts:

o Start bit: the position of the first appearance of a ‘1’ bit.

o Bit vector: a sequence of bits starting from the first non-

zero byte to the last non-zero byte.

For example, Table 2 is shows a bit vector of 16 transac-
tions in a sequence database. The bit vector for item i needs
16 bytes because item i exists in transactions 6, 10 and 11.
Using the DBV structure, only 8 bytes are required (6 bytes
for the bit vector and 2 bytes for position).

TABLE 2. Example of 16-byte bit vector.

Lololofofoli]ofololi]1]olo]olo]o]

Table 4 is shows the conversion of the bit vector
in Table 2 to DBY, the first non-zero byte appears at posi-
tion 6 so DBV = {6, 100011}.

TABLE 3. Conversion of database DB in Table 1 to DBV format.

Item ID Bit-vector Start bit | Bit-vector Value
A 1,2,3,4,5.6 111111 1 111111 63
B 2,3.4.5.6 111110 Conversion 2 11111 62
C 1,2,3.4,5 011111 DBV 1 11111 31
D 1.5.6 110001 o 1 110001 49
E 1,2,4.5.6 111011 1 111011 59
F 1 000001 1 1 1

Example 2: Consider database DB in Table 1, sequence A
exists in transactions 1, 2, 3, 4, 5 and 6, the start bit is 1, the bit
vector is 111111, and thus o (A) = 6 because the bit vector
has four ‘1’ bits. The similar way, o (B) = 5,0 (C) = 5,
o (D) =3,0(E) =5and o (F) = 1. Table 3 shows the
conversion of database DB in Table 1 to the DBV format.

17396

TABLE 4. Conversion of bit vector to DBV.

Start bit

[ofofofofoft]ofofot]i]ofofofo]o]

| DBV = {6,100011} |

IV. PROPOSED ALGORITHM
A. DBV-PATTERN DATA STRUCTURE
The DBV-Pattern [17], [35] data structure combines the DBV
structure with a representation of a sequence. It can be
briefly summarized as follows: Each DBV-Pattern including
sequence S; dynamic bit vector DBV; and list of positions of
the occurrence in the sequence of each transaction LP. List
positions in the form startPos:{list position}, where startPos
is the first appearance of the sequence in each transaction.
Example 3: In database DB, sequence A exists in six trans-
actions. In transaction S, sequence A appears at positions
{2, 3, 5}. The starting position is 2, so LP is 2:{2, 3, 5}.
Similarly, LP is 1:{1, 3} in transaction S», LP is 3:{3} in
transaction S3, LP is 1:{1, 5} in transaction Sy, LP is 2:{2}
in transaction Ss, and LP is 1:{1, 3, 4} in transaction Sg.
Table 5 presents the DBV-Pattern for sequence A in Table 1.

TABLE 5. DBV-Pattern for sequence A.

Sequence | A

Start bit | 1
Value 63
Index 6 [[4 [3 [2] 1

5
L {1.3.4) [2: {2} [1:{1.5} | 3:43} | 1:{1.3} [2:{2.3.5}

Positions

B. PARALLEL DYNAMIC BIT VECTORS FOR MINING
FREQUENT CLOSED SEQUENTIAL PATTERNS

This section describes the proposed pDBV-FCSP algorithm,
which uses a multi-core processors architecture to mine
FCSPs combine with DBV data structure [39].

The root of the search tree is labeled as the null sequence.
Each node at level & is repeatedly extended by adding one
item [to generate a child node at the next level (k + 1)-
sequence. A (k + 1)-sequence can be extended via sequence
extension or itemset extension. In itemset extension, an item
is added to the last itemset in the pattern. In sequence exten-
sion, an item is appended to the sequence pattern to create a
new itemset.

In the parallel mining, distributes each branch of the search
tree to a single task, the computation at each node becomes an
independent task and the overall computation can be parallel
by distributing these tasks among the available processor
cores which can be processed independently to generate
FCSPs. The task parallel formulation distributes the tasks
among the processor cores in the following way. First, the tree
is expanded using the data-parallel algorithm at level k + 1,

VOLUME 5, 2017

B. Huynh et al.: Efficient Parallel Method for Mining FCSPs

IEEE Access

with k > 0. Then, the different nodes at level k are distributed
among the processor cores. Once this initial distribution is
done, each processor core proceeds to generate the subtrees
underneath the nodes to which they have been assigned.

The main challenges in parallel mining is that the candidate
generation tree is usually not balanced. This skewness (one
subtree is very deep compared to the others) of the tree can
reduce the performance of the parallel algorithm. Therefore,
dynamically re-distributing the works when some processes
are out of work is necessary.

The proposed pDBV-FCSP algorithm uses the DBV data
structure and depth first search that relies on dynamic load
balancing, where each process can perform a DFS on the
subtree, since they are computed independently.

The advantage of pDBV-FCSP is that each task is assigned
for searching a branch of the tree and is processed inde-
pendently. The advantages over using threads are a task
can run on multiple cores, requiring less memory and less
processing time than threads because a thread runs on
only one core and it requires more memory. The oper-
ating system has initialization, destruction, and must per-
form context switching between threads so it requires more
processing.

When a process finishes finding all frequent closed sequen-
tial patterns in its corresponding part of the tree, it actively
requests an unexplored part of the tree from other processes.
When a processor becomes idle, it randomly selects a ded-
icator processor and sends it a work request. The dedicator
sends a response indicating whether or not it has addi-
tional work. If a response indicates that a dedicator can do
any more work, the processor receives nodes to expand,
along with the portion of the database associated with those
nodes. Otherwise, the processor selects another donor and
sends work request to that dedicator. This process contin-
ues until every processor completely extended the nodes
assigned to it.

Proposition 1 [32]: Consider the prefix S, = kika - - - k.
If there exists an item k before the starting position of prefix
S, in each of the transactions containing S, in sequence
database DB, the extension can be pruned by prefix S,. Con-
sider database DB in Table 1, there exists a sequence E that
occurs after A in each transaction that contains prefix E, it is
no need to extend prefix E. If we extend prefix E, the results
obtained will be absorbed due to the extension of prefix A
already containing E and having the same support.

Proposition 2 [32]: If there exists a sequence § that is
a forward-extension or backward-extension of sequence A,
sequence X is not closed, and A can be safely absorbed by &.
For example, suppose that « = BB:2 and § = BCB:2.
Then, BB:2 will be absorbed by BCB because BB € BCB and
o (BB) =0 (BCB) = 2.

The main steps of the pDBV-FCSP algorithm are as fol-
lows.

1. Convert the sequence database to the DBV-Pattern

structure.

2. Identify the frequent 1-sequences.

VOLUME 5, 2017

3. Project the database along each frequent 1-sequences
and check the closure of frequent sequences to early
eliminate infrequent sequences.

4. Prune the prefix sequences early.

5. Extend sequences.

The mining of FCSPs is divided into separate branches as

follows.

1. Build the search tree from the set of frequent
1-sequences.

2. Parallel mine FCSPs.

3. Synchronize results.

The pseudo code of the pDBV-FCSP strategy is shown
in Fig. 2. The value of root is initialized to NULL. Next, this
procedure finds all frequent 1-sequences from database DB
that satisfies the minsup threshold (lines 3-5). The items in
F1 are sorted in ascending order by support (line 7) to gain
more effectively balance of the workload. Next, pDBV-FCSP
creates new tasks corresponding to each pattern in F; (line
10). Each task executes the procedure FCSP-Ext (line 11)
to extend itemsets and sequences. Tasks run in parallel to
generate a partial set of FCSPs. The final set of FCSPs is the
union and synchronize of the partial results.

IProcedure pDBV-FCSP(DB, minsup)
Input Database DB, minsup
Output: All FCSPs that satisfy minsup

1 Begin

2 root=NULL

3 For (each s in DB) do

4 if (o(s) = minsup) then

5 Fi=F,Us

6 End for

7 Sort (F)) in increasing order of support
8 Add F; to child node of root

9 For (each node i in roof) do

10 Create new task ¢;

11 Call FCSP-Ext (i, minsup)
12 End for

13 End begin

FIGURE 2. pDBV-FCSP strategy.

Consider database DB in Table 1 and minsup = 50%.
After this procedure is executed, five frequent 1-sequences
are stored, and thus F'; = {A:6, B:5, C:5, D:3, E:5}.

The procedure FCSP-Ext is shown in Fig. 3. This pro-
cedure expands the search tree by executing procedures
extendItem (line 6) and extendSeq (line 9). For each node
in the search tree, the pattern for that node is extended
by calling extendItem and extendSeq to create a new
pattern. Before sequence extension, the algorithm tests
and eliminates prefixes that cannot extend frequent closed
sequences using Proposition 1 (line 4). This process is
repeated (line 13) until no frequent closed sequences are
generated. Lines 16-22 uses Proposition 2 to check the prefix

17397

IEEE Access

B. Huynh et al.: Efficient Parallel Method for Mining FCSPs

Sy. If Sy is not a frequent closed sequence, it will be set to
NULL. After each level expansion, the processors communi-
cate between each other to determine whether the work needs
to be re-balanced (line 23).

Procedure FCSP-Ext (p, minsup)

1 Begin

2 Let list = child nodes of p

3 For each S, in /ist do

4 If (S, is not pruned) then

5 For each S, in /ist do

6 If (o(S,, = extendItem(S,, S,)) > minsup) then
7 Add S, to child nodes of S,

3 End if

9 If (o(S,, = extendSeq (S,.S,)) = minsup) then
10 Add S,,, to child nodes of S,

11 End if

12 End for

13 Call FCSP-Ext(S,, minsup)

14 Endif

15 If (checkBackwardExt(S,,S,) = true) then
16 S..isClosed = false

17 Else (checkForwardExt(S,,S,) = true) then
18 S..isClosed = false

19 Endif

20 If (S,.isClosed = false) then

21 S, =NULL

22 Endif

23 Load_balancing()

24 End for

25 End begin

FIGURE 3. FCSP-Extension procedure.

Consider a pattern with prefix A, the algorithm per-
forms sequence extension to create new frequent closed
2-sequences, pattern with prefix A extends using extendSeq
by concatenation with A, B, C, D and E to make new patterns
AA,AB,AC,AD and AE, respectively, and extends using
extendItem by concatenation with B, C, D and E to make
new patterns (AB), (AC), (AD) and (AE), respectively. It is
then checked whether the support count of these patterns
satisfies the threshold or not. This process is repeated for each
task until all FCSPs are obtained, as shown in Table 6.

TABLE 6. Set of fr t closed

minsup = 50%.

quential patterns from Table 1 with

q

No. | Item FCSPs — Support
1 A A:6, AE:5, AB:5, AD:3, AA:4, AC:5, AAC:3,
A(AE):3, ABC:3, A(CE):3, ABA:3, ABE:3
2 B | BA:5, BE:4, (BC):3, BAB:4, BAC:4, BCB:3
3 C | CAC3
4 D %)
5 E (%)
17398

V. EXPERIMENTAL RESULTS

To show the effectiveness of the proposed algorithm,
the experiments were conducted and performed on a personal
computer with an Intel Core i5-6200U 2.3-GHz CPU with
4 cores, 3 MB of L3 cache, and 4 GB of RAM, running 64-bit
Windows 10 Pro. The algorithm was implemented in C# and
run on .Net Framework 4.5.

The first and second databases (C6TS5SN1kD10k and
T10I14D100K) used for comparison were generated using the
IBM synthetic data generator. The third
database (Kosarak25k) was provided by Bodon
(http://fimi.ua.ac.be/data/). Other databases were pro-
vided by Fournier-Viger (http://www.philippe-fournier-
viger.com/spmf/). Statistic of the databases is shown
in Table 7. The definitions of parameters used to generate
the databases are shown in Table 8.

TABLE 7. Databases used in experiments.

Database #seq #items
C6T5N1kD10k | 10,000 1,000 Synthetic databases
T10I14D100K 100,000 | 870
Click stream data of a
Kosarak25k 25,000 41,270 | Hungarian online news
portal
BMSWebViewl | 59,601 | 497 | Click stream data from
an e-commerce site
. Click stream data from
BMSWebView2 | 77,512 3,340 the KDD-CUP 2000
MSNBC 31,790 17 Click stream data from
MSNBC_Full 989,818 | 17 the UCI repository

TABLE 8. Definitions of parameters for standard databases.

Average number of itemsets per sequence

Average number of items per itemset

Average number of items in maximal sequences

Number of distinct items

gjz|—(3|Q

Number of sequences

Some existing methods for parallel mining closed sequen-
tial patterns are designed on a distributed memory system
and are performed from 4, 8, 16, 32 and 64 nodes as
Par-CSP [7] and Par-ClosP [43], each node has a 1GHz
Pentium III processor, 1GB main memory. Our proposed
method is the first method applied to multi-core proces-
sors for mining closed sequential pattern. Therefore, it is
very difficult to compare our result with those methods
because they are developed in different platforms. Experi-
ments were conducted to compare CloFS-DBV and the pro-
posed pDBV-FCSP for various minsup values and the pro-
posed method running on three figures are two, three and
four cores. The proposed method is significantly improved
the running time compared to the sequential counterpart.

VOLUME 5, 2017

B. Huynh et al.: Efficient Parallel Method for Mining FCSPs

IEEE Access

The runtime results are shown in Fig. 4-Fig. 9 and memory
usage results are shown in Fig. 10-Fig. 15 for the six regard-
ing databases.

Parallel mining improves performance without affected the
results. Table 8 shows the mining results of CloFS-DBV and
pDBV-FCSP. The set of results of algorithms were always
the same for all databases, that proves the correctness of
pDBV-FCSP.

We also add a set of results of frequent sequential pat-
tern (FSP) mining for comparison. With these thresholds,
the result is similar for all databases among frequent closed

CATSS4T4NTKD10k

250
200

150

Runtime (s)

100

1 2 3 4 5 6

minsup (%a)

—&5—DBV-Closed —— pDBV-FCSP (2 cores) —A—pDBV-FCSP (3 cores) —+—pDBV-FCSP (4 cores)

FIGURE 4. Runtimes on C6T5N1kD10k database.

T10I4D100K

250
200
Z 150

ERDY o
30
i

5 43 4 35 3 25 2

minsup (%)

—H8—DBV-Closed —— pDBV-FCSP (2 cores) —A—pDBV-FCSP (3 cores) —#—pDBV-FCSP (4 cores)

FIGURE 5. Runtimes on T1014D100K database.

Kosarak25k

minsup (%)

== DBV-Closed —¢— pDBV-FCSP (2 cores) =—s—pDBV-FCSP (3 cores) —#—pDBV-FCSP (4 cores)

FIGURE 6. Runtimes on Kosarak25k database.

VOLUME 5, 2017

BMSWebViewl
00
250
~ 200
g 150
& 100
0 f
0
0.3 04 03 0.2 0.1
minsup (%)

=H—DBV-Closed —&—pDBV-FCSP (2 cores) == pDBV-FCSP (3 cores) —w—pDBV-FCSP (4 cores)

FIGURE 7. Runtimes on BMSWebView1 database.

BMSWebView2

1000
900
800
T00
Z 600
£ sw
E 400
- 300
200

100 M

’ 0s 04 03 02 o1

minsup (%o)

=8—DBV-Closed —&— pDBV-FCSP (2 cores) =s—pDBV-FCSP (3 cores) —»—pDBV-FCSP (4 cores)

FIGURE 8. Runtimes on BMSWebView2 database.

MSNBC

Runtime (s)

6 5 4

minsup (%)

=& DBV-Closed =—&—pDBV-FCSP (2 cores) =—f—pDBV-FCSP (3 cores) —s=—pDBV-FCSP (4 cores)

FIGURE 9. Runtimes on MSNBC database.

sequential pattern (FCSP) and frequent sequential patterns.
We just saw that the results are different between FCSP
and FSP on the Kosarak25k database and on two databases
BMSWebViewl and BMSWebView2 with the lowest
threshold.

A. RUNTIME

The experimental results show that pDBV-FCSP is faster
than CIoFS-DBV in most cases, especially, when they are
executed on a computer with more cores. With a large minsup,
pDBV-FCSP is not faster than CloFS-DBV, however, with a
small minsup, pDBV-FCSP is much faster than CloFS-DBV.
In Fig. 4, for the C6T5S4I4N1kD10k database, the run-

17399

IEEE Access

B. Huynh et al.: Efficient Parallel Method for Mining FCSPs

TABLE 9. The set of results of algorithms for comparison.

BMSWebViewl
minsup(%) 0.5 0.4 0.3 0.2 0.1
#FSP 201 286 435 798 3991
#FCSP 201 286 435 798 3974
BMSWebView2
minsup (%) 0.5 0.4 0.3 0.2 0.1
#FSP 408 676 1340 3683 | 23294
#FCSP 408 676 1340 3683 | 22245
Kosarak25k
minsup(%) 0.6 0.5 0.4 0.3 0.2
#FSP 1148 1668 2694 5167 15679
#FCSP 1026 | 1458 2248 3972 9005
MSNBC
minsup (%) 7 6 5 4 3
#FSP 721 987 1478 2352 4118
#FCSP 721 987 1478 2352 4118
C6T5S414N1kD10k
minsup(%) 6 5 4 3 2 1
#FSP 83 117 188 281 418 863
#FCSP 83 117 188 281 418 863
T10I4D100K
minsup(%) 5.0 4.5 4.0 3.5 3.0 2.5 2.0
#FSP 10 17 26 40 60 107 155
#FCSP 10 17 26 40 60 107 155

times of CloFS-DBV and pDBV-FCSP were 7.06 s, 3.59 s
(two cores), 2.00 s (three cores) and 0.91 s (four cores) sec-
onds, respectively. The runtimes of pDBV-FCSP were always
better than the others when executed on four cores while
CloFS-DBYV increased rapidly when minsup was decreased
from 6% to 1%. Similar results, the runtimes of pDBV-FCSP
were slower than the CloFS-DBV as shown in Fig. 5 for
T10I4D100K database. In Fig. 6-Fig. 9, the runtimes of
pDBV-FCSP for Kosarak25k, BMSWebViewl, BMSWeb-
View2 and MSNBC (a short version) databases were better
than CloFS-DBYV in most cases, especially with small minsup
and running on computer that has many cores. When minsup
was decreased, the runtimes of pDBV-FCSP were always
faster.

B. MEMORY USAGE

On all databases, CloFS-DBV is always better than
pDBV-FCSP in terms of memory usage, as shown

C6T5S4I4N1kD10k
40

Memory (MB)
=]

1 2 3 4 5

minsup (%)

=S

—8—DBV-Closed

pDBV-FCSP (2 cores) —a— pDBV-FCSP (3 cores) —+— pDBV-FCSP (4 corces)

FIGURE 10. Memory usage for C6T5N1kD10k database.

17400

T10I4D100K

minsup (%)

—H—DBV-Closed —¢— pDBV-FCSP (2 cores) —A—pDBV-FCSP (3 cores) —+—pDBV-FCSP (4 cores)

FIGURE 11. Memory usage for T1014D100K database.

Kosarak25k
50
0
0.6) 0.4 0. 2
minsup (%)
=& DBV-Closed =—é—pDBV-FCSP (2 cores) ==e=pDBV-FCSP (3 cores) =—=—pDBV-FCSP (4 cores)

FIGURE 12. Memory usage for Kosarak25k database.

BMSWebViewl

Memory (MB)
N - -]
2 5 23 8 g B

0.5 04 0.3 02 0.1

minsup (%

=8—DBV-Closed =—¢=—pDBV-FCSP (2 cores) ==fe=pDBV-FCSP (3 cores) == pDBV-FCSP (4 cores)

FIGURE 13. Memory usage for BMSWebView1 database.

in Fig. 10-Fig. 15. This can be explained as follows.
Although, both algorithms used the same DBV data structure
for storing sequences information. pDBV-FCSP using more
memory usage because parallel processing divided the tasks
to be processed into independent branches, needing more
memory to store the results. When minsup was decreased,
more FCSPs were obtained and thus the runtime and memory
usage increased. The memory usage of pDBV-FCSP between
two, three and four cores was equivalents because the num-
bers of nodes in the search tree of was the same.

An advantage of pDBV-FCSP is that it helps to bal-
ance the search tree using a dynamic mechanism that re-
distributes the works when some processes are out of work

VOLUME 5, 2017

B. Huynh et al.: Efficient Parallel Method for Mining FCSPs

IEEE Access

BMSWebView2

Memory (MB)

=8 DBV-Closed —&—pDBV-FCSP (2 cores) =—#—pDBV-FCSP (3 cores) =—w—pDBV-FCSP (4 cores)

FIGURE 14. Memory usage for BMSWebView2 database.

MSNBC

Memory (MB)

minsup (%a)

—B8—DBV-Closed —¢— pDBV-FCSP (2 cores) —A—pDBV-FCSP (3 cores) —#—pDBV-FCSP (4 cores)

FIGURE 15. Memory usage for MSNBC database.

MSNBC

Runtim

P

400 500 600 T00 800 900
Dataset size (K)

—&—DBV-Closed —¢— pDBV-FCSP (2 corcs) —A—pDBV-FCSP (3 cores) —#—pDBV-FCSP (4 cores)

FIGURE 16. Scalability of pDBV-FCSP and CloFS-DBV for MSNBC database
with minsup=7% and various database sizes.

to minimize the CPU idle time and the set of frequent
1-sequences is sorted in ascending order before task assign-
ment. This strategy balances the search tree for parallel pro-
cessing, and thus the search times for branches of the search
tree are similar.

C. SCALABILITY

In this section, we performed scalability experiments on var-
ious number of sequences for MSNBC full database which
is the largest one in the experimental databases. The goal of

VOLUME 5, 2017

this experiment is to observe the influence of the number of
sequences on execution time. The results in Fig. /6 show that
pDBV-FCSP had the best scalability. We tried this database
with CM-ClaSP approach proposed by Philippe et al. [9],
even the CMClaSP could not run for MSNBC database from
500K sequences on the above computer.

VI. CONCLUSION AND FUTURE WORKS

This article proposed an efficient parallel strategy for min-
ing FCSPs based on multi-core processors architecture and
used an efficient DBV data structure for quickly determining
support count. With a dynamic load balancing mechanism,
the proposed algorithm solved the load balance issues of
the workload between processors to minimize the idle CPU
time. The experimental results show that the proposed algo-
rithm outperformed the CloFS-DBV algorithm, especially
the runtime significantly reduced when the number of cores
increased.

In the future, we will study some issues related to maxi-
mal patterns, utility pattern and subgraph mining in complex
sequence databases using multi-core processor, or hybrid
environment that combine between distributed and multi-core
processor. We will also study how to use other architectures
to improve the efficiency of the mining process.

REFERENCES

[1] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proc. ICDE,
vol. 95. 1995, pp. 3-14.

[2] R. Agrawal and R. Srikant, “Mining sequential patterns: Generalizations
and performance improvements,” in Proc. EDBT, vol. 96. 1996, pp. 3—-17.

[3]1 A. Vajda, Multi-core and Many-core Processor Architectures. Springer,
2011, pp. 9-43. [Online]. Available: http://www.springer.com/gp/book/
9781441997388

[4] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick, “Sequential pattern mining
using a bitmap representaion,” in Proc. SIGKDD, vol. 2. 2002, pp. 1-7.

[5] A.Casali and C. Ernst, “Extracting correlated patterns on multicore archi-
tectures,” in Proc. CD-ARES, vol. 13. 2013, pp. 118-133.

[6] L. Chai, Q. Gao, and D. K. Panda, “Understanding the impact of multi-
core architecture in cluster computing: A case study with intel dual-core
system,” in Proc. CCGRID, 2007, pp. 471-478.

[71 S. Cong, J. Han, and D. Padua, “Parallel mining of closed sequential
patterns,” in Proc. ACM SIGKDD, vol. 5. 2005, pp. 562-567.

[8] T. Flouri, C. S. Iliopoulos, K. ParkSolon, and P. Pissis, “GapMis-OMP:
Pairwise short-read alignment on multi-core architectures,” in Artificial
Intelligence Applications and Innovations, IFIP AICT, vol. 382. Springer,
2012, pp. 593-601.

[9] P. Fournier-Viger, A. Gomariz, M. Campos, and R. Thomas, “Fast vertical
mining of sequential patterns using co-occurrence information,” in Proc.
PAKDD, vol. 14. 2014, pp. 40-52.

[10] K. Gouda, M. Hassaan, and M. J. Zaki, “Prism: An effective approach
for frequent sequence mining via prime-block encoding,” J. Comput. Syst.
Sci., vol. 76, no. 1, pp. 88-102, 2010.

[11] A. Gomariz, M. Campos, R. Marin, and B. Goethals, ““ClaSP: An efficient
algorithm for mining frequent closed sequences,” in Proc. PAKDD, 2013,
pp. 50-61.

[12] L. K.J. Grace, V. Maheswari, and D. Nagamalai, ‘““Web log data analysis
and mining,” Adv. Comput., vol. 133, pp. 459-469, Mar. 2011.

[13] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. C. Hsu,
“Freespan: Frequent pattern-projected sequential pattern mining,” in Proc.
KDD, 2000, pp. 355-359.

[14] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” ACM SIGMOD, vol. 29, no. 2, pp. 1-12, 2000.

[15] B. Huynh and B. Vo, “Using multi-core processors for mining frequent
sequential patterns,” ICIC Exp. Lett., vol. 9, no. 11, pp. 3071-3079, 2015.

17401

IEEE Access

B. Huynh et al.: Efficient Parallel Method for Mining FCSPs

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

B. Huynh, D. Nguyen, and B. Vo, “Parallel frequent subgraph min-
ing on multi-core processor systems,” ICIC Exp. Lett., vol. 10, no. 9,
pp- 2105-2113, 2016.

B. Huynh, B. Vo, and V. Snasel, “An efficient method for mining frequent
sequential patterns using multi-Core processors,” Appl. Intell., vol. 46,
no. 3, pp. 703-716, 2017.

A. Laurent, B. Négrevergne, N. Sicard, and A. Termier, “Efficient paral-
lel mining of gradual patterns on multicore processors,” in Advances in
Knowledge Discovery and Management, SCI, vol. 398. Springer, 2012,
pp. 137-151.

L. Liu, E. Li, Y. Zhang, and Z. Tang, “Optimization of frequent item-
set mining on multiple-core processor,” in Proc. VLDB, vol. 7. 2007,
pp. 1275-1285.

F. Masseglia, F. Cathala, and P. Poncelet, “The PSP approach for mining
sequential patterns,” in Proc. 2nd Eur. Symp. Principles Data Mining
Knowl. Discovery (PKDD), vol. 1510. 1998, pp. 176-184.

B. Negrevergne, A. Termier, J. F. Méhaut, and T. Uno, ““Discovering closed
frequent itemsets on multicore: Parallelizing computations and optimizing
memory accesses,” in Proc. HPCS, Jun. 2010, pp. 521-528.

B. Negrevergne, A. Termier, M. C. Rousset, and J. F. Méhaut, ‘“‘Para miner:
A generic pattern mining algorithm for multi-core architectures,” Data
Mining Knowl. Discovery, vol. 28, no. 3, pp. 1-41, 2014.

D. Nguyen, B. Vo, and B. Le, “Efficient strategies for parallel mining class
association rules,” Expert Syst. Appl., vol. 41, no. 10, pp. 47164729, 2014.
M. Norouzi, A. Souri, and M. S. Zamini, “A data mining classification
approach for behavioral malware detection,” J. Comput. Netw. Commun.,
vol. 1, pp. 8069672:1-8069672:9, Mar. 2016.

T. T. Pham, J. Luo, T. P. Hong, and B. Vo, “An An efficient method
for mining non-redundant sequential rules using attributed prefix-trees,”
Engineering Applications of Artificial Intelligence, vol. 32, pp. 88-99,
Jun. 2014.

J. Pei et al., “Mining sequential patterns by pattern-growth: The
PrefixSpan approach,” IEEE Trans. Knowl. Data Eng., vol. 16, no. 11,
pp. 1424-1440, Nov. 2004.

K. Raza, “Application of data mining in bioinformatics,” Indian J.
Comput. Sci. Eng., vol. 1, no. 2, pp. 114-118, 2013.

F. Sanchez, F. Cabarcas, A. Ramirez, and M. Valero, ‘“Long DNA sequence
comparison on multicore architectures,” in Euro-Par-Parallel Processing.
2010, pp. 247-259.

B. Schlegel, T. Karnagel, T. Kiefer, and W. Lehner, “Scalable frequent
itemset mining on many-core processors,” in Proc. 9th Int. Workshop Data
Manage. New Hardw., 2013, Art. no. 3.

Y. Solihin, Fundamentals of Parallel Computer Architecture. Boca Raton,
FL, USA: CRC Press, 2009.

N. Talukder and M. J. Zaki, “Parallel graph mining with dynamic load
balancing,” in Proc. IEEE Int. Conf. Big Data, Dec. 2016, pp. 3352-3359.
M. T. Tran, B. Le, and B. Vo, “Combination of dynamic bit vectors and
transaction information for mining frequent closed sequences efficiently,”
Eng. Appl. Artif. Intell., vol. 38, pp. 183-189, Feb. 2015.

T.-T. van, B. Vo, and B. Le, “IMSR_PreTree: An improved algorithm for
mining sequential rules based on the prefix-tree,” Vietnam J. Comput. Sci.,
vol. 1, no. 2, pp. 97-105, 2014.

A. Vajda, “Multi-core and many-core processor architectures,” in Pro-
gramming Many-Core Chips. New York, NY, USA: Springer, 2011,
pp. 9-43.

B. Vo, T. P. Hong, and B. Le, “DBV-Miner: A dynamic bit-vector approach
for fast mining frequent closed itemsets,” Expert Syst. Appl., vol. 39, no. 8,
pp. 71967206, 2012.

J. Wang, J. Han, and C. Li, “Frequent closed sequence mining without
candidate maintenance,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 8,
pp. 1042-1056, Aug. 2007.

P. Weichbroth, M. Owoc, and M. Pleszkun, ‘“Web user navigation pat-
terns discovery from WWW server log files,” in Proc. FedCSIS, vol. 12.
Sep. 2012, pp. 1176-1177.

X. Yan, J. Han, and R. Afshar, “CloSpan: Mining closed sequential pat-
terns in large databases,” in Proc. SDM, vol. 3. 2003, pp. 166-177.

K. M. Yu and S. H. Wu, “An efficient load balancing multi-core fre-
quent patterns mining algorithm,” in Proc. TrustCom, vol. 11. 2011,
pp. 1408-1412.

M. J. Zaki, J. T. L. Wang, and H. T. T. Toivonen, “BIOKDDO01: Workshop
on data mining in bioinformatics,” ACM SIGKDD Explorations, vol. 3,
no. 2, pp. 71-73, 2002.

M. J. Zaki, “SPADE: An efficient algorithm for mining frequent
sequences,” Mach. Learn., vol. 42, pp. 31-60, Jan. 2010.

17402

[42] M. J. Zaki, “Parallel sequence mining on shared-memory machines,”
J. Parallel Distrib. Comput., vol. 61, no. 3, pp. 401-426, 2001.

[43] T. Zhu and S. Bai, “A parallel mining algorithm for closed sequential
patterns,” in Proc. AINA Workshops, May 2007, pp. 392-395.

BAO HUYNH received the B.Sc. degree in
computer science from the University of Sci-
ence, Vietnam National University, Ho Chi Minh
City, Vietnam, and the M.Sc. degree in com-
puter Science from the Posts and Telecommu-
nications Institute of Technology, Ho Chi Minh
City, Vietnam, in 2002 and 2011, respectively. His
research interests include data mining and social
network analysis.

BAY VO (M’16) received the Ph.D. degree in
computer science from the University of Science,
Vietnam National University of Ho Chi Minh,
in2011. He was an Associate Professor from 2015.
His research interests include association rule min-
ing, classification, incremental mining, distributed
databases, and privacy preserving in data mining.
He serves as an Associate Editor of the ICIC
Express-Letters, Part B: Applications, a member
of the review board of the International Journal of
Applied Intelligence, and an Editor of the /nternational Journal of Engineer-
ing and Technology Innovation. He also served as the Co-Chair of several
special sessions, such as ICCCI 2012, ACIIDS 2013, 2014, 2015, 2016,
KSE 2013, 2014, SMC 2015, as Reviewer of many international journals,
such as IEEE-TKDE, KAIS, ESWA, IEEE-SMC: Systems, Information
Sciences, Knowledge Based Systems, Soft Computing, and PLOS ONE, the
IEEE Acckss.

L

TG

VACLAYV SNASEL received the M.Sc. degree from
Palacky University, Olomouc, Czech Republic,
the Ph.D. degree in algebra and geometry from
Masaryk University, Brno, Czech Republic. His
research and development experience include over
25 years in the Industry and Academia. He was
in a multidisciplinary environment involvinrtificial
intelligence, multidimensional data indexing, con-
ceptual lattice, information retrieval, semantic
web, knowledge management, data compression,
machine intelligence, neural network, Web intelligence, data mining and
applied to various real-world problems. He has given over ten plenary
lectures and conference tutorials in these areas. He has authored or co-
authored several refereed journal/conference papers and book chapters. He
has authored over 400 papers (147 is recorded at Web of Science). He has
supervised many Ph.D. students from Czech Republic, Jordan, Yemen, Slo-
vakia, Ukraine and Vietnam.

From 2001, he has been a Visiting Scientist with the Institute of Computer
Science, Academy of Sciences of the Czech Republic. From 2003, he has
been the Vice-Dean for Research and Science with the Faculty of Electrical
Engineering and Computer Science, VSB-Technical University of Ostrava,
Czech Republic. Since 2006, he has been a Full Professor. Before turning
into a full-time academic, he was with industrial company, where he was
involved in different industrial research and development projects for over
eight years.

He is the Editor-in-Chief of two journals, he also serves the editorial
board of some reputed International journals. He is actively involved in the
International Conference on Computational Aspects of Social Networks;
Computer Information Systems and Industrial Management; Evolutionary
Techniques in Data Processing series of International conferences. He is a
ACM, AMS, and SIAM.

VOLUME 5, 2017

