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ABSTRACT K -nearest neighbor rule (KNN) and sparse representation (SR) are widely used algorithms in
pattern classification. In this paper, we propose two new nearest neighbor classification methods, in which
the novel weighted voting methods are developed for making classification decisions on the basis of sparse
coefficients in the SR. Since the sparse coefficients can well reflect the neighborhood structure of data,
we mainly utilize them to design classifier in the proposed methods. One proposed method is called the
coefficient-weighted KNN classifier, which adopts sparse coefficients to choose KNNs of a query sample
and then uses the coefficients corresponding to the chosen neighbors as their weights for classification.
Another new method is the residual-weighted KNN classifier (RWKNN). In the RWKNN, KNNs of a query
sample are first determined by sparse coefficients, and then, we design a novel residual-based weighted
voting method for the KNN classification. The extensive experiments are carried out on many UCI and
KEEL data sets, and the experimental results show that the proposed methods perform well.

INDEX TERMS K-nearest neighbor rule, sparse coefficient, weighted voting, pattern classification.

I. INTRODUCTION
K-nearest neighbor rule is one of the top ten algorithms in
data mining [1]. Because of the simplicity and effectiveness
of KNN, it has been widely used in pattern recognition
since it was first proposed in [2]. Also, it has asymptotically
optimal performance in the Bayes sense for good classifica-
tion [2], [3]. AlthoughKNN has such superiorities, it still has
two key issues that are the sensitiveness to the neighborhood
size k and the simple majority vote in the k-neighborhood
region for the classification decision [1], [4]–[6].

In general, the sensitiveness to k can always be produced
by the different neighborhood selection criteria, the simple
similarity measure by Euclidean distance and outliers
especially in the small sample size cases. The general neigh-
borhood selection only considers the similarities among
samples. Using such neighborhood selection, the perfor-
mance of the KNN-based classifiers is very sensitive to
the neighborhood size k . As an alternative neighborhood,

nearest centroid neighborhood (NCN) is another effective
way of selecting k nearest neighbors [7]–[10]. NCN considers
both the proximity and geometrical distribution of k near-
est neighbors of the query samples simultaneously. Such
k-nearest centroid neighbor classifiers can perform well and
are robust to k . To address the issue with Euclidean distance
similarity measure, distance metric learning-based nearest
neighbor classifiers were proposed with good classification
performance [11], [12]. Since the classification decisions of
KNN-based methods are often determined by the simple
majority vote in the local region of neighborhood, the perfor-
mance can be easily degraded and very sensitive to k due to
the existing outliers. For the simplemajority vote, k neighbors
are equally served for making the classification decision.
As we know, the closer neighbors are generally more sim-
ilar and should be given more weight for classification.
To improve the simple majority vote, the distance-weighted
voting methods for KNN were proposed in [4] and [13].
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Furthermore, in the small sample size cases with the
existing outliers and imbalance data, the performance of
KNN-based nonparametric classifiers is severely dam-
aged [14] and the sensitiveness to the neighborhood size k is
very obvious. In regard to this problem, a local mean-based
k-nearest neighbor method (LMKNN) was proposed to
achieve the good classification with robustness to out-
liers [15]. Its classification decision is realized by utilizing
the local mean vector of k nearest neighbors from each
class. Using the idea of LMKNN, another new LMKNN
method based on the NCN was successfully introduced with
promising classification performance in [10]. By calculating
the weighted sum of distances of k nearest neighbors per
class, a pseudo nearest neighbor method (PNN) was designed
in [16]. Based on PNN and LMKNN, a local mean-based
pseudo nearest neighbor method (LMPNN) was proposed
in [5]. LMPNN obtains the very satisfactory classification in
many pattern recognition problems, such as in [17]. Recently,
to aim at the outliers and the choice of k , a new k-harmonic
nearest neighbor classifier based on the multi-local mean
vectors was proposed by using the idea of LMPNN and the
harmonic mean distance in [18]. Besides, when the samples
from different the classes are nonseparable or overlapping,
the classification decision in the neighborhood region could
be wrong. To address the issue, a new KNN-based method
was developed by calculating local categorical probability
centers of each query sample in [19] and then the class of
the query sample was determined by employing the distances
from the query sample to these centers.

Up to now, sparse representation [20]–[22] has been well
successfully applied in pattern recognition such as in face
recognition [23]–[26]. One representative SR-based classifi-
cation algorithm is the sparse representation-based classifi-
cation method (SRC) [23]. Due to the advantage of sparsity
for classification, there exist some SR-based nearest neighbor
classification methods [27], [28]. It has been argued that
the sparse representation coefficients as the good similarities
among samples can reflect the neighborhood structure of data
and have more discrimination information [27], [29], [30].
If two samples are similar, the corresponding sparse coeffi-
cients should also be close to each other [30]. In SR-based
classification, each query sample is sparsely represented by
all the training samples in general. If a query sample is
very similar with one training sample, the training sample
will have a large sparse coefficient to represent the query
sample. Thus, the coefficients have been well employed for
making classification decision [27], [31], [32]. To match
well with SRC, sum of coefficients (SoC), as a classifica-
tion decision was proposed by fully taking advantage of
sparse representation coefficients in [31] and it performswell.
Moreover, since the sparse reconstructive relationship of data
through sparse representation contains natural geometrical
similarity structure of data, SR-based graph construction has
been well used in graph embedding [33]–[36]. In addition to
sparse representation, collaborative representation (CR) [37]
is another representation method for classification [38], [39].

Due to good properties of collaborative representation
in pattern recognition, there are two CR-based KNN
classification methods [40], [41]. The one is the coarse to
fine k nearest neighbor classifier that uses two-phase rep-
resentation to find nearest neighbors [40]. The other one is
the collaborative representation-based nearest neighbor clas-
sifier (CRNN) [41], that mainly uses representation coeffi-
cients to find k nearest neighbors of a query sample.

With regard to the problems about the neighborhood
selection and the simple majority vote in the KNN-based
classification, two novel k-nearest neighbor methods moti-
vated by the good advantages of sparse representation are
proposed, with the aim of improving the classification perfor-
mance, especially in the small sample size cases. The two pro-
posed methods are called the coefficient-weighted k-nearest
neighbor classifier (CWKNN) and the residual-weighted
k-nearest neighbor classifier (RWKNN), respectively. In the
proposed methods, since the sparse coefficients in SR can
reflect the similarities among samples, the sparse coeffi-
cients of the sparse representation of each query sample are
employed to choose k nearest neighbors of each query sam-
ple. The chosen neighbors are representative to represent each
query sample for the useful classification. In the CWKNN,
the sparse coefficients are viewed as the weights of the corre-
sponding neighbors, and then the coefficient-weighted voting
is used for the classification decision. In the RWKNN, we
calculate the reconstructive residual distances between each
query sample and the k-nearest neighbors and then design the
residual distance-weighted function to compute the weight of
each neighbor. The residual-weighted voting combining the
sparse coefficients is adopted for the classification decision in
the RWKNN. The extensive experiments on UCI and KEEL
data sets of the competingmethods are conducted to verify the
classification performance of the proposed methods. Exper-
imental results demonstrate the proposed methods perform
very well.

The rest of this article is organized as follows. Section II
presents the related works. Section III describes the proposed
methods. Section IV further analyzes the proposed meth-
ods. Sections V and VI provide the extensive experimental
results and some discussions, respectively. Finally, the con-
clusion is given in Section VII.

II. RELATED METHODS
In this section, we briefly review the related methods includ-
ing KNN, sparse representation-based classification (SRC)
and two representation-based nearest neighbor classifiers
(i.e., LRMNN and CRNN). For description convenience, we
first introduce some notations. Let T = {(xi, li)}ni=1 denote
the training set with n training samples in M classes C =
{c1, c2, · · · , cM }, where xi ∈ Rd is a training sample with
the corresponding class label li ∈ C in the d-dimensional
feature space. The training set from the j-th class is indicated
as Tj = {(x

j
i , l

j
i )}

nj
i=1 and nj is the number of training samples

from j-th class.
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A. KNN
KNN is a very simple and effective nonparametric clas-
sification algorithm in many pattern recognition problems.
In KNN, the class label of the query sample is generally
decided by the simple majority vote of k nearest neighbors
chosen from the training set.

Given a query sample y ∈ Rd , k nearest neighbors of y are
first searched from all the training samples by computing the
Euclidean distance between y and xi

d(y, xi) = ‖y− xi‖2. (1)

The training samples corresponding to the first k smallest
distances are chosen as k nearest neighbors of the query
sample, denoted as Tk = {(xNNi , lNNi )}ki=1. Then the class
label ly of y is predicted by the majority vote of k nearest
neighbors as

ly = argmax
c

∑
(xNNi , lNNi )∈Tk

δ(c = lNNi ). (2)

where c ∈ C and δ(c = lNNi ) is the Dirac delta function that
takes a value of one if c = lNNi and zero otherwise, and lNNi
is the class label of the i-th nearest neighbor.
As an improvement, the distance-weighted k-nearest

neighbor rule (WKNN) was first proposed by a distance-
weighted voting method [13]. The distance-weighted
function is defined as:

wi =


d(y, xNNk )− d(y, xNNi )

d(y, xNNk )− d(y, xNN1 )
, if d(y, xNNk ) 6= d(y, xNN1 ),

1, if d(y, xNNk ) = d(y, xNN1 ),
(3)

where wi is the distance-based weight of xNNi as the contribu-
tion to classifying y. It is clear that the range of the weight wi
is from one for the first neighbor to zero for k-th neighbor,
and one neighbor with smaller distance has greater weight.
Then, the query y is assigned into the dominated class that
has the largest sum of weights among k nearest neighbors as
follows:

ly = argmax
c

∑
(xNNi , lNNi )∈Tk

wi × δ(c = lNNi ). (4)

B. SRC
Sparse representation-based classification (SRC) is very
famous and powerful in the latest classification meth-
ods [23]. In SRC, a query sample y is first represented
by a linear sparse combination of all the training samples
{x1, x2, . . . , xn} and then classified by the sparse reconstruc-
tion residual error between each class and the query sample.
The query sample y is sparsely represented as

y = s1x1 + s2x2+, . . . ,+snxn, (5)

where si is the sparse representation coefficient asso-
ciated with the training sample xi to represent y and
i ∈ 1, 2, . . . , n. In general, the sparse coefficient vector

s = [s1, s2, . . . , sn]T is optimized with L1-norm constraint
as in [20], [21]: s̃ = argmin

s
‖s‖1

s.t. y = Xs,
(6)

where X = [x1, x2, . . . , xn] is the matrix of all the training
samples.

In terms of the optimal s̃, y is classified by the minimum
class-specific residual error as [23]:

ly = argmin
ci
‖y− Xσ i(s̃)‖2, (7)

where σ i(s̃) is a new vector that has nonzero entries the
same as the ones in s̃ corresponding to class ci. To get the
more discrimination from sparse coefficients, the decision
rule called sum of coefficients (SoC) was proposed as [31]:

ly = argmax
ci

∑
σ i(s̃). (8)

where
∑
σ i(s̃) is the sum of coefficients of the training

samples from class ci. The query sample y is assigned into
the class with the largest sum of coefficients.

C. LRMNN
Linear reconstruction measure steered nearest neighbor clas-
sification (LRMNN) [27] is an extension of the KNN-based
classification. Since linear reconstruction measure (LRM)
can provide more meaningful information than the conven-
tional similarity measures such as Euclidean distance, the
linear reconstruction coefficients (i.e. the representation coef-
ficients) in LRM are employed to determine the nearest
neighbors of each query sample for classification.

The general LRM model of a query sample y is uniformly
formulated with regularized terms as follows:

min
{
‖y− Xa‖22 + γ ‖a‖p

}
, (9)

where the vector of the linear reconstruction coefficients
of y is a = [a1, a2, . . . , an]T and ai is the representation
coefficient associated with training sample xi, γ is the regu-
larization parameter, and p = 1 or 2 in general. After solving
Eq. (9), the optimal vector of a is ā = [ā1, ā2, . . . , ān]T .
Then, the classification decision rule of LRMNN is obtained
as

ly = argmax
li
‖āi‖. (10)

The query sample y is classified into the class of the training
sample xi that has largest ‖āi‖, and xi is the most representa-
tive nearest neighbor of y among all training samples.

D. CRNN
Collaborative representation-based nearest neighbor classi-
fier (CRNN) on the basis of collaborative representation [37]
is proposed for hyperspectral image classification [41].
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In CRNN, the weighted linear collaborative combination of a
query sample y is formulated as

b̄ = argmin
b

{
‖y− Xb‖22 + τ‖Wyb‖22

}
, (11)

where b = [b1, b2, . . . , bn]T is the vector of the weighted
linear collaborative representation coefficients and bi is the
representation coefficient associated with training sample xi,
τ is the regularization parameter, and Wy is a biasing
Tikhonov matrix. The biasing Tikhonov matrix is defined as

Wy =

‖y− x1‖2 0
. . .

0 ‖y− xn‖2

. (12)

According to the optimal b̄ of b by solving Eq. (11), k nearest
neighbors of y corresponding to the k largest coefficients
in b̄ are found. Finally, the class label of the query sample y is
determined by the majority vote of k nearest neighbors using
Eq. (2).

III. THE PROPOSED METHODS
In this section, we first present the motivation of the proposed
CWKNN and RWKNN methods, and then describe them in
details.

A. THE MOTIVATION
The proposed CWKNN and RWKNN methods on basis of
the sparse representation coefficients for the testing samples
are mainly inspired by the superiorities of sparse represen-
tation in pattern classification. To clearly elaborate why the
proposed methods are meaningfully designed, we analyze the
advantages of sparse representation for the proposed classifi-
cation methods in this subsection.

First of all, the SRC and its extensions have shown that
sparse representation has more power of natural pattern dis-
crimination for good pattern classification [23]–[26], [38]
and the discrimination information of data is mainly pre-
served in the sparse coefficients [33]. Using this advantage
of sparse representation to capture more discrimination infor-
mation of data for the query samples, each query sample is
first represented by the linear sparse combination of all the
training samples in the proposed CWKNN and RWKNN for
classification.

Secondly, sparse representation obtains the sparse recon-
structive relationship of the data that can reflect intrinsic
geometric similarity information from the data and is use-
ful for classification [33]. Due to the geometric property of
data by sparse representation, the graph construction methods
with sparsity have been well developed in graph embedding-
based dimensionality reduction [33]–[36]. In fact, the weights
of edges between any pairs of the sample points in these
sparse representation-based graphs are measured by the cor-
responding sparse coefficients, and sparse coefficients can
well reflect the neighborhood structure of samples that is
hidden in data. Furthermore, the sparse coefficients as a good

similarity measure of data instead of the conventional sim-
ilarity measures such as Euclidean distance have been suc-
cessfully proven in [27] and [29], and the sparse coefficients
instead of residuals are well adopted to make classification
decisions in the representation-based classification [27], [28],
[31], [32], [39]. Besides, it has been argued that the similar
samples should also have similar sparse coefficients [30]. Due
to these facts that the sparse coefficients can well reflect the
similarities among samples and contain natural discrimina-
tion information, the sparse coefficients of sparse representa-
tion of each query sample using all training samples are fully
employed to seek its k nearest neighbors and further used
for classifier design in the proposed CWKNN and RWKNN
methods.

B. THE PROPOSED CWKNN
In the CWKNN, each query sample y is first sparsely repre-
sented by using all the training samples as

y = Xβ, (13)

where β = [β1, β2, . . . , βn]T is the sparse coefficient vector
including the sparse coefficients of all the training samples to
represent y. The coefficient βi of the sample xi is regarded as
the contribution to representing y. If xi is more similar to y, the
contribution βi could be larger. Indeed, it has been argued that
the sparse coefficients can well reflect the similarities among
the samples [27], [29], [30]. The sparse representation of y is
solved with L1-norm regularization as follows:

β̄ = argmin
β

{
‖y− Xβ‖22 + λ‖β‖1

}
, (14)

where β̄ = [β̄1, β̄2, . . . , β̄n]T . It should be noted that Eq. (14)
is essentially the Lasso objective function with L1-norm reg-
ularization [42], which has been used in [27] and [43].

After obtaining the sparse coefficients in Eq. (14), they
are utilized to choose the k nearest neighbors of each query
sample. The top k largest coefficients from β̄ are chosen
and denoted as the set β̃ = {β̃1, β̃2, . . . , β̃k}, and the cor-
responding training samples as k nearest neighbors of y are
also denoted as the set Tk = {(xNNi , lNNi )}ki=1. Note that the
chosen β̃i is always equal or greater than zero. Meanwhile,
the contribution β̃i of the i-th nearest neighbor xNNi to repre-
senting the query sample y is naturally treated as the weight
of xNNi to y.

Finally, the classification decision of the CWKNN is
defined as

ly = argmax
c

∑
(xNNi , lNNi )∈Tk

β̃i × δ(c = lNNi ), (15)

where ly is the class label of y. The query sample y is classified
into the class that has the largest sum of weights among the
classes that k nearest neighbors belong to.

As stated above, the CWKNN method adopts the sparse
coefficients to seek nearest neighbors and employs sparse
coefficient-weighted voting for classification. Note that
although the CWKNN seems to be similar with the LRMNN
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with L1-norm regularization [27], they are different in the
aspects of determining nearest neighbors and making clas-
sification decision that are detailedly stated in section VI-A.
The proposed CWKNN can be summarized by pseudo codes
in Algorithm 1.

Algorithm 1 The Algorithm of the Coefficient-Weighted
k-Nearest Neighbor Classifier

Require:
The training set T = {(xi, li)}ni=1 where li ∈ C , the set of
M class labels C = {c1, c2, · · · , cM }, a query sample y,
the neighborhood size k .

Ensure:
Predict the class label of a query sample by sparse
coefficient-weighted voting.

Step 1: Solve the sparse representation of y using all the
training samples.
β̄ = argmin

β

{
‖y− Xβ‖22 + λ‖β‖1

}
Step 2: Search k nearest neighbors of y using the sparse
coefficients β̄ = [β̄1, β̄2, . . . , β̄n]T .

Step 2.1: Find first k largest sparse coefficients β̃ =
{β̃1, β̃2, . . . , β̃k} from β̄

Step 2.2: Choose the k nearest neighbors
Tk = {(xNNi , lNNi )}ki=1 corresponding to k largest sparse
coefficients β̃.

Step 3: Classify y to the class c with the largest sum of
weights among all the class.

ly = argmax
c

∑
(xNNi , lNNi )∈Tk

β̃i × δ(c = lNNi )

C. THE PROPOSED RWKNN
In the RWKNN, k nearest neighbors of each query sample
are first chosen by the same way as in the CWKNN through
the sparse representation of each query sample using all the
training samples. In terms of Eqs. (13) and (14), k nearest
neighbors of the given query sample y are also indicated as the
set Tk = {(xNNi , lNNi )}ki=1 and the corresponding sparse coef-
ficients are the set β̃ = {β̃1, β̃2, . . . , β̃k}.

Using the k nearest neighbors and the corresponding sparse
coefficients of the query sample y, the reconstructive residual
distances between nearest neighbors and y are defined as

dr (y, xNNi ) = ‖y− β̃ixNNi ‖2. (16)

In fact, the reconstructive residual distance dr (y, xNNi ) has
been regarded as the contribution to representing the query
sample y [38]. Let the obtained k reconstructive residual
distances corresponding to k nearest neighbors be the set{
dr (y, xNN1 ), dr (y, xNN2 ), . . . , dr (y, xNNk )

}
. Then, among the

k reconstructive residual distances, the largest and smallest
ones are found as

dNNmax = max
{
dr (y, xNNi )

}
, i = 1, 2, . . . , k, (17)

and

dNNmin = min
{
dr (y, xNNi )

}
, i = 1, 2, . . . , k. (18)

The residual distance-weighted function is defined as
follows:

wri =


dNNmax − dr (y, x

NN
i )

dNNmax − d
NN
min

, if dNNmax 6= dNNmin ,

1, if dNNmax = dNNmin ,
(19)

where wri is the weight of nearest neighbor xNNi . As can
be seen in Eq. (19), the weights of nearest neighbors are
scaled from 1 to 0. Furthermore, a neighbor with smaller
reconstructive residual distance has larger weight than the one
with greater reconstructive residual distance.

Using the sparse coefficients and the residual distance
weights of k nearest neighbors, the classification decision of
the RWKNN is defined as

ly = argmax
c

∑
(xNNi , lNNi )∈Tk

wri × β̃i × δ(c = lNNi ). (20)

Finally, the class of the query y is the class with the largest
sum of weights among the classes that k nearest neighbors
belong to.

As argued above, the proposed RWKNN first uses sparse
coefficients to choose k nearest neighbors of each query sam-
ple, and then designs the residual distance-weighted voting
combining with sparse coefficients for classification. The
proposed RWKNN can be summarized by pseudo codes in
Algorithm 2.

IV. THE ANALYSIS OF THE PROPOSED METHODS
In this section, to emphasize the superior classification per-
formance of the proposed CWKNN and RWKNNmethods in
pattern recognition, we analyze their rationale and advantages
by comparing them with KNN andWKNN, and further show
the representation coefficients instead of the conventional
Euclidean distance as a good similarity measure.

From the point of view of sparse coefficients, the way
of choosing the nearest neighbors of the query samples for
classification in the proposed methods is reasonable and
effective. As argued in [27] and [29], sparse coefficients can
well reflect the neighborhood structure of data and represent
the similarities among the samples. If two samples are similar,
their corresponding sparse codes should also be very close
to each other [30]. In terms of Eqs. (13) and (14), the given
query sample y can be represented as y =

∑n
i=1 β̄ixi, where

β̄i is optimized sparse coefficient of xi to represent y. Note
that y and xi are normalized by L2-norm. According to the
theoretical analysis in [27] that the representation coefficients
can availably indicate the true neighbors of each query sam-
ple, and xi could not be the neighbor of y when β̄i = 0.
However, in such case the sample xi with very small similarity
(i.e., β̄i = 0) could be from the different or the same
classes of y. If β̄i 6= 0, y can be further represented as
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Algorithm 2 The Algorithm of the Residual-Weighted
k-nearest Neighbor Classifier

Require:
The training set T = {(xi, li)}ni=1 where li ∈ C , the set of
M class labels C = {c1, c2, · · · , cM }, a query sample y,
the neighborhood size k .

Ensure:
Predict the class label of a query sample by residual
distance-weighted voting.

Step 1: Solve the sparse representation of y using all the
training samples.
β̄ = argmin

β

{
‖y− Xβ‖22 + λ‖β‖1

}
Step 2: Search k nearest neighbors of the query
Tk = {(xNNi , lNNi )}ki=1 corresponding to k largest sparse
coefficients β̃ = {β̃1, β̃2, . . . , β̃k} from β̄ =

[β̄1, β̄2, . . . , β̄n]T .

Step 3: Calculate the residual distances between k nearest
neighbors and y.
for j = 1 to k do
dr (y, xNNi ) = ‖y− β̃ixNNi ‖2

end for
Find largest and smallest residual distances.
dNNmax = max

{
dr (y, xNNi )

}
dNNmin = min

{
dr (y, xNNi )

}
Step 4: Calculate the residual distance weights of k nearest
neighbors.
for i = 1 to k do
if dNNmax 6= dNNmin then

wri =
dNNmax−dr (y,x

NN
i )

dNNmax−d
NN
min

else
wri = 1

end if
end for

Step 5: Classify y to the class c with the largest sum of
weights among all the class.

ly = argmax
c

∑
(xNNi , lNNi )∈Tk

wri × β̃i × δ(c = lNNi )

y =
∑m

i=1 β̄ixi,m ≤ n. Then, β̄j of xj can be derived as

β̄j =
1
2

d2( m∑
i=1,i 6=j

β̄ixi, xj)− d2(y, xj)

, (21)

where d(y, xj) is Euclidean distance between y and xj.
Note that the derivation of Eq. (21) in details can be
seen in [27]. We can see from Eq. (21) that the larger
d2(
∑m

i=1,i 6=j β̄ixi, xj) and/or the smaller d2(y, xj) implies that
xj is much more likely to be a neighbor of y. Hence, xj could
be the true neighbor of ywith a greater β̄j with the integration
of the larger d2(

∑m
i=1,i 6=j β̄ixi, xj) and the smaller d2(y, xj)

simultaneously. In this case when β̄i 6= 0, xi could be more
likely to be a neighbor of y from the same class as y if β̄i > 0

and it could be from the different classes of y and not be a
neighbor of y if β̄i < 0.
To visually demonstrate the fact above that sparse repre-

sentation coefficients can be viewed as an effective similarity
measure instead of the conventional Euclidean distance for
seeking k nearest neighbors of the query samples, the exam-
ples of sparse coefficients of representing three query samples
from three different classes on UCIWine data set are given in
Figs.1, 2 and 3. The information about UCI Wine data set is
shown in Table 3, and it has 178 samples within three classes:
the serial numbers of samples from 1 to 59 are within class 1,
from 60 to 130 within class 2 and from 131 to 178 within
class 3. These serial numbers corresponding to 178 samples
are also clearly presented in Figs.1, 2 and 3. According to
Eqs. (13) and (14), one query sample xi from the samples X
can be sparsely represented by the other remaining samples
as

xi = α1x1+α2x2+, . . . ,+αi−1xi−1+αi+1xi+1+, . . .+αnxn.

(22)

Accordingly, the reconstructive residual distance (residual for
short) between xi and xj (i 6= j) can be calculated as

dr (xi, xj) = ‖xi − αjxj‖2. (23)

And the Euclidean distance between xi and xj is calculated as

d(xi, xj) = ‖xi − xj‖2. (24)

Then, in terms of Eqs. (22), (23) and (24), the sparse coeffi-
cients, residuals and Euclidean distances for the 25th sample
in class 1, the 85th sample in class 2 and the 152th sample in
class 3 onWine are schematically depicted in Figs.1, 2 and 3,
respectively. Note that when the serial numbers are 25 in
Fig.1, 85 in Fig.2 and 152 in Fig.3, there are no corresponding
coefficients, residuals and Euclidean distances. And also,
since each sample in X has unit L2-norm, when αj = 0 the
residual between xi and xj is dr (xi, xj) = 1, so the residuals
with the values 1 are unnecessarily represented in these three
figures.

As can be shown in Figs. 1(a), 2(a) and 3(a), the sparse
coefficients of the samples from the same class as ith sample
(i = 25, 85, 152) are always dominated, and the other ones
of the samples from different classes are very small or tend
to be zero in most cases. This experimental fact implies
that sparse coefficients can be well adopted to choose the
nearest neighbors of one sample from its same class. More
importantly, from the residuals in Figs. 1(b), 2(b) and 3(b),
the residuals of one sample from its same class are very
smaller when the corresponding coefficients are larger. This
phenomenon means that the larger coefficient of one sample
to represent the other sample corresponds to the smaller
residual. In other words, the larger coefficient and smaller
residual of one sample indicate the more contribution to rep-
resenting the other sample. It is also interesting to note that the
residuals corresponding to the negative coefficients are very
larger than or tend to be one, and the residuals corresponding
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FIGURE 1. The sparse coefficients, residuals and Euclidean distances for the 25th sample in class 1 on UCI Wine data set. (a) Sparse coefficients.
(b) Residuals. (C) Euclidean distances.

FIGURE 2. The sparse coefficients, residuals and Euclidean distances for the 85th sample in class 2 on UCI Wine data set. (a) Sparse coefficients.
(b) Residuals. (C) Euclidean distances.

FIGURE 3. The sparse coefficients, residuals and Euclidean distances for the 152th sample in class 3 on UCI Wine data set. (a) Sparse coefficients.
(b) Residuals. (C) Euclidean distances.

to the positive coefficients are smaller than one. This can
confirm that the negative coefficients and the larger residuals
means these corresponding samples are not representative in
sparse representation. So the samples with the corresponding
negative coefficients are not chosen as neighbors of each
query sample. Compared to residuals, the Euclidean dis-
tances may not well represent the similarities among sam-
ples from the same and different classes, obviously shown
in Figs. 1(c), 2(c) and 3(c). Therefore, the neighborhood
selection of one sample using sparse coefficients can be
more effective than the one using Euclidean distances. Fur-
thermore, the experimental examples in Figs.1, 2 and 3
can also verify the fact that the sparse coefficients in

sparse representation can well reflect the similarities of
data [27], [29]–[31].

In terms of sparse coefficients, residuals in Figs.1, 2 and 3,
the particular values of serial numbers, sparse coefficients and
residuals of the first three nearest neighbors of 25th, 85th
and 152th samples with classification results by CWKNN
and RWKNN are shown in Table 1. And according to the
Euclidean distances in Figs. 1(c), 2(c) and 3(c), the par-
ticular values of serial numbers and Euclidean distances of
the first three nearest neighbors of 25th, 85th and 152th
samples with classification results by KNN and WKNN are
also shown in Table 2. As shown in Tables 1 and 2, we can
observe that the first three nearest neighbors of one sample
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TABLE 1. The examples of the classification results of CWKNN and RWKNN on UCI Wine data set. Wine has three classes that are denoted by the
symbols ‘‘◦′′ , ‘‘+′′ and ‘‘�′′ for classes 1, 2 and 3, respectively. The classes of samples are represented in parentheses. The symbols ‘‘×′′ and ‘‘

√′′ indicate
the wrong and right classification, respectively.

TABLE 2. The examples of the classification results of KNN and WKNN on UCI Wine data set. Wine has three classes that are denoted by the symbols
‘‘◦′′ , ‘‘+′′ and ‘‘�′′ for classes 1, 2 and 3, respectively. The classes of samples are represented in parentheses. The symbols ‘‘×′′ and ‘‘

√′′ indicate the
wrong and right classification, respectively.

chosen by sparse coefficients are nearly different from the
ones by Euclidean distances. Moreover, the three nearest
neighbors of one sample are nearly from the same class by
sparse coefficients, but the three nearest neighbors of one
sample by Euclidean distances are always from the different
classes. We can also see from Table 1 that the first nearest
neighbors of 25th, 85th and 152th samples are from their
same classes, respectively. Their first nearest neighbors have
the largest coefficients and the smallest residuals among their
their three nearest neighbors, as shown in Figs.1, 2 and 3.
And the differences among the coefficients and the residuals
of three nearest neighbors are very significant. Because of
the superiority of the sparse coefficients for choosing the
true nearest neighbors, the 25th, 85th and 152th samples
are easily and correctly classified into the right classes by
CWKNN and RWKNN. However, most of the three nearest
neighbors of the 25th, 85th and 152th samples chosen by
Euclidean distances are from their different classes, and the
differences among Euclidean distances of their neighbors are
not prominent. So that the 25th, 85th and 152th samples are
nearly mistakenly classified by KNN and WKNN. From the
experimental examples above, it can be obviously observed
that the sparse coefficients as a similarity measure have more
benefits than the conventional Euclidean distance, as stated
in [27] and [29]. Accordingly, the analysis above has fully
proven that the proposed CWKNN and RWKNN can have
more discrimination power than KNN and WKNN in many
pattern classification problems.

In summary, the sparse representation coefficients can be
well adopted to choose true nearest neighbors of one sample
and applied to design more simple and effective classification
decisions in pattern recognition. Thus, the proposed CWKNN
and RWKNN have good classification performance that will
be further verified in the next section V.

V. EXPERIMENTAL RESULTS
In this section, we conduct the extensive experiments on
real UCI and KEEL data sets to demonstrate the effective
classification performance of the proposed methods in terms
of classification error or accuracy. We compare the proposed
CWKNN and RWKNN with the state-of-the-art methods
including SRC [23], SoC [31], LRMNN [27], LMPNN [5],
WKNN, KNN, CRNN [41] and LPC [19]. For fair compar-
isons, the value of p in Eq. (9) is p = 1 for the LRMNN
used in the experiments, because our proposed methods have
the same regularization of the coefficients in Eq. (14) with
the LRMNN. It should be noted that Eqs. (6), (9) and (14)
are solved by using the CVX Matlab optimization toolbox
(http://cvxr.com/cvx/download/) in the experiments.

A. DATA SETS
The real data sets used in the experiments are twenty UCI
data sets from the UCI Repository [44], eight KEEL data sets
without noises and four KEEL data sets with noises from
the KEEL Repository [45]. Their main information about
data sets is described in Table 3. These used data sets with
different classes, attributes and samples only have numeric
attributes in order that the classification of each compet-
ing method is easily done on them. Note that the data sets
with long names are abbreviated. That is, Biodegradation,
Cardiotocography, Image Segmentation, Ionosphere, Parkin-
sons, SteelPlates, Transfusion, Page-blocks, Wine quality
red, Appendicitis, Wisconsin, Cleveland, Dermatology are
abbreviated as Biodeg, Cardio, Image, Iono, Park, SteelP,
Trans, Page, WineQR, Append, Wiscon, Cleve and Dermat,
respectively. And the names of the Wine, Heart, Page-blocks
and Thyroid data sets with attribute noises from the KEEL
Repository are denoted as Wine_n, Heart_n, Page_n and
Thyroid_n. To simplify the representation of all the data sets
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TABLE 3. The real data sets used in the experiments.

in the experiments, each data set is indicated by the given
corresponding serial number in Table 3.

In the experiments, each data set except the noise data sets
is randomly divided into training and testing sets, shown in
Table 3. We run each method on ten divisions of each data set
for average classification evaluation with 95% confidence.
In other words, we achieve the ten different training and
testing sets on each data set and the average classification
error or accuracy rates of each method are obtained in our
experiments. It should be noted that all the experiments
have been conducted by using Intel(R) Core(TM) i7-3770
CPU @3.40 GHz 3.40 GHz and 12 GB of memory in the
64-bit Windows 7 operating system.

B. EXPERIMENT 1
To verify the effectiveness of the proposed CWKNN and
RWKNN methods, we carry out the extensive experiments
on real UCI data sets and the KEEL ones without noises,
in comparisons with SRC, SoC, LRMNN, LMPNN, KNN,
WKNN, CRNN and LPC in this subsection.

The comparative classification performance of the pro-
posed methods, CRNN, LPC, LMPNN, KNN and WKNN
is first investigated by varying the numbers k of nearest
neighbors in terms of the classification error. It should be
noted that the neighborhood size k in CWKNN, RWKNN,
CRNN, KNN and WKNN is for all the training samples of
each query sample, while k is for the training samples from

each class in the LMPNN and LPC. The range of the values
of k is preseted from 1 to 11 with a step 1. The experimental
classification results of these KNN-based methods via the
neighborhood size k are displayed in Figs. 4 and 5. We can
observe from the experimental results in Figs. 4 and 5 that
the proposed CWKNN and RWKNN almost perform better
than CRNN, LPC, LMPNN, KNN and WKNN with varying
the numbers k of nearest neighbors, especially when the
value of k is large. These experimental results indicate that
the proposed methods are less sensitive to the neighborhood
size k with promising classification performance. It is very
interesting to note that the classification error rates of the
proposed methods nearly decrease with increasing the values
of k and then tend to be stable. This experimental fact implies
that the proposed CWKNN and RWKNN can choose the
suitable large numbers of the true neighbors of the query
samples for the favorable classification. Thus, the proposed
methods are robust to the neighborhood selection through
sparse coefficients with the satisfactory performance.

To further evaluate the proposed methods, the maximal
classification accuracy rates of each competing method with
the standard deviations on all the data sets are shown in
Table 4. Note that the best classification accuracy rates
of CWKNN, RWKNN, CRNN, LMPNN, LPC, KNN and
WKNN are obtained among the range of the neighborhood
size k from 1 to 11 in terms of the classification results
in Figs. 4 and 5. And the No. in Table 4 indicate the
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FIGURE 4. The classification error rates of the competing KNN-based methods via the neighborhood size k on the real UCI data sets. (a) Biodeg.
(b) Cardio. (c) Heart. (d) ILPD. (e) Image. (f) Iono. (g) Park. (h) Seed. (i) Musk. (j) SteelP. (k) Thyroid. (l) Trans. (m) Vehicle. (n) Wdbc. (o) Wine. (p) Wpbc.
(q) Page. (r) WineQR. (s) Plrx. (t) Diabetic.

corresponding data sets shown in Table 3. It is obvious that the
proposed CWKNN and RWKNN outperform the other com-
peting methods in most cases. CWKNN is better than SRC,
SoC, LRMNN, LMPNN, CRNN, LPC, KNN and WKNN

on 19 out of 28 data sets, and RWKNN is better than them on
20 out of 28 data sets. We can also see that the proposed
methods perform better than LRMNN, LMPNN, CRNN,
LPC, KNN andWKNN significantly on most of the data sets,
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FIGURE 5. The classification error rates of the competing KNN-based methods via the neighborhood size k on the real KEEL data sets. (a) Tae.
(b) Hayesroth. (c) Append. (d) Wiscon. (e) Cleve. (f) Band. (g) Saheart. (h) Dermat.

such as Park, StealP, Vehicle and Wine. Meanwhile, it has
been found that the proposed CWKNN and RWKNN obtain
the similar classification results as SRC and SoC in some
degree. The reason can be that the CWKNN, RWKNN, SRC
and SoC classifiers are based on the sparse representation
of the query samples. Besides, the average classification
accuracy rates of the proposed methods on all data sets are
obviously larger than the ones of the other competing meth-
ods and their corresponding standard deviations are nearly
smallest among them. This means the proposed methods are
more stable in some degree. From the experimental results in
Table 4, it can be concluded that the proposed CWKNN and
RWKNN methods can choose the true nearest neighbors of
the query samples for good classification.

Next, we employ one non-parametric statistical test, which
is named as the Wilcoxon Signed-Ranks test, to make the
comparisons of the competing methods in the experiments
be statistically convincible and to further verify the good
classification performance of the proposed CWKNN and
RWKNNmethods. According to theWilcoxon Signed-Ranks
test [46]–[48], the pairwise comparisons of the proposed
methods with SRC, SoC, LRMNN, LMPNN, CRNN, LPC,
KNN andWKNN should be first done using the classification
results in Table 4. Let ri denote the difference between the
accuracy rates of any two methods on the ith out of N data
sets. These pairwise difference ri are sorted by their absolute
values, and then the corresponding rank value of ri is indi-
cated as rank(ri). Meanwhile, let R+ be the total sum of the
ranks from the data sets on which one method performs better
than the other one, and R− the total sum of the ranks for the
data sets on which one method performs worse than the other
one. The average ranks are allocated in the case of ties, the
ranks of ri = 0 are divided evenly among the sums. Then, the

sums of R+ and R− are computed as

R+ =
∑
ri>0

rank(ri)+
1
2

∑
ri=0

rank(ri),

R− =
∑
ri<0

rank(ri)+
1
2

∑
ri=0

rank(ri). (25)

Let R = min(R+,R−). When the number N of data sets is
larger than 25, the statistics can be calculated

Z =
R− 1

4N (N + 1)√
1
24N (N + 1)(2N + 1)

, (26)

and is distributed approximately normally. If Z < −1.96, the
null-hypothesis should be rejected with α = 0.05.
Using the Wilcoxon Signed-Ranks test and the classifica-

tion results in Table 4, the pairwise comparisons of the pro-
posed CWKNN and RWKNNwith the other eight competing
methods are achieved in Table 5. In Table 5, R+ and R− are
the total sums of ranks where the proposed methods perform
better and worse than the other competing method on each
data set, respectively. It is obvious from Table 5 that R+

is very larger than R− and the statistics Z are too smaller
than −1.96. This fact means that the differences between
the proposed methods and the other competing methods are
significant at α = 0.05. As stated in [47], the significant
information for a statistical hypothesis test is reflected by
p-value and the smaller p-value gives the more evidence
against the null hypothesis. According to the p-values in
Table 5, we can clearly see that they are very smaller than
α = 0.05 and provide the significant differences between
the proposed methods and the other competing methods.
Therefore, the experimental results using the Wilcoxon
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TABLE 4. The maximal classification accuracy rates (%) of each method with the corresponding standard deviations (stds) and values of k in the
parentheses on all the data sets (the best recognition performance among competing methods on each data set is described in bold-face).

Signed-Ranks test consistently demonstrate the better clas-
sification performance of the proposed methods, compared
to SRC, SoC, LRMNN, LMPNN, CRNN, LPC, KNN and
WKNN.

C. EXPERIMENTS 2
In this subsection, we further verify the effectiveness of
the proposed methods by conducting the comparative exper-
iments on four KEEL attribute noise data sets shown
in Table 3. Note that the four noise data sets have
been downloaded in the KEEL Repository. These noise
data sets are three types of noise data sets: 5% Noisy

Train-Noisy Test, 5% Noisy Train-Clean Test and 5% Clean
Train- Noisy Test. That is to say, ‘5%Noisy Train-Noisy Test’
is with 5% of noise in training and testing sets, ‘5% Noisy
Train-Clean Test’ is with 5% of noise in training set while
testing one remains unchanged, and ‘ 5% Clean Train-Noisy
Test’ is with 5% of noise in testing set while training one
remains unchanged. That is, the 5% of the samples in each
training or testing set are randomly selected and artificially
corrupted by the noises [45]. Thus, these four noise data sets
can be regarded as the simulated data. These three types of
noise data sets are denoted by n-n, n-c and c-n, respectively.
For the n-n data sets, the training and testing samples are
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TABLE 5. The pairwise comparisons of the proposed methods with SRC, SoC, LRMNN, KNN, WNN, LMPNN, CRNN and LPC on all the numerical data sets
using the Wilcoxon Signed-Ranks test (‘True’ denotes the significant difference between the classification performance of any two comparative methods).

TABLE 6. The maximal classification accuracy rates (%) of each method with the corresponding standard deviations (stds) and values of k in the
parentheses on four KEEL attribute noise data sets (the best recognition performance is described in bold-face on each data set).

randomly divided by 10 times and the size of testing samples
is 59 on Wine_n, 90 on Heart_n, 1823 on Page_n and 2485
on Thyroid_n, shown in Table 3. The classification results
of each method are the averages of ten runs on each noise
data set with 95% confidence. For the n-c and c-n data sets,
they have been already partitioned by means of a 5-folds
cross validation procedure in the KEEL Repository [45].
The classification classification results of each method are
the averages of five runs on each noise data set with
95% confidence.

On the four noise data sets, we first conduct the com-
parative experiments of the competing KNN-based methods
with varying the numbers k of nearest neighbors of the
query samples in terms of the classification error rate. The
range of the neighborhood size k is also from 1 to 11 with
a step 1. The classification results of the methods via the

neighborhood size k are illustrated in Fig. 6. We can observe
that the proposed CWKNN and RWKNNmethods obtain the
better classification performance than KNN,WKNN, CRNN,
LPC and LMPNN in most cases with different values of k .
Furthermore, the classification error rates of the proposed
methods on these four noise data sets nearly decrease with
the increase of k and then tend to be stable. Hence, we can
conclude that the proposed methods have less sensitiveness
and more robustness to k than KNN, WKNN, CRNN, LPC
and LMPNN with satisfactory classification performance in
the cases of noise.

The maximal average classification accuracy rates of each
method on the four noise data sets are shown in Table 6. Note
that the best classification performance of KNN, WKNN,
CRNN, LPC, LMPNN, CWKNN and RWKNN is achieved
at the interval of neighborhood size k ranged from 1 to 11.
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FIGURE 6. The classification error rates of the competing KNN-based methods via the neighborhood size k on four real KEEL data sets with attribute
noises. (a) Wine_n (n-n). (b) Heart_n (n-n). (c) Page_n (n-n). (d) Thyroid_n (n-n). (e) Wine_n (n-c). (f) Heart_n (n-c). (g) Page_n (n-c). (h) Thyroid_n (n-c).
(i) Wine_n (c-n). (j) Heart_n (c-n). (k) Page_n (c-n). (l) Thyroid_n (c-n).

We can see from the experimental results in Table 6 that the
proposed methods obtain the better or comparative classifi-
cation performance, compared to SRC, SoC, KNN, WKNN,
LRMNN, CRNN, LPC and LMPNN. Furthermore, the aver-
age classification accuracy rates of the proposed methods
are obviously larger than the other competing methods on
these noise data sets and their standard deviations are smaller
than the other methods. Therefore, the effectiveness of the
proposed methods are also demonstrated on the noise data
sets.

In summary, through the extensive experiments above,
several observations can be concluded as follows:
(a) The proposed methods have less sensitiveness than the

competing KNN-based classifiers with the different val-
ues of the neighborhood size k . And their robustness with
good classification is evident when the values of k are
large.

(b) The proposedmethods always achieve the best classifica-
tion performance among the competing methods, so that
they are effective algorithms in many pattern classifica-
tion problems.

(c) The effectiveness and robustness of the proposed
methods further implies the sparse coefficients in
sparse representation can be well employed to choose

the representative nearest neighbors of one sample
in pattern recognition, such as in the KNN-based
classification.

VI. DISCUSSIONS
In this section, we first clearly emphasize the differences
between the proposed CWKNN method and the closely
related LRMNN and CRNN methods, and then provide the
computational complexities of all the competing classifica-
tion methods.

A. DIFFERENCES BETWEEN CWKNN AND LRMNN, CRNN
From the point view of L1-norm constraint of the represen-
tation coefficients, we compare the proposed CWKNN with
LRMNN (i.e. p = 1 in Eq. (9)). Meanwhile, CWKNN is fur-
ther compared to CRNN in which representation coefficients
are constrained with L2-norm regularization.
a) CWKNN v.s. LRMNN: In LRMNN with L1-norm regu-

larization, the only one representative nearest neighbor of
the query sample y is determined by the largest optimal
value ‖āi‖ of the representation coefficient ai associated
with the training sample xi in Eq. (9). That is to say,
the representative nearest neighbor of y is xi, and then
the query sample of y is classified into the class label
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TABLE 7. The run time (s) of each competing method on Wine, Heart, Dermat and Vehicle (the values in the parentheses indicate the numbers of training
samples, testing samples, attributes and classes, respectively).

of xi by using Eq. (10). Just like LRMNN with L1-norm
constraint of representation coefficients, CWKNNutilizes
the same objective function to optimize the representa-
tion coefficients (i.e. Eq. (9) when p = 1 is the same
as Eq. (14)). However, unlike LRMNN, the proposed
CWKNN employs the top k largest sparse representa-
tion coefficients to find k nearest neighbors of the query
sample y, the training samples corresponding to the top
k largest coefficients are k nearest neighbors of y. And
then, the coefficients of k nearest neighbors in CWKNN
are viewed as their corresponding weights to represent
and classify y, finally the class of y is determined by the
weighted majority voting in Eq. (15). Thus, we can easily
see that the ways of choosing nearest neighbors and the
classification decisions used in LRMNNandCWKNNare
different.

b) CWKNN v.s. CRNN: CRNN and CWKNN use different
constraints of the representation coefficients. In CRNN,
the representation coefficients with L2-norm regulariza-
tion are weighted by the biasing Tikhonov matrix in
Eq. (12), and the class label of the query sample y is
determined by the majority voting in Eq. (2) among the
k nearest neighbors corresponding to k largest coeffi-
cients. However, in CWKNN the representation coeffi-
cients are obtained by L1-norm regularization in Eq. (14),
and the class label of the query sample y is determined by
the weighted majority voting among k nearest neighbors
corresponding to k largest coefficients in Eq. (15) and
each nearest neighbor is weighted by the value of the cor-
responding representation coefficient. Thus, we can also
clearly see that the ways of obtaining the representation
coefficients and the classification decisions used in CRNN
and CWKNN are different.

B. ANALYSIS OF COMPUTATIONAL COMPLEXITY
To embody the efficiency of the proposed methods in com-
parisons with the related competing methods, we further ana-
lyze the computational complexities of SRC, SoC, LRMNN,
KNN, WKNN, LMPNN, CRNN, LPC, LRMNN and the
proposed CWKNN and RWKNN. Note that we first specify
the notations in the computational complexities as follows:
n, d and k denote the numbers of all training sam-
ples, attributes of each sample and the nearest neighbors,
respectively.

For a query sample in KNN, WKNN, LMPNN, the major
computational time is to compute the Euclidean distances
between the query sample and all training samples and to find
k nearest neighbors, so the main computational complexities
of KNN, WKNN and LMPNN are O(nd + nk + k), O(nd +
nk + 2k) and O(nd + nk + 2ckd + 3ck + c), respectively [5].
In LPC [19], the major computational time of classifying a
query sample is to find k0 nearest neighbors of each training
sample and k nearest neighbors of the query sample through
the Euclidean distance measure, so the main computational
complexity is O(n2d + n2k0 + nd + nk + ckd + cd + c).
In CRNN, the computational time of classifying a query sam-
ple is to find k nearest neighbors of the query sample by first
solving the Eq. (11), so the computational complexity is about
O(n3 + nd + k). For SRC, SoC, LRMNN and the proposed
CWKNN and RWKNN, the major computational time of
classifying a query sample is to find k nearest neighbors of the
query sample by solving the L1 minimization problems, so the
computation complexities of SRC, SoC, LRMNN, CWKNN
and RWKNN are about O(ςn3 + nc+ c), O(ςn3 + nc+ 2c),
O(ςn3 + n), O(ςn3 + nk + k), O(ςn3 + nk + kd + 2k),
respectively. And ς is the number of iterations to achieve
the optimal representation coefficients in the L1 minimization
problems.
To further intuitively show the computational complexities

of the competing classification methods, The run time of each
method, for example, on theWine, Heart, Dermat and Vehicle
data sets with different numbers of training samples, testing
samples, attributes and classes is displayed in Table 7.We can
observe that the experimental time of all the methods fits their
theoretical computational complexities.

VII. CONCLUSIONS
In this article, we present two novel weighted KNN clas-
sifiers, called the coefficient-weighted k-nearest neighbor
method (CWKNN) and the residual-weighted k-nearest
neighbor method (RWKNN). In the proposed methods, the
sparse representation coefficients of all the training samples
to represent each query sample using sparse representation
are adopted to choose k representative nearest neighbors.
In the CWKNN, k nearest neighbors of each query sample
are selected by sparse coefficients, and the representation
coefficient of each neighbor as its weight is utilized for the
weighted majority voting in the KNN classification decision.
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In the RWKNN, k nearest neighbors of each query sample
are selected by sparse coefficients, and the reconstructive
residuals between neighbors and the query sample are then
calculated, finally the residual-weighted voting method is
designed with integrating the sparse coefficients for the KNN
classification decision. The classification performance of the
proposed methods is studied by conducting the extensive
experiments on UCI and KEEL data sets, compared to the
competing methods including SRC, SoC, KNN, WKNN,
LRMNN, CRNN, LPC and LMPNN. The experimental clas-
sification results have demonstrated the effectiveness and
robustness of proposed CWKNN and RWKNN methods.
Thus, the proposed methods are the promising algorithms
for classification. In the future work, we plan to use the
proposed methods for some practical applications in pattern
recognition.
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