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ABSTRACT In this paper, a number of pair-counting similarity measures associated with a general
formulation of cluster ensemble are proposed. These measures are formulated based on our motivation
to evaluate the consistency between an individual clustering solution and a cluster ensemble solution, or
that between different cluster ensemble solutions, in a uniform manner. A number of criteria are proposed
for the comparison of these generalized measures, from both the perspectives of theoretical analysis and
experimental validation. We identify their different behaviors and their correlations in different scenarios of
traditional clustering solutions and cluster ensembles, with the hope that the results of these studies could
1) serve as important criteria for the design and selection of evaluation measures for clustering solutions,
and 2) provide explanations for ambiguous clustering results in related scenarios. Experiments with both
synthetic and real data sets are conducted to verify our findings.

INDEX TERMS Clustering evaluation, cluster ensembles, similarity measures.

I. INTRODUCTION
With the development of modern data acquisition tech-
niques, the problem of extracting useful pattern information
from those data becomes more important. Examples include
microarray data, web site visit log data, and data resulting
from social network analysis. Clustering is one of the most
important approaches for organizing such data in many prac-
tical applications, and different clustering algorithms have
been proposed for general or specific tasks. However, due
to different characteristic properties of these data sets, such
as different data distributions, different data sizes, different
amount of noise, and different data preprocessing methods
adopted, a single clustering method cannot guarantee to
behave well in all scenarios. Motivated by the successful
development of ensemble approaches in supervised classifi-
cation, such as Adaptive Boosting (AdaBoost) [1] or Random
Forest [2], ensemble techniques in unsupervised clustering

applications have attracted great interests in machine learning
communities [3]–[12]. Specifically, the unsupervised ensem-
ble framework, which is usually referred to as cluster ensem-
ble [3], creates a consensus solution from multiple clustering
solutions and usually achieves more accurate results. In gen-
eral, the individual clustering solutions can be generated from
different perspectives, such as different data sample subsets
[5], [6], different data feature subsets [4], [5], or different
clustering algorithms [3], [13]. Once the individual partitions
are created, the consensus clustering solution can be derived
using co-association based methods [3], [5], [7] or graph
partitioning based methods [3], [4]. For the first category of
cluster ensemble methods, a co-association matrix is gener-
ated from each individual partition, where the (i, j)-th entry
of the matrix denotes whether the i-th data point and the j-th
data point belong to the same cluster in the partition. After
that, all the co-association matrices are summed to form a
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consensus matrix. This matrix can thus serve as a pairwise
similarity matrix, and a consensus solution can be derived
using suitable clustering algorithms [5], [7] or graph cut algo-
rithms [3]. The second category of cluster ensemble methods
generates a graph representation based on the relationship
between samples/clusters/partitions from the individual clus-
tering solutions, and searches for a final consensus clustering
solution using a suitable graph partitioning algorithm [4], [5].
In general, cluster ensemble methods generate more stable
and accurate solutions compared to the individual clustering
solutions.

In many cases the accurate evaluation of the cluster
ensemble results requires measures associated with ground
truth information, commonly known as external measures.
Popular external clustering evaluation measures can roughly
be divided into three categories:(i) Pair-counting measures,
which are calculated based on the extent to which the cluster
and class memberships of pairs of data points agree or
disagree.Well-knownmeasures in this category include Rand
Index [14], Adjusted Rand Index [15], Fowlkes-Mallows
Index [16] and Jaccard Index [17]. More comprehensive
studies on these pair-counting measures can be found
in [18]–[21]; (ii) Information-theoretic measures, which are
based on various forms of entropic measures from informa-
tion theory. Well-known measures in this category include
mutual information [22], purity [23], Normalized Mutual
Information [3], and Variation of Information [24]. More
recent studies on the measures in this category can be found
in [25]–[27]; and (iii) Set-matching measures, which charac-
terize the extent of similarity between clusters in two parti-
tions based on set theoretic measures. Well-known measures
in this category include the van Dongen criterion [28], the
H criterion [29], and the L criterion [30].

However, in many practical scenarios, the ground truth
labels are not available [31], or in other forms rather than
the label information. Representative examples include pair-
wise linkage in web data [32], [33], structural relationship
in social network [34], and semantic similarity in gene reg-
ulation network and Gene Ontology [35], [36]. In addition,
to evaluate the improvement of quality resulting from the
formation of the final cluster ensemble solution compared
with the individual partitions, and the diversity among the
individual partitions, the average similarity between pairs
of individual partitions based on various external measures
are generally used, such as Average Normalized Mutual
Information (ANMI) [3], [5] and Pairwise Normalized
Mutual Information (PNMI) [5], [37]. Evaluation based on
external measures will become less applicable when these
individual partitions are represented in a fuzzy form in terms
of membership functions (instead of a crisp partition), or
when the individual partitions consist of different subsets
of the data samples, or when the partitions are less accessi-
ble due to privacy and/or security concerns. Therefore, it is
important to develop effective measures to evaluate the con-
sistency between partitions and pairwise similarity matrices,
and that between different pairwise similarity matrices for

both individual clustering solutions and cluster ensembles,
in a similar spirit to the adoption of external measures above.
Motivated by the Adjusted Rand Index (ARI) and its fuzzy
extension [19], we have proposed two new generalized ARI
measures in our recent works [20], [21]. However, there
are few previous studies about the generalization of other
measures. It is interesting to note that other measures in
the pair-counting category can also be generalized, while
generalization of the measures in the other two categories
is difficult to proceed. Although there are a lot of related
works on clustering measures under the traditional clustering
scenarios [24], [31], [38]–[40], there are, to the best of our
knowledge, no previous studies on the behaviors of these
measures in the more general cluster ensemble scenario.
Also, there is a lack of comparison of these measures in
both scenarios. More importantly, there are no studies which
provide comprehensive investigation of these generalized
measures in scenarios of clustering and of cluster ensembles.
The work in this paper thus attempts to bridge these gaps,
with the hope that the results of these studies could (i) serve
as important criteria for the design and selection of evaluation
measures for different scenarios, and (ii) provide explanations
for ambiguous clustering results in related scenarios.

A. OUR WORK AND CONTRIBUTION IN THIS PAPER
In this paper, we generalize 21 pair-counting measures to
evaluate the consistency between individual partitions and
pairwise similarity matrices, or between two pairwise sim-
ilarity matrices, in a unified framework. To compare these
generalizedmeasures in the scenarios of traditional clustering
solutions and cluster ensembles, we propose a number of
criteria and investigate their properties, from both the per-
spectives of theoretical and experimental analysis. To our
best knowledge, there are no previous studies which provide
comprehensive investigation of these generalizedmeasures in
scenarios of clustering and of cluster ensembles using these
sets of proposed properties. In addition, different applications
of these generalized measures in practical cluster ensemble
scenarios are also discussed.

B. ORGANIZATION OF THIS PAPER
The rest of the paper is organized as follows. Section 2
provides a brief introduction of cluster ensemble and
related pair-counting measures. Section 3 presents a unified
framework for generalizing these pair-counting measures.
Section 4 proposes a number of effective criteria to com-
pare various generalized pair-counting measures based on
theoretical analysis. Section 5 describes experimental results
to verify the properties of the generalized measures and to
demonstrate their effectiveness in practical cluster ensemble
tasks. Section 6 concludes the paper.

II. CLUSTER ENSEMBLES AND CLUSTERING
EVALUATION MEASURES
We briefly introduce related background information
about cluster ensemble based on the consensus matrix,
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and introduce a number of pair-counting similarity measures
for clustering solution evaluation. In this paper the two
terms ‘‘clustering solution’’ and ‘‘partition’’ are used
interchangeably.

A. CLUSTER ENSEMBLE BASED ON CONSENSUS MATRIX
We now introduce cluster ensemble based on the consensus
matrix. Given a data set X = {xi}Ni=1 with N data points,
a partition P divides X into a set of mutually disjoint clusters
{Pk}Kk=1. For the partition P, an N ×N co-association matrix
can be constructed as follows:

Mij =

{
1 if ∃ k, xi ∈ Pk and xj ∈ Pk
0 otherwise

(1)

Note that the diagonal entries ofM will always be 1 because
each point is itself amember of the cluster to which it belongs.

Given a set of partitions {P(l)}Ll=1, the N × N consensus
matrix can be computed as the average of their corresponding
co-association matrices using

M =
1
L

L∑
l=1

M (l) (2)

Note that this consensus matrix can be regarded as a fuzzy
generalization of the individual co-association matrices.

B. PAIR-COUNTING SIMILARITY MEASURES
A number of cluster evaluation measures have been pro-
posed in various pair-counting similarity forms. Specifically,

let P = {P1,P2, · · · ,PK (P)} and Q = {Q1,Q2, · · · ,QK (Q)}

be two partitions on a data set X = {xi}Ni=1 with N entities,
P(xi) and Q(xi) be the corresponding class labels for the data
point xi in partition P and Q respectively, and δ() be the
indicator function with δ(true) = 1 and δ(false) = 0, four
different factors are defined as follows

a =
N−1∑
i=1

N∑
j=i+1

δ(P(xi) = P(xj) and Q(xi) = Q(xj))

b =
N−1∑
i=1

N∑
j=i+1

δ(P(xi) = P(xj) and Q(xi) 6= Q(xj))

c =
N−1∑
i=1

N∑
j=i+1

δ(P(xi) 6= P(xj) and Q(xi) = Q(xj))

d =
N−1∑
i=1

N∑
j=i+1

δ(P(xi) 6= P(xj) and Q(xi) 6= Q(xj)) (3)

Note that the sum λ of these four factors equals the number
of all possible point pairs

λ = a+ b+ c+ d =
(
N
2

)
=
N (N − 1)

2
(4)

Most of the proposed cluster evaluation measures in various
pair-counting similarity forms are based on these five factors,
and they are bounded in the intervals [0, 1] or [−1, 1]. In this
paper, we shall focus on such bounded evaluation measures
as shown in Table 1, where details of their names, notations,
references, original definitions and ranges are included.

TABLE 1. Pair-counting similarity measures investigated in this paper.
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III. GENERALIZED PAIR-COUNTING SIMILARITY
MEASURES FOR CLUSTER ENSEMBLE:
A UNIFIED FRAMEWORK
Generalized pair-counting similarity measures for cluster
ensemble can be derived from the original definitions based
on the corresponding consensus matrices (or co-association
matrices for partitions as a special case) following the meth-
ods adopted in [19]–[21]. Specifically, given two consensus
matrices M(P) and M(Q) for two cluster ensembles, the
factors defined in Eq. (3) can be computed as follows

a =
N−1∑
i=1

N∑
j=i+1

M(P)
ij M(Q)

ij

b =
N−1∑
i=1

N∑
j=i+1

M(P)
ij (1−M(Q)

ij )

c =
N−1∑
i=1

N∑
j=i+1

(1−M(P)
ij )M(Q)

ij

d =
N−1∑
i=1

N∑
j=i+1

(1−M(P)
ij )(1−M(Q)

ij ) (5)

Based on the new factors in Eq. (5), generalized pair-counting
similarity measures can be derived from the same definitions
in Table 1, with the original measures obtained from a number
of references [14]–[16], [16]–[18], [41]–[51].

It is interesting that the factors computed in Eq. (5) are
identical to those defined in Eq. (3) when the two consensus
matrices reduce to co-association matrices (i.e., computed
from two partitions). In this case, the original pair-counting
similarity measures for two partitions can be viewed as
special cases of the newly generalized ones.

IV. COMPARISON CRITERIA FOR GENERALIZED
PAIR-COUNTING SIMILARITY MEASURES
Given the various measures proposed above, a further study
of their properties is important. To our best knowledge, there
are no studies on these generalizedmeasures in awide context
from traditional clustering solutions to cluster ensembles in a
uniformmanner. It can be expected that these measures might
possess a set of core properties, and at the same time have
their own special properties. In view of this, we perform a
theoretical analysis of these generalized measures and their
properties in this section. Related experimental study will
further be conducted on both simulated and real data sets in
the experiment section.

Given two consensus matrices M(P) and M(Q) for two
cluster ensembles (also including the special case of clus-
tering partitions) and the measure sim(M(P),M(Q)), we pro-
pose to study a number of different properties including:
• P1: Symmetry. Whether sim(M(P),M(Q)) =

sim(M(Q),M(P))?
• P2: Possibility of distributed computation. Whether
these general measures can be computed in a distributed
manner.

• P3: Detection of Uncorrelatedness (DoU). Whether
the measures can converge to a baseline value in
the case of two random partitions or two random
ensembles.

• P4: Measure of complementarity. The complement of
a partition (or an ensemble) is represented in the form
of a matrix, where the summation of each non-diagonal
entry of the matrix and that of the co-association
matrix of the partition (of the consensus matrix of the
ensemble) is 1. We would like to determine the rela-
tionship between a partition (or an ensemble) and its
complement.

• P5: Measure of self-similarity. Whether the measures
can readily evaluate the similarity between a partition or
a cluster ensemble with itself.

Since most of the generalized similarity measures are
derived from widely adopted clustering evaluation measures,
it is difficult to explicitly compare their effectiveness in dif-
ferent scenarios. To our best knowledge, there are no previous
studies on the comparison of generalized similarity measures
in these multiple scenarios. Although it is difficult to perform
a complete comparison from all perspectives, the aforemen-
tioned properties inherit the spirit of recent studies in cluster
quality measures [18], [19], [25], [52] and cluster ensembles
[3], [5], [37], [53], with the added advantage of providing a
wider coverage to include both the cases of clustering and
cluster ensemble:
• Property 1 (P1: Symmetry) requires that the measures
should output the same similarity value for two cluster
ensembles regardless of their ordering;

• Property 2 (P2: Possibility of distributed computation)
explores the applicability of distributed computation for
these measures, since distributed computation is one of
the possible benefits of cluster ensembles [3];

• Property 3 (P3: Detection of Uncorrelatedness) inves-
tigates the behavior of these measures under both ran-
dom clusterings or random ensembles, which has been
mainly discussed in the case of clustering comparison
[15], [18], [25] and briefly investigated for the general-
ized Adjusted Rand Index in cluster ensembles in our
earlier work [20], [21];

• Property 4 (P4: Measure of complementarity) general-
izes two goodness criteria (Homogeneity and Complete-
ness) for clustering comparison in [52] to characterize
complementary clustering solutions;

• Property 5 (P5: Measure of self-similarity) evaluates the
capability of the generalized measures to compute the
self-similarity of a cluster ensemble. This property can
be used to study the diversity of cluster ensembles in
a more general manner, which is widely believed to be
important for the quality of cluster ensembles [5], [21],
[37], [53].

These properties are discussed in detail in the following
subsections. Finally, the overall comparison results are sum-
marized and discussed with respect to previous findings at the
end of this section.
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A. PROPERTY 1 (P1): SYMMETRY
The symmetry property can be directly identified from the
definitions of the measures. Referring to the measure defini-
tions in Table 1, only some measures, such as Peirce (PE),
Wallance 1 (W1) and Wallance 2 (W2), do not satisfy this
condition. This also suggests that most researchers have this
property in mind when designing these measures.

B. PROPERTY 2 (P2):POSSIBILITY OF DISTRIBUTED
COMPUTATION
As discussed in one of our recent papers [21], we can effec-
tively compute the generalized Adjusted Rand Index in a
distributed manner. It is interesting to see that all the other
generalized pair-counting similarity measures have this desir-
able property. Specifically, two consensus matrices can be
split into several sub-matrices, and the factors associated with
each sub-matrix can be computed in a distributed manner.
This distributed computation approach for generalized pair-
counting similarity measures is useful when the memory
requirement is too large for one single machine, and/or data
security requirement is important.

C. PROPERTY 3 (P3): DETECTION OF
UNCORRELATEDNESS (DoU)
One of the important properties of a clustering evaluation
measure that attracts great interest is how it compares two
independent random partitions [15], [18], [20], [21], [25].
In general, random partitions are constructed by assigning
data points to their clusters with a uniform distribution.
Specifically, the number of clusters K is randomly selected
from 2 to a maximum number Kmax using a uniform distribu-
tion, and the assignment probabilities of a data point to any
cluster are equal (i.e., 1/K ). In this case, desirable measure
values should be close to a baseline value, for example zero.
Among measures that have this property, the Adjusted Rand
Index is the most notable one [15], [18], [20], [21], [25].
In our earlier study [21], we have proposed a general-
ized Adjusted Rand index between two independent random
ensembles, each of which corresponds to a set of random
partitions. Here we focus on the corresponding property of
the other generalized measures in the context of compar-
ing random partitions and random ensembles, and uniformly
refer to it as ‘‘Detection of Uncorrelatedness (DoU)’’. From
our study, we find that it is more accurate to view the
baseline value as the mid-point of the measure value range
for the different similarity measures rather than zero. Six
measures, including ARI, GAMMA, GK, P, PE, and SS1,
are found to have this desirable property. Among these six
measures, the first five have a value range of [−1, 1], with
a baseline value of 0, while the range of SS1 is [0, 1] with
a baseline value of 0.5. We also provide a proof of this
property for these six measures when applied to two inde-
pendent random partitions and to two independent random
ensembles.

1) PROPERTY 3a (P3a): DETECTION OF
UNCORRELATEDNESS (DoU) BETWEEN TWO
RANDOM PARTITIONS
ARI, GAMMA, GK, P, PE, and SS1 have the common prop-
erty of DoU between two random partitions.

From the definitions of the measures, we can observe that
for the first five measures, i.e., ARI, GAMMA, GK, PE,
and P, they are in the form of ad−bc

pos , where pos is positive.
It can be seen that

ad − bc

= a
N−1∑
i=1

N∑
j=i+1

(1−M (P)
ij )(1−M (Q)

ij )

−

N−1∑
i=1

N∑
j=i+1

M (P)
ij (1−M (Q)

ij )
N−1∑
i=1

N∑
j=i+1

(1−M (P)
ij )M (Q)

ij

= a
N−1∑
i=1

N∑
j=i+1

(1−M (P)
ij −M

(Q)
ij +M

(P)
ij M (Q)

ij )

−(
N−1∑
i=1

N∑
j=i+1

M (P)
ij − a)(

N−1∑
i=1

N∑
j=i+1

M (Q)
ij − a)

= aλ−
N−1∑
i=1

N∑
j=i+1

M (P)
ij

N−1∑
i=1

N∑
j=i+1

M (Q)
ij

= λ

N−1∑
i=1

N∑
j=i+1

M (P)
ij M (Q)

ij −

N−1∑
i=1

N∑
j=i+1

M (P)
ij

N−1∑
i=1

N∑
j=i+1

M (Q)
ij

(6)

Given a particular random partition generated with the
uniform distribution, say P with K (P) clusters, the probabil-
ity that an entry in its co-association matrix M (P) equals 1
(i.e., for the corresponding pair of points to belong to the same
cluster) can be determined as follows

p(P) = p(M (P)
ij = 1) =

(K (P)

1

)
K (P)K (P) =

1
K (P) ,

p(M (P)
ij = 0) = 1−

1
K (P) (7)

i.e., p(M (P)
ij ) is a Bernoulli distribution. In the case of two

independent random partitions as discussed here, if N , the
number of data points, is sufficiently large, we can obtain

a =
N−1∑
i=1

N∑
j=i+1

M (P)
ij M (Q)

ij ≈
N (N − 1)

2
E(M (P)

ij M (Q)
ij )

= λE[M (P)
ij ]E[M (Q)

ij ] = λp(P)p(Q) (8)

where p(P) and p(Q) are the probabilities for the entries in
the co-association matrices M (P) and M (Q) to be 1, for the
two random partitions P and Q respectively. The second step
follows from the law of large numbers, and the third step is
based on the uncorrelatedness of the two partitions P and Q.
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Also
N−1∑
i=1

N∑
j=i+1

M (P)
ij

N−1∑
i=1

N∑
j=i+1

M (Q)
ij

≈ λE(M (P)
ij )λE(M (Q)

ij ) = λ2p(P)p(Q) (9)

Thus, the factor (ad − bc) in Eq. (6) can be further
simplified as follows:

ad − bc

= λ

N−1∑
i=1

N∑
j=i+1

M (P)
ij M (Q)

ij −

N−1∑
i=1

N∑
j=i+1

M (P)
ij

N−1∑
i=1

N∑
j=i+1

M (Q)
ij

≈ λ(λp(P)p(Q))− λ2p(P)p(Q) = 0 (10)

As a result, for ARI, GAMMA, GK, PE, and P, their values
are close to zero in the case of two random partitions, which
is the mid-point of their ranges [−1, 1].
On the other hand, for the case of ad − bc = 0, the value

of SS1 is determined as follows:

SS1(M (Q),M (P)))

= 0.25(
a

a+ b
+

a
a+ c

+
d

d + b
+

d
d + c

)

= 0.25((
a

a+ b
+

d
d + c

)+ (
a

a+ c
+

d
d + b

))

= 0.25(
2ad + ac+ bd

ad + bd + bc+ ac
+

2ad + ab+ cd
ad + cd + ab+ bc

)

= 0.25(
2ad + ac+ bd

ad + bd + ad + ac
+

2ad + ab+ cd
ad + cd + ab+ ad

)

= 0.5 (11)

The fifth step uses the substitution bc = ad . This deduction
shows that the value of SS1 is 0.5 in the case of two random
partitions, which is the mid-point of its range [0, 1].

2) PROPERTY 3b (P3b): DETECTION OF
UNCORRELATEDNESS (DoU) BETWEEN TWO
RANDOM ENSEMBLES
ARI, GAMMA, GK, P, PE, and SS1 have the common prop-
erty of DoU between two random ensembles.

Similar to the proof above, we can also focus on the factor
ad−bc. Note that in the case of random ensembles, the entries
of the consensus matrices are the average of those of the
co-association matrices associated with the individual ran-
dom partitions (ref to Eq. (2)). In addition, we also know
that the distribution of the co-association matrix entries is
Bernoulli. Thus, we have

N−1∑
i=1

N∑
j=i+1

Mij ≈ λE[Mij] = λ
1
L

L∑
l=1

p(l) (12)

a =
N−1∑
i=1

N∑
j=i+1

M(P)
ij M(Q)

ij ≈
N (N − 1)

2
E(M(P)

ij M(Q)
ij )

= λE[M(P)
ij ]E[M(Q)

ij ] = λ(
1
L(P)

L(P)∑
l1=1

p(l1))(
1

L(Q)

L(Q)∑
l2=1

p(l2))

(13)

where the second steps of Eq. (12) and Eq. (13) follow from
the law of large numbers, and the third step of Eq. (13) results
from the uncorrelatedness of the two ensembles. Similarly,
we can derive the other terms as follows:

ad − bc

= λ

N−1∑
i=1

N∑
j=i+1

M(P)
ij M(Q)

ij −

N−1∑
i=1

N∑
j=i+1

M(P)
ij

N−1∑
i=1

N∑
j=i+1

M(Q)
ij

≈ λ2(
1
L(P)

L(P)∑
l1=1

p(l1))(
1

L(Q)

L(Q)∑
l2=1

p(l2))

− λ2(
1
L(P)

L(P)∑
l1=1

p(l1))(
1

L(Q)

L(Q)∑
l2=1

p(l2))

= 0 (14)

Therefore, we can see that for two random ensembles, the
measures ARI, GAMMA, GK, P, PE are close to zero, which
is the middle of their bounds [−1, 1], while the measure SS1
is close to 0.5.

Note that the other 15measures do not output meaningfully
converged values in the cases of two random partitions or two
random ensembles, which will be shown in the experiment
section.

D. PROPERTY 4 (P4): MEASURE OF COMPLEMENTARITY
It is interesting to note that cases where the generalized pair-
counting similarity measures are below their baseline values
were seldom discussed in previous works. Only very few
examples were mentioned in the literature. For example, neg-
ative values of the Adjusted Rand Index (ARI) were discussed
in [8] and [24]. Some negative value examples of ARI can
also be found in [21] and [25]. To our best knowledge, no
previous extensive studies have been conducted to investigate
cases in which the similarity values are below their baseline.
In this subsection we address these issues, propose related
criteria, and discuss preliminary observations. In particular,
we introduce definitions for the complement of a partition and
a cluster ensemble, and identify well-behaved measures with
values below their baseline when comparing partitions and
their complements (or ensembles and their complements).
We also provide further analysis to support our findings in
the following subsections.

1) DEFINITION: COMPLEMENT OF A PARTITION
AND A CLUSTER ENSEMBLE
It is difficult to define the corresponding complements
directly for partitions or ensembles. Instead, we define them
based on the co-association matrices for partitions, and con-
sensus matrices for ensembles. Specifically, given an N × N
co-association matrixM for a partition Pwith N points, or an
N × N consensus matrix M for a cluster ensemble E , their
complements are defined as follows:

cpm(P) = cpm(M ) = 1N×N −M + E

cpm(E) = cpm(M) = E −M+ 1N×N (15)
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where E is the identity matrix and 1N×N is an N × N matrix
with all entries being 1. (Similar definitions apply for 0N×N
and 0.5N×N which appears later in this section).

2) PROPERTY 4a (P4a): THE MOST DISCRIMINATIVE
COMPLEMENTARY PAIR
Given a data set, which complementary pair will be the most
discriminative for a partition or an ensemble? It is not difficult
to imagine the following special cases from a pair-counting
perspective: (i) the fully-connected partition P(F) whose
co-associationmatrix is 1N×N , i.e., there is only one cluster in
the partition and all the data points in this partition belong to
the same cluster; and (ii) the singleton partition P(S) whose
co-association matrix is the identity matrix, i.e., there are
N data points as well asN clusters in P(S), and each data point
belongs to a single cluster. An interesting related problem
was discussed in [52] where two criteria were proposed to
measure the goodness of a clustering measure between two
partitions P and Q:

(i)Homogeneity, data assigned to a single cluster in parti-
tion Q should come from only a single cluster in partition P;
(ii)Completeness, data in a single cluster of partition P
should be assigned to a single cluster in partition Q.
It is interesting to observe that compared with P(F), any

partition other than P(F) will satisfy the homogeneity cri-
terion but violate the completeness criterion, while com-
pared with P(S), any partition other than P(S) will satisfy the
completeness criterion but violate the homogeneity criterion.
Thus, a desirable measure should attain the minimum possi-
ble value when used to evaluate the similarity between these
two different complementary pairs.

Since we know that some of the generalized measures are
asymmetrical from subsection IV-A, we discuss this problem
for two cases: (1) Property 4a1 (P4a1) sim(P(F),P(S)), and
(2) Property 4a2 (P4a2) sim(P(S),P(F)). It is easy to identify
those generalizedmeasures which have this property by using
the co-associationmatrices of P(F) and P(S), i.e., 1N×N and E ,
respectively. From Eq. (3), we can obtain that for the case of
P4a1, a = 0, b = N (N−1)

2 = λ, c = 0, d = 0. For the
symmetric case (P4a2), i.e., when evaluating the similarity
of the two partitions of P(S) and P(F), we can also obtain that
a = 0, b = 0, c = N (N−1)

2 = λ, d = 0. From the definitions
of the generalized measures in Table 1, it is interesting to
find that quite a few generalized measures are not applicable
to both of these two cases. Specifically, for the measures
Fowlkes-Mallows (FM), Gamma (G), Goodman and Kruskal
(GK), Kulczynski (K), McConnaughey (Mc), Pearson (P),
Peirce (PE), Sokal and Sneath 1 (SS1), Sokal and Sneath 3
(SS3), the values for both cases turn out to be 0

0 . Also, the two
asymmetric measures Wallance 1 (W1) and Wallance 2 (W2)
are also not applicable to these two cases. For the other
measures, it is interesting to observe that the Adjusted Rand
Index (ARI) equals 0, while Baulieu (B) equals 1, which
suggests that these two measures do not behave well in this
scenario. Among all the generalized measures defined in
Table 1, only seven measures: Gower and Legendre (GL),

Hamann (H), Jaccard (J), RAND (R), Russel and Rao (RR),
Rogers and Tanimoto (RT), Sokal and Sneath 2 (SS2), attain
their minimum possible values for this scenario.

3) PROPERTY 4b (P4b): THE MOST UNCERTAIN
COMPLEMENTARY PAIR
Besides identifying the most discriminative complement pair,
it is also interesting to investigate the performance of these
generalized measures when applied to the most uncertain
complementary pair. It is straightforward to see that among
different cases, MU = 0.5N×N + 0.5E corresponds to the
most uncertain one since in this case the probability of each
point pair to be in the same cluster is all 0.5. It is also inter-
esting to see that the corresponding value of its complement
as defined in Eq. (12) is also 0.5.

We can readily identify thesemeasureswith a simple calcu-
lation based on Eq. (5) for the case ofM(P)

=M(Q)
=MU ,

which give a = b = c = d = 1
4
N (N−1)

2 =
1
4λ. Interestingly,

we find that two-thirds of the generalized measures attain
their mid-point values, which equally divide their ranges
between uncertain pairs and certain pairs. This suggests that
this property is also considered for measure design. On the
other hand, the remaining seven measures, including Gower
and Legendre (GL), Jaccard (J), Russel and Rao (RR), Rogers
and Tanimoto (RT), Sokal and Sneath 2 (SS2), Sokal and
Sneath 3 (SS3), do not have this property. Their similarity
values in this scenario and their ranges are listed as follows:
GL, 2

3 , [0, 1]; J,
1
3 , [0, 1]; RR,

1
4 , [0, 1]; RT,

1
3 , [0, 1]; SS2,

1
5 , [0, 1]; SS3,

1
4 , [0, 1]. These measures thus do not have this

property.

4) PROPERTY 4c (P4c): COMPLEMENTARY PARTITION PAIR
Given a partition P (with co-association matrixM (P)) and its
complement E − M (P)

+ 1, it is straightforward to observe,
based on the binary entries of their respective matrices, that
they disagree with each other in terms of the probability of
each point pair to be in the same cluster. Although the com-
plement matrix might not necessarily be derived from a valid
exclusive hard partition (or a fuzzy ensemble), it is interesting
to observe that most of the measures attain their minimum
similarity values in this scenario. Thus, the measures that
satisfy this criterion should be more well-behaved. For M (P)

and E −M (P)
+ 1, we obtain a = d = 0 from Eq. (5). On the

other hand, we can readily observe three measures: Adjusted
Rand Index (ARI), Baulieu (B), and Pearson (P), that do not
satisfy this criterion. Specifically, we have

ARI (M (P),E −M (P)
+ 1) = −

2bc
b2 + c2

B(M (P),E −M (P)
+ 1) = −

(b− c)2

(b+ c)2

P(M (P),E −M (P)
+ 1) = −

1
bc

(16)

However, we find that ARI and B attain their minimum
values (−1 and 0, respectively) for the special case b = c.
In addition, it is notable to observe that all these three
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measures attain similarity values below their baseline for
complementary partition pairs.

E. PROPERTY 5 (P5): MEASURE OF SELF-SIMILARITY
Given two identical partitions, regardless of their distribu-
tions, well-behaved measures should attain their maximum
similarity values. On the other hand, for two identical ensem-
bles, the similarity values are not necessarily equal to the
maximum values. Viewing this problem from a probabilistic
perspective, the self-similarity measure of a partition cor-
responds to the case where both inputs of the similarity
function are the same binary co-association matrix, while
that of an ensemble is one where both inputs are the same
consensus matrix whose entries signify uncertainty. Let us
consider a simple example with one co-association matrix
M = [1 1 0; 1 1 0; 0 0 1] and one consensus matrix
M = [1 0.5 0.5; 0.5 1 0.5; 0.5 0.5 1]. Intuitively, well-
behaved measures should correspond to the case where
sim(M ,M ) is themaximum similarity value. However, for the
consensus matrix, sim(M,M) is not necessarily the maxi-
mum value. In fact, we can observe that none of the measures
attain the maximum value for the case of the most uncer-
tain complementary pair sim(MU ,MU ), where MU =

0.5N×N + 0.5E . A simple study of this problem for gener-
alized Adjusted Rand Index is also performed in our recent
work [21]. We shall study this self-similarity issue for the
fully-connected partition P(F) and the singleton partition P(S)

below. The performance of these measures on ensembles will
be studied in the experiment section.

1) PROPERTY 5a (P5a): SELF-SIMILARITY FOR THE
FULLY-CONNECTED PARTITION sim(P(F ),P(F ))
Based on Eq. (5), we obtain a = N (N−1)

2 , b = c = d =
0. From the definitions in Table 1, we can readily observe
that ARI, GK, GL, P, PE, SS1, and SS3 are not applicable
(division by 0), and the other measures all attain their maxi-
mum values.

2) PROPERTY 5b (P5b): SELF-SIMILARITY FOR THE
SINGLETON PARTITION, sim(P(S),P(S))
Based on Eq. (5), we obtain a = b = c = 0, d = N (N−1)

2 .
From the definitions in Table 1, we can readily observe that
only B, GL, H, RAND, and RT attain their maximum values.
Notably, RR equals 0 in this case. The other measures are not
applicable (division by 0).

F. SUMMARY
A summary of the proposed comparison properties is pro-
vided in Table 2, with brief descriptions and desirable outputs.
Also, a summary of the different behaviors of the generalized
measures is provided in Table 3. For each column corre-
sponding to a desirable property, ‘Y’/‘N’ indicates whether
a particular similarity measure possess this property or not,
‘Min’/‘Max’ represents the maximum/minimum range value,
and ‘Baseline Value’ is the baseline value of each generalized
measure. Note that for properties P4a1, P4a2 and P4b, the
measure values are also shown in brackets following Y/N to
provide more details. Also, ‘NA’ indicates that a measure is
not applicable for a specific property due to division by zero.
The fraction of measures with the desirable property is also
included in the last row.

From Table 3 we can observe that each property is
possessed by at least a few generalized measures. However,
it is important to observe that there is not a single measure
which possesses all the desirable properties. It is also inter-
esting to note that some measures have similar performance
among these properties in spite of their different formula-
tions. Specifically, two groups of measures, G/GK and FM/K,
attain the same performance.

These properties can serve as important criteria for the
design and selection of evaluation measures. Specifically,

• Property P1 (Symmetry) is important in evaluating pair-
wise similarity between ensembles. It will be natural to
assign the same similarity value between two clusterings
or ensembles irrespective of their orders;

TABLE 2. Summary of different properties proposed in this paper.
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TABLE 3. Comparison of generalized measures based on different properties.

• Property P2 (Possibility of distributed computation) will
facilitate the distributed computation of the measure
values;

• Property P3 (Detection of Uncorrelatedness (DoU))
is well recognized in previous works in distinguish-
ing meaningful partitions/ensembles from random par-
titions, while in this paper we extend this notion to the
scenario of ensembles;

• Property P4 (Measure of complementarity) is important
in identifying the most discriminative/uncertain comple-
mentary pairs;

• Property P5 (Measure of self-similarity) is important
in measuring the degree of self-similarity of parti-
tions/ensembles with different levels of uncertainty.

These observations might also provide an explanation for
a number of problems discussed in previous works but not
yet solved, which include: (1) Why Fowlkes-Mallows (FM)
tends to vary within [0.6, 1] and Rand (R) tends to vary
within [0.5, 0.95] for partitions with unbalanced data point
distributions [24]; (2) Under what scenarios will negative
values be observed for these generalized measures [8], [24];
(3) How these measures perform when applied under differ-
ent conditions, e.g., between two random partitions (or two
random ensembles)(Property 4), or between pairs of different
consensus matrices (Property 5)?

V. EXPERIMENTS
We have conducted a number of experiments to investigate
the properties of the generalized measures, as well as some of
their applications. More specifically, we will mainly investi-
gate the property, Detection of Uncorrelatedness (DoU), for
different generalized measures. The dependence of DoU on
different variants is consequently presented. We then conduct
further experiments to compare these generalized measures

based on a number of public data sets. Application of gener-
alizedmeasures to characterize the diversity of cluster ensem-
bles is also discussed.

A. EXPERIMENTS: DETECTION OF
UNCORRELATEDNESS (DoU)
The experiments in this subsection are conducted for the
following purposes: (i) to verify the detection of uncorrelated-
ness property for different generalized measures; (ii) to inves-
tigate the effect of different factors, such as the number of
clustering solutions L, the number of pointsN and the number
of clusters K . In previous sections, we use vague descriptions
such as ‘‘if N is sufficiently large’’. These experiments can
shed some light on issues such as ‘‘What value of N is large
enough?’’.

We first compare two groups of measures on the detection
of uncorrelatedness property. Specifically, Group 1 contains
six measures, which include ‘ARI’, ‘G’, ‘GK’, ‘P’, ‘PE’ and
‘SS1’. Group 2 contains the other measures. We generate two
random ensembles according to the following specification:
the number of data points N = 100, the number of partitions
for each ensemble L = 10, the maximum possible number
of clusters K = 5 and the number of repeated trials T = 20.
Figure 1 shows the absolute residual error values of different
similarity values after their baseline values are subtracted.
From this figure, we can observe that the mean values of
all six measures in Group 1 are close to zero, while those in
Group 2 are quite different from zero. The experiment results
agree well with our analysis in the previous sections.

We further investigate which parameters affect the results
corresponding to this property of DoU: the number of data
points N , the number of partitions in ensembles L, or the
maximum number of clusters K . We only study the perfor-
mance of the measures in Group 1 for different parameter
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FIGURE 1. Detection of uncorrelatedness for two random ensembles. Group 1 includes six measures
which have the desirable property(close to zero), while measures in Group 2 do not have the property
(different from zero). (a) Group 1. (b) Group 2.

settings, ranging from Nmin = 100,Lmin = 10,Kmin = 5 to
Nmax = 1000,Lmax = 100,Kmax = 20. To study the effect
of a single parameter, we fix the other two parameters. The
number of repeated trials is set to T = 20. Results of six
different scenarios are shown in Figure 2. From this figure,
we can observe that (i) the values of all six measures decrease
when N increases (Figure 2(a) and Figure 2(b)) and when
L increases (Figure 2(e) and Figure 2(f)), but are insensitive
to K (Figure 2(c) and Figure 2(d)); (ii) the GK curves are
higher than others; (iii) the ARI, G, and PE curves are very
close to each other, and (iv) the P curve almost overlaps
with the horizontal axis. The first observation indicates that
the detection of uncorrelatedness property for well-behaved
measures become more obvious with a larger number of data
points and/or with a larger number of partitions. The last
three observations are in good agreement with the definitions
of the measures. These differences come from the fact that
their numerators converge to zero while they have different
denominators. Specifically, the denominators of ARI, G, GK,
and PE are second-order factors of a, b, c, d , while that of P
is fourth-order. Moreover, GK has the smallest denominator.

B. FURTHER EXPERIMENTS
We conduct further experiments using nine well-known
public data sets from the UCI machine learning reposi-
tory,1 including UCI-Breast-Cancer-Wisconsin, UCI-BCW,
UCI-Chart, UCI-Glass, UCI-Iris, UCI-Image-Segmentation,
UCI-Pima, UCI-Vehicle, and UCI-Wine. These have been
used to evaluate the performance of different previous clus-
tering and cluster ensemble techniques.

1) COMPARISON BETWEEN A PARTITION AND A
SIMILARITY MATRIX
An intuitive application of the generalized measures is to
evaluate similarity between a partition P and an ensemble Q

1http://archive.ics.uci.edu/ml/datasets.html

(with consensus matrix M(Q)). Application of two general-
ized Adjusted Rand indices (ARImp and ARImm) under this
scenario were explored in our recent works [20], [21]. Note
that for other measures but not including the pair-counting
similarity measures, researchers tend to use the mean value
of these measures between the partition P and each partition
Q(l), i.e., sim(P,Q) = 1

L

∑
sim(P,Q(l)) for the same purpose

[5], [10]. Thus, a study of the relationship between the results
based on sim(P,M(Q))) and the traditional method (i.e.,
sim(P,M(Q))) = 1

L

∑
sim(P,Q(l))) is of great interest. For

each UCI data set, we run Kmeans with the true number
of clusters to obtain an initial clustering solution in each
trial. Next, we generate a random value L ∈ [25, 250],
and run Kmeans L times to obtain a corresponding num-
ber of partitions. We apply each measure to these partitions
using our method and the traditional one respectively, and
the mean Pearson correlation coefficient between the two
different sets of results averaged across 20 trials are reported
in Figure 3. Despite the different characteristics of the data
sets, experimental results of most of the measures are highly
correlated to those of the traditional method, except for B,
GK, W1 and W2. These results suggest that most of our
generalized measures can achieve results similar to those
of the traditional method, while our approach only requires
access to the consensus matrix of the ensemble, without
the need to observe each individual partition. This advan-
tage becomes more important when the similarity matrix
is not constructed from a partition but directly specified.
It is also interesting to note that the values for W1 and W2
are uniformly low across all the datasets. This observation
might be due to how these two measures are formulated
as follows: (i) their definitions do not include the factor d ,
which is usually larger than the other three factors; and
(ii) their numerators include either b or c only (a + b for
W1 and a + c for W2), while most of the other measures
have both the b and c factors present in an interchangeable
way.

VOLUME 5, 2017 16913



S. Zhang et al.: Generalized Pair-Counting Similarity Measures for Clustering and Cluster Ensembles

FIGURE 2. Investigation of the effect of different parameters on the detection of uncorrelatedness
property: the number of data points N , the number of partitions in ensembles L, and the maximum
number of clusters K .

2) OVERALL CORRELATION OF DIFFERENT MEASURE PAIRS
IN THE COMPARISON BETWEEN A PARTITION AND A
SIMILARITY MATRIX
We have also obtained the pairwise correlation of the
21 generalized measures based on the comparison between
a partition and a similarity matrix in the last subsection,
which we visualize in Figure 4. Although we only compare
these measures for the nine UCI data sets, we can already

observe their diverse behavior. It is interesting to note that
somemeasure pairs have quite large correlation, e.g., ARI and
G, CZ and J, CZ and FM, SS1 and SS3. On the other hand,
H, W1, and W2 appear to be the most different measures
compared to the others. We hope that this comparison might
provide some help when practitioners choose the desirable
subset of measures for their own task. These observations
might also be useful when we need to select multiple
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FIGURE 3. Application of generalized measures to characterize the similarity between a partition and an
ensemble. Results show correlation coefficient values between our methods and traditional methods.

FIGURE 4. Overall pairwise correlation of the 21 generalized measures on nine datasets.

generalized measures to perform a more objective com-
parison between different clustering (or cluster ensemble)
algorithms.

3) MEASURING THE DIVERSITY OF CLUSTER ENSEMBLES
Previous works suggest that the quality of a cluster ensem-
ble is related to its diversity [5], [37], [53]. In general,
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FIGURE 5. Application of generalized measures to characterize the diversity of cluster ensembles. Results
show correlation coefficient values between our methods and traditional methods.

traditional methods use pairwise similarity between cluster-
ing solutions to measure the diversity of a cluster ensem-
ble (i.e., 1

λ

∑N
i=1

∑N
j=i+1 sim(P

(i),P(j))) such as Pairwise
Normalized Mutual Information (PNMI) [5], [37]. In this
application, motivated by the traditional method, we use
sim(M(P),M(P)) between ensembles, rather than partition
pairs, to approximate the traditional method. The relation
between these two methods is then discussed.

Specifically, we generate 600 clustering solutions for dif-
ferent UCI data sets with the Kmeans algorithm. We use
different cluster numbers sampled at random, and group these
solutions into three classes using the spectral clustering algo-
rithm as performed in [5]. We refer to these three classes
as the small cluster class, the medium cluster class, and
the large cluster class according to their sizes. Initially, we
add the small cluster class into a base group, and compute
the similarity between the clustering solutions in the base
group using the different generalized measures. Then we
divide the medium cluster class into four different groups at
random, and add these groups to the base group one by one in
ascending order of their sizes. The corresponding similarity
at this stage is also computed using the different generalized
measures. Finally, the large cluster class is also divided and
added to the base group, followed by the computation of their
corresponding similarity values. In this way, the diversity of
the 600 clustering solutions can be investigated under nine
different conditions. For each condition, the similarity values

are computed with our method and the traditional method,
respectively, and the Pearson correlation coefficient between
the two different computation results are reported in Figure 5.

Interestingly, except for some measures such as B, GK,
W1 and W2 which behave in an unstable way, most of the
measure values such as ARI (the 1st column), FM (the 4th
column) and G (the 5th column) are highly correlated to the
results of the traditional methods. Note that our approach only
needs to access the consensus matrix of the ensemble, while
the traditional computational method requires access to each
individual partition. Thus our approach is more general, and
its unique advantage is especially useful when access to the
individual clustering solutions is difficult.

C. FURTHER DISCUSSIONS
We have analyzed our proposed properties for generalized
pair-counting similarity measures in the scenarios of parti-
tions and of cluster ensembles from both the perspectives of
theoretical analysis and experimental study. As can be seen,
each proposed property has its merit, and is possessed by
a number of popular measures. Notably, we do not aim at
discovering a complete set of properties to evaluate these
measures. Instead, we propose a number of important prop-
erties to investigate these measures, especially in the scenario
of cluster ensembles. These properties can thus serve as
important criteria for the design and selection of evaluation
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measures for clustering solutions. In general, there is no
single measure which possesses all the desirable properties.
Thus, we do not incline to recommend any particular measure
for evaluation. Instead, usingmultiplemeasures for clustering
evaluation is more reasonable and less biased. Therefore, it is
important to select a number of diverse measures. In addition,
our analysis and experimental results discover measures that
have a high correlation with each other. For example, we can
find measure pairs which are highly correlated from Figure 4,
e.g., ARI vs. G (0.94), CZ vs. FM (0.97), CZ vs. J (0.99), CZ
vs. SS2 (0.93), FM vs. J (0.97), FM vs. K (0.93), FM vs.SS2
(0.92), FM vs. SS3 (0.90), G vs. MC (0.90), GL vs. R (0.98),
GL vs. RT (0.91), H vs. RT (0.93), J vs. SS2 (0.96), K vs. MC
(0.92), K vs. SS1 (0.90), K vs. SS3 (0.91), MC vs. SS3 (0.92),
R vs. RT (0.97), and SS1 vs. SS3 (0.97).

An interesting extension of generalized similarity mea-
sures to be explored is the case of data labels (or similarity
matrices) with missing values. This kind of problems can be
dealt with using two different methods: 1) prediction-based
methods: we can predict the missing values based on other
related entries in the matrices. 2) dropout-based methods: we
can simply remove the missing entries for both matrices, and
revise the normalized factors in related equations, e.g., (4).

VI. CONCLUSION
In this paper, we have compared 21 pair-counting similarity
measures in a generalized setting based on both single cluster-
ing solutions and cluster ensemble results, and analyzed their
desirable properties from both the perspectives of theoretical
analysis and experimental study. We identify their different
behaviors and their correlations in different scenarios. It is
interesting to observe that each property is possessed by at
least a few generalized measures. Notably, some measures
have similar performance with regard to these properties in
spite of their different formulations. These properties can also
serve as important criteria for the design and selection of
evaluation measures. We have also performed a number of
experiments to verify the comparison criteria, and to demon-
strate the performance of the different generalized measures
in practical applications.
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