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ABSTRACT Predicting the impact of research institutions is an important tool for decision makers, such
as resource allocation for funding bodies. Despite significant effort of adopting quantitative indicators to
measure the impact of research institutions, little is known that how the impact of institutions evolves in
time. Previous studies have focused on using the historical relevance scores of different institutions to predict
potential future impact for these institutions. In this paper, we explore the factors that can drive the changes of
the impact of institutions, finding that the impact of an institution, as measured by the number of the accepted
papers of the institution, more is determined by the authors’ influence of the institution. Geographic location
of institution feature and state GDP can drive the changes of the impact of institutions. Identifying these
features allows us to formulate a predictive model that integrates the effects of individual ability, location of
institution, and state GDP. The model unveils the underlying factors driving the future impact of institutions,
which can be used to accurately predict the future impact of institutions.

INDEX TERMS Scientific impact, prediction, feature selection, machine learning, scientometrics.

I. INTRODUCTION
With the rapid growth of scholarly big data [1], [2], the sci-
entific future impact often plays an important role, which can
help decision-makers to make better decisions. For example,
the prediction of the impact of papers, scholars, and institu-
tions can guide government funding allocation and assess the
grant proposals.

The evaluation and prediction of scholarly impact are two
important aspects of scientific impact [3]. Scholarly impact
evaluation focuses on quantifying the previous impact of
scholarly entities [4]–[6]. The institution impact evaluation
mainly has two categories: full counting and fractional count-
ing. The former considered that all authors had the same
contributions for a paper [7], [8]. The latter considered the
best journal and highly-cited papers [9]. Due to lack the
baseline, the prediction of institution impact is challenging.
The KDD CUP 2016 offers a evaluation criterion relying on
the number of accepted papers. Previous researchers mainly
used the historical relevance scores of each institution to
predict the impact of the institution in next year. Based on

the gradient boost decision trees (GBDT) model [10],
Sandulescu and Chiru [11] leveraged the following features:
the historical relevance scores of the accepted papers of
every institution, Author Impact Factor (AIF) [12], and the
weighted moving-average of relevance scores from previ-
ous years to predict the accepted papers of the institution
in next year. Xie [13] used linear regression and gradient
boosting decision tree to predict the impact of each institution
by integrating four features: accepted paper-rank, program
committee membership, cross-conference, and cross-phase.
Orouskhani and Tavabi [14] ranked the research institutions
based on the annual scores of the institutions.

Compared to the evaluation of scholarly impact, to find
future potential impact is more guiding significance. Explor-
ing the factors driving scholarly impact is very crucial. Pre-
dicting the impact of papers usually focused on the citations
prediction or citation distributions. Early citations as a crucial
feature usually were used to predict the potential citations of
a paper [15]–[17]. Cao et al. [17] predicted future citations
of a paper by integrating a short-term citation history to a
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Gaussian mixture model. Stegehuis et al. [18] predicted the
citations distribution of a paper in the future by the two crucial
features: early citations and Journal Impact Factor [19]. The
prediction of scholars’ impact mainly focused on predicting
the author’s H-index and his (her) citations. Penner et al. [20]
applied the future impact model based on linear regression
to 762 careers from three disciplines: mathematics, physics
and biology. They found that their models’ prediction per-
formance depended heavily on scientists’ career age. Based
on linear regression, Dong et al. [21] leveraged six factors,
including author, content, venue, social information, refer-
ence and temporal data to predict an author’s H-index [22]
in five years. They found that topic authority and venue
were two crucial factors, which can determine whether a
newly published paper will enhance its authors’ H-index.
Based on a linear regression with elastic net regularization,
Acuna et al. [23] constructed a simple model including the
number of papers, H-index, years since first publication,
and etc.

Intuitively, the previous changing trend of the impact of
each institution is the most relevant to future impact of the
institution. Therefore, previous scholars mainly consider the
historical relevance scores of the accepted papers for each
institution to predict future impact of the institution. Namely,
the number of the accepted papers for each institution in
previous years is used as an important feature to construct
the predictive model. However, we find that scholars’ impact
such as AIF, Q value [24], and H-index are more rele-
vant to predict the impact of institutions for top confer-
ences, compared to the relevance scores of the institution.
Svider et al. [25] found that there was an association between
industry support and academic impact. An interesting phe-
nomenon is that industry payments greater than $10, 000
were related to a greater scholarly impact. Their work inspires
us to explore GDP to improve the performance of the predic-
tive model for accurately predicting the potential impact of
institutions.

The paper aims to explore the factors driving the changes
of the impact of institutions and the contributions of these
factors for predicting the impact of the institutions. Via
feature selection, we find that the impact of an institution,
as measured by the number of the accepted papers of the
institution, more is determined by the authors’ influence of
the institution. Geographic location of institution feature and
state GDP can drive the changes of the impact of institu-
tions. At the same time, we also find that the features driv-
ing the changing of the impact of institution play different
roles for predicting the future potential impact. Based on
XGBoost [26], we propose a novel prediction model, which
has the ability to generate accurate predictions and explain
the prediction performance.

II. METHODS
We now describe our methods on predicting the number of
the accepted papers of each institution for top conferences,
including the following five parts: prediction task, dataset and

data processing, factors that drive the impact of institutions to
increase, feature selection, and predicting the future impact of
institutions.

A. PREDICTION TASK
Given the heterogeneous characteristics of scholarly data, our
task aims to predict the number of the accepted papers of
each institution for top conferences. We consider the prob-
lem of the impact of institutions prediction from academic
data. Let Y = {Y1,Y2, · · · ,YT } be the set of the number
of the accepted papers for an institution of a conference
in different years, where Yi corresponds to the number of
the accepted papers for an institution in the ith year. Given
features X extracted from the experimental data as input,
the impact of institution predictor needs to generate f =
(f1, f2, · · · , fT ) as output, where fi is the predicted number of
the accepted papers of an institution for a top conference in
next year.

B. DATASET AND DATA PROCESSING
We use the real-world data from Microsoft Academic
Graph (MAG), which is a large and heterogeneous graph.
Each paper contains publication date, citation relationships,
authors, institutions, journal or conference, and fields of
study. In our experiments, we follow KDD-CUP 2016’s
conference selection, including FSE, ICML, KDD, MM,
MobiCom, SIGCOMM, SIGIR and SIGMOD to construct
our experimental dataset. Firstly, we retain the data from
2000 to 2015, and add the loss authors’ institution informa-
tion according to the institution information of their previous
publication. Secondly, because a small part of the data is
incomplete, the data are deleted. Finally, we remove the
duplicated institutional information to find the coordinates of
these institutions. After the data processing, our experimental
dataset includes 33,953 authors with 19,343 papers from
4,524 institutions across years 2000 to 2015.

C. FACTORS THAT DRIVE THE IMPACT OF INSTITUTIONS
TO INCREASE
1) AUTHOR-BASED FEATURES
• Author Impact Factor (AIF). Author impact factor is an
extension of the journal impact factor to authors. AIF of
an author in year T is the average citations of published
papers in a period of 1T years before year T . Based on
the eight top conferences selected by KDD-CUP 2016,
we compute each author’s AIF value according to the
author’s publishing history and use the statistics of a
given institution’s all authors’ AIF as a group of its
features, including sum, maximum, minimum, median,
average and deviation. We briefly explore and report the
authors’ AIF features in this work.

• Q value. The Q value reflects the ability of scientists to
enhance the impact of a paper [24], and it is a constant
in a scientist’s career.

Qi = e〈logciα〉−µp (1)
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FIGURE 1. The coordinate of different institutions published papers on KDD conference from 2011 to 2014. (a) 2011. (b) 2012. (c) 2013. (d) 2014.

where Qi indicates a scientist i’s Q value. 〈logciα〉 is the
average logarithmic citations of all papers published by
scientist i and α indicates scientist i’s α-th paper. µp is
the mean value of all papers’ potential impact.

• H-index. A scholar has an index value ofH if the scholar
has H papers with at least H citations. H-index can
give an estimate of the impact of a scholar’s cumula-
tive research contributions. Based on each selected top
conference, we calculate each author’s H-index value
according to his or her published information in all con-
ferences, then calculate the features of a given institution
via the same way as authors’ AIF.

2) GEOGRAPHIC DISTANCE-BASED FEATURES
Given I represents a set of institutions, I = { I1, I2, · · · ,
Ia · · · }. L represents a set of the conference location
L = {L1,L2, · · · ,Li · · · }. For the geographic distance
between an institution Ia with the conference location Li, d ,
can be approximated by a spherical model:

d = 2R · arcsin

√
sin2(

1φ

2
)+ cos(φa) · cos(φi) · sin2(

1λ

2
)

(2)

where R is the Earth’s radius, φa and λa are the latitude
and longitude values of institute a, and φi and λi are the
latitude and longitude values of conference i’s location.
1φ = |φa − φi| and 1λ = |λa − λi|.
Figure 1 shows the geographic distributions of institutions

and the location of KDD conference from 2011 to 2014. The
red dots represent the institutions, and the green dots repre-
sent the conference location. We observe that the authors’
institutions published papers on KDD conference mainly
distribute in North America, Europe and Asian.

3) ECONOMIC FEATURES
The GDP per capita of different countries are obtained from
the website: http://data.worldbank.org. In our experiments,
we use the GDP per capita data from 2000 to 2015.

4) RELEVANCE SCORES-BASED FEATURES
Figure 2 shows an example that the impact of scholarly papers
is allocated to different institutions for a given top conference.
The relevance score of each institution in different years can
be summarized as follows: (1) each accepted paper is consid-
ered as the equal importance. (2) each author has same con-
tribution to a paper. (3) if an author has multiple institutions,

FIGURE 2. A example demonstrating the relevance scores of each
institution.

each institution also contributes equally. In addition, we use
time trend-based features to weight the relevance scores of
each institution in given years. The higher weights are given
for the recent years relative to the forecasting year, and the
lower weights are given for the years away from predicting
year. The weights are normalized, and the sum of weights are
set as 1. The time trend-based features are used for windows
of four years. We also use distance trend-based features to
weight the relevance scores of each institution in given years.
The higher weights are given for the institutions farther from
the conference’s location in the forecasting year.

D. FEATURE SELECTION
In practice, features extracted for machine learning may
sometimes be irrelevant or redundant. Selecting the truly
correlative features can simplify the predictive model, and
even improve the prediction accuracy if there exist some
wanted features. To remove the unwanted features, it is nec-
essary to give an importance score for the features of each
dimension. In this paper, we use XGBoost feature selection,
which can give the score of each feature in the training model,
indicating the importance of each feature. The feature score
of each feature is the number of times of each feature used in
the decision tree nodes partition. The prediction features of
impact of institutions are described in Table 1.

E. LEARNING ALGORITHMS
In this section, we describe two algorithms for learning and
predicting the impact of institutions for top conferences. One
is Gradient boosting decision trees (GBDT), which is a com-
parison model. The other is XGBoost, which is intended to
enhance the prediction performance for predicting the impact
of institutions in the future.
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TABLE 1. Features used in prediction model.

1) GBDT
The GBDT model is used to predict the number of accepted
papers for each institution in the eight top conferences in next
year. GBDT model suits for dealing with a mass of features
and no-linear relationships between the predictor variables
and the target variable. GBDT model is the extension of
weak decision trees, and the error function selected is the
mean square error function when GBDT is used to regression
problem. In dealing with the problem of predicting the impact
of institutions in next year, Sandulescu and Chiru [11] used
three kinds of features: statistics-based features, trend-based
features and AIF-based features including time weighted rel-
evance scores and the sum, maximum, minimum, median,
average, deviation of relevance scores and authors’ AIF.

2) XGBoost
XGBoost is a scalable end-to-end tree boosting system,which
runsmore than ten times faster than existing currently popular
solutions.

XGBoost’s tree boosting mainly includes two parts. One is
regularized learning objective, the other is gradient tree boost-
ing. For a given dataset D with m examples and n features
D = {(xi, yi)}, where |D| = m, xi ∈ Rn, yi ∈ R, the formula
of output prediction is as follows:

ŷi = φ(xi) =
K∑
k=1

fk (xi), fk ∈ F, (3)

where F = {fx = ωq(x)}(q : Rn → T , ω ∈ RT ) is the
space of regression trees. q indicates the structure of each
tree, which maps an example to the corresponding leaf index.
T is the number of leaves of the tree. fk is consistent with tree

structure q and leaf weights ω. In order to learn fk , the fol-
lowing regularized objective is introduced:

0(φ) =
∑
i

l
(
ŷi, yi

)
+

∑
k

�(fk) , (4)

where �(f ) = γT + 1
2λ‖ω‖

2, � controls the complexity
of the model to avoid over-fitting. l indicates a loss func-
tion, which calculates the difference between the prediction
value ŷi and the true value yi.
To improve the predictionmodel according to the equation,

ft is added:

0(t) =

n∑
i=1

l(yi, ŷi
(t−1)
+ ft (xi))+�(ft ), (5)

where ŷi
(t) is the prediction of the ith instance at the t th

iteration.
In the XGBoost model, the second order Taylor expansion

is used to accelerate the optimization procedure of the objec-
tive function, which is shown as follows:

0̃(t)
=

n∑
i=1

[gift (xi)+
1
2
hif 2t (xi)]+ γT +

1
2
λ

T∑
j=1

w2
j , (6)

where gi = ∂ŷ(t−1)l(yi, ŷi
(t−1)), and hi = ∂2ŷ(t−1)l(yi, ŷi

(t−1))
are the first and second order gradient statistics for the loss
function.

For an independent tree structure q(x), the optimal
weight w∗j of leaf j is calculated as follows:

ω∗j = −

∑
i∈Ij gi∑

i∈Ij hi + λ
. (7)
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The corresponding optimal objective function is calculated
by the following formula:

0̃(t) = −
1
2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT . (8)

Our training data is composed of a sequence of relevant
features of the institutional impact 3 = (θ1, θ2, θ3, · · · , θn),
where θi represents the i-th feature. In our experiments,
we mainly use historical data in the previous four year
to predict the number of the accepted papers in the next
year from each institution, and the experiments are con-
ducted across years 2000 to 2010. The features include
author-based features, relevance scores-base features, geo-
graphic distance-based features, and GDP-based features.
We use the number of accepted papers of each institu-
tion in prediction year to label each training data to train
XGBoost model for the task of institution impact predic-
tion. Our testing data is extracted from the selected confer-
ence between 2011 and 2015. We use the extracted features
from 2011 to 2014 to predict the number of the accepted
papers in 2015. We employ the XGBoost algorithm that
can yield accurate prediction for the future impact of each
institution.

F. NORMALIZED DISCOUNTED CUMULATIVE
GAIN (NDCG) FOR MODEL EVALUATION
NDCG is a normalized measure method of Discounted
Cumulative Gain (DCG). NDCG usually is used to indicate
the accuracy of prediction model. DCG is given by:

DCGn =
n∑
i=1

reli
logi+12

, (9)

where DCGn is the weighted sum of relevant degree of
ranked entities, and its weight is a decreasing function varying
according to the ranked position. Variable i is the ranking of
an institution, and reli is the relevance score of the i-th ranked
institution. Via normalizing DCG values, NDCG@N is
given by:

NDCGn =
DCGn
IDCGn

, (10)

where IDCG is an ideal DCG, which is considered as the
simple DCG measure with the best ranking results. There-
fore, the probability score of NDCGmeasurement always are
between 0 and 1. In this paper, NDCG reflects the importance
of an institution in the given relevant top conference. If an
institution is not appeared in the final ranking results, its
NDCG value will be set as 0.

III. RESULTS
Considering the historical relevance scores of the accepted
papers is a common practice in predicting institutional con-
tribution in a conference [11]. Via feature selection, we find
that author-based features introduce more impact, and we
observe that the authors’ impact of each institution for some

top conferences dominates the impact of the institution. In our
experiments, we train the predictive model using top 10%,
top 20%, top 30%,· · · , and all features including author-
based features, relevance scores-based features, geographic
distance-based features, and state GDP-based features. Via
feature selection, feature importance ranking of different
features for the selected conferences is shown in Figure 3.
The feature importance ranking indicates the best predictive
performance according to the selected features. In Figure 3,
we observe that the feature importance scores are different
according to features selected to train the predictive model.

Figure 3a shows the feature importance ranking via dif-
ferent percentages of features selection for FSE. We observe
that the features related to authors’ AIF rank first for using
different percentages of features to train the predictive model.
Author-based features’ importance scores, relevance scores-
based features’ importance scores, geographical distance-
based features’ importance scores and GDP-based features’
importance scores for FSE are listed in Table 2a. In Table 2a,
we observe that author-based features’ importance scores are
the highest, which are higher than 0.5. Specially, author-
based features’ importance scores reach 0.9944 via using
top 20% features to train the predictive model. Relevance
scores-based features’ importance scores are lower than 0.25,
and geographical distance-based features’ importance scores
are lower than 0.32. The lowest feature importance scores are
from GDP-based features, which are lower than 0.1.

Figure 3b shows feature importance ranking for ICML.
We observe that the sum of authors’ AIF features rank
first in all the features’ importance ranking list for ICML.
In Table 2b, we observe that author-based features’ impor-
tance scores are the highest in the four kinds of features:
author-based features, relevance scores-based features, geo-
graphical distance-based features and GDP-based features.
All the author-based features’ importance scores exceed 0.48
for using different percentages of features to train the pre-
dictive model. Relevance scores-based features’ importance
scores are between 0.2 and 0.4. For ICML, geographical
distance-based features begin to take effect from top 60% fea-
tures, and GDP-based features’ importance scores are from
top 20% features.

Figure 3c illustrates the feature importance ranking for
KDD. We observe that the sum of authors’ AIF features
ranks first in terms of feature importance. From Table 2c,
we observe that author-based features’ importance scores
are higher than relevance scores-based features’ importance
scores except for the top 20% features. Author-based fea-
tures’ importance scores range from 0.3 to 0.6, and rele-
vance scores-based features’ importance scores are between
0.2 and 0.7. Compared to ICML, geographical distance-based
features begin to take effect earlier when the top 30% features
are used. GDP-based features are found after choosing the
top 60% features.

Figure 3d shows the feature importance ranking for MM.
Compared with FSE, ICML and KDD, the relevant fea-
tures with authors do not always appear first on the feature
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FIGURE 3. Feature importance ranking from four features for different conferences. Notes: the horizontal axis indicates the relevant importance scores,
and the vertical axis indicates the features. (a) FSE. (b) ICML. (c) KDD. (d) MM. (e) MobiCom. (f) SIGCOMM. (g) SIGIR. (h) SIGMOD.

importance ranking list, other relevant features such as
the historical scores of institutions rank first for top 40%,
top 50%, top 60% and top 70% features. In Table 2d,
we observe that author-based features’ importance scores are
between 0.4 and 0.8, and relevance scores-based features’
importance scores are between 0.2 and 0.5.

Figure 3e illustrates the feature importance ranking for
MobiCom. According to Figure 3e, we observe that authors’
AIF features always rank first in feature importance rank-
ing list. In Table 2e, we observe that author-based features’
importance scores are higher than the relevance scores-based
features’ importance scores. Like FSE, author-based features’
importance scores are higher than 0.5 for using different per-
centages of features to train the model. The relevance scores-
based features’ importance scores are between 0.1 and 0.3.
The geographical distance-based features’ importance scores
and GDP-based features’ importance scores range from
0 to 0.3. Compared to FSE, ICML, KDD, and MM,
GDP-based features’ importance scores begin to take effect
from using top 10% features to train the model.

Figure 3f illustrates the feature importance ranking for
SIGCOMM.According to Figure 3f, we observe that authors’
AIF features rank first in feature importance ranking list.
Like MobiCom, authors-based features’ importance scores

are higher than the relevance scores-based features’ impor-
tance scores for SIGCOMM, which is shown in Table 2f.
In Table 2f, we observe that geographical distance-based
features and GDP-based features have quite a few effects for
improving the predictive model.

Figure 3g shows the feature importance ranking for SIGIR.
According to Figure 3g, we observe that the authors-based
features rank first excluding the top 10% features. In Table 2g,
we observe that author-based features’ importance scores are
between 0 and 0.6, and the relevance score-based features’
importance scores are between 0.3 and 1. For less than top
30% features, the relevant score-based features’ importance
scores are higher than authors-based features’ importance
scores. Like SIGCOMM, geographical distance-based fea-
tures and GDP-based features have quite a few effects for
improving the performance of predictive model.

Figure 3h shows the feature importance ranking for
SIGMOD. According to Figure 3h, we observe that authors’
AIF features rank first in feature importance ranking list
excluding the case of using all features to train predictive
model. In Table 2h, we observe that author-based features’
importance scores are higher than relevance scores-based
features’ importance scores. Author-based features’
importance scores are between 0.4 and 0.7, and the
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TABLE 2. Four features’ importance scores. (a) FSE. (b) ICML. (c) KDD. (d) MM. (e) MobiCom. (f) SIGCOMM. (g) SIGIR. (h) SIGMOD.

relevance scores-based features’ importance scores are
between 0.3 and 0.5.

Because we find that the historical relevance scores of each
institution are not the most important factors for predicting
the number of the accepted papers via the feature selection,
this drives us to explore the performance of the prediction
model without considering the relevant features with the
historical relevance scores of each institution. We resume to
train the model using features excluding the features relevant
to the historical relevance scores of each institution.

Figure 4 shows the feature importance ranking according
to different percentages of features excluding the relevant
features with the relevant historical scores of each institution.

Figure 4a shows the feature importance ranking for FSE.
According to Figure 4a, we observe that authors’ AIF features
rank first for different percentages of features. In Table 3a,
we observe that author-based features’ importance scores
are the highest, which are between 0.6 and 1. Geographi-
cal distance-based features’ importance scores are between
0 and 0.4, and GDP-based features’ importance scores are
between 0 and 0.07.

Figure 4b shows the feature importance ranking for ICML.
We observe that the sum of authors’ AIF features rank

first in all the features’ importance ranking list for ICML.
In Table 3b, we observe that author-based features’ impor-
tance scores are 1 from top 10% to top 40% features. For
using different percentages of features to train the predictive
model, author-based features play a crucial role, and author-
based features’ importance scores are beyond 0.75. Distance-
based features’ importance scores are between 0.04 and
0.16 from top 50% features to top 100% features. GDP-based
features only take effect for using top 90% features and top
100% features.

Figure 4c illustrates the feature importance ranking for
KDD. we observe that the sum of authors’ AIF features
rank first in feature importance ranking list. In Table 3c,
we observe that author-based features’ importance scores are
higher than 0.8. Distance-based features’ importance scores
are less than 0.2, and GDP-based features’ importance scores
are about 0.05 from using top 80% features to train the
predictive model.

Figure 4d shows the feature importance ranking for MM.
We observe that the sum of authors’ AIF feature ranks first in
feature importance ranking list excluding top 50% features.
In Table 3d, we observe that author-based features’ impor-
tance scores are beyond 0.6. Geographical distance-based
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TABLE 3. Three features’ importance scores. (a) FSE. (b) ICML. (c) KDD. (d) MM. (e) MobiCom. (f) SIGCOMM. (g) SIGIR. (h) SIGMOD.

TABLE 4. NDCG@20 results for GBDT model.

features’ importance scores are between 0 and 0.3.
GDP-based features’ importance scores are about 0.1 from
top 60% features.

Figure 4e illustrates the feature importance ranking for
MobiCom. According to Figure 4e, we observe that authors’
AIF features always rank first in feature importance rank-
ing list. In Table 3e, we observe that author-based features’
importance scores are beyond 0.7. Geographical distance-
based features’ importance scores and GDP-based features’
importance scores are less than 0.15.

Figure 4f illustrates the feature importance ranking for
SIGCOMM.We observe that the sum of authors’ AIF features

rank first in feature importance ranking list. In Table 3f,
we observe that author-based features’ importance scores are
between 0.7 and 1. Geographical distance-based features’
importance scores are less than 0.2, and GDP-based features’
importance scores are less than 0.1.

Figure 4g illustrates the feature importance ranking for
SIGIR.We observe that the sum of authors’ AIF features rank
first in feature importance ranking. In Table 3g, we observe
that author-based features’ importance scores are higher
than 0.7 for using different percentages of features to train
the predictive model. geographical distance-based features’
importance scores are less 0.1, and GDP-based features’
importance scores are less than 0.2.

Figure 4h shows the feature importance ranking for
SIGMOD. According to Figure 4h, we observe that authors’
AIF features rank first in feature importance ranking.
In Table 3h, we observe that author-based features’ impor-
tance scores are beyond 0.8. Geographical distance-based
features’ importance scores are less than 0.1, and GDP-based
features’ importance scores are about 0.05 for using top 80%,
top 90% and all the features to train the predictive model.
Our experiment result shows that GDP related features are
not significant comparing with others. One possible reason is
that the proportion of national scientific research in GDP is
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FIGURE 4. Feature importance ranking from three features for different conferences. Notes: the horizontal axis indicates the relevant importance scores,
and the vertical axis indicates the features. (a) FSE. (b) ICML. (c) KDD. (d) MM. (e) MobiCom. (f) SIGCOMM. (g) SIGIR. (h) SIGMOD.

TABLE 5. NDCG@20 results for XGBoost model, using top percentages of features with historical relevance scores.

very small. Another possible reason is that scientific research
depending on funds exists difference in different fields.

An interesting finding is that we still obtain a good
predictive performance despite of ignoring the historical
relevance scores of institutions. The prediction accuracy
NDCG@20 of GBDT model for the selected conferences is
presented in Table 4. The prediction accuracy NDCG@20 of
XGBoost model with historical relevance scores for the
conferences is presented in Table 5. The prediction accu-
racy NDCG@20 of XGBoost model without historical rel-
evance scores for the conferences is presented in Table 6.
In Table 4-6, we observe that the best prediction perfor-
mance of the impact of institutions is random for different
top percentages of features. XGBoost model with or without
relevance scores features generally performsmuch better than
GBDT model. XGBoost model with all features including
relevance scores of institutions to train data has stronger

predictability for ICML, and KDD. Compared to the predic-
tion result of GBDT with 0.851, the best prediction perfor-
mance NDCG@20 with XGBoost model with all features is
0.923 for ICML. To KDD, the predictability NDCG@20 of
using XGBoost model with all features is 0.945, which
is higher than the prediction accuracy NDCG@20 with
0.909 of GBDT model. To FSE, the best prediction accuracy
NDCG@20 with 0.727 is from XGBoost model excluding
relevance scores of institutions by using top 50% features.
However, the prediction performance of GBDTmodel is only
0.604. ToMM, using XGBoost with top 20% features exclud-
ing historical relevance scores generates the highest predic-
tion accuracy NDCG@20 with 0.890, While NDCG@20 of
using GBDT model is only 0.790. To MobiCom, the predic-
tion accuracy NDCG@20 of GBDT model is 0.571, while
NDCG@20 of XGBoost model using top 10% features to
train is 0.752. the prediction performance NDCG@20 of
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TABLE 6. NDCG@20 results for XGBoost model, using top percentages of features without historical relevance scores.

GBDT model is 0.769 for SIGCOMM, while NDCG@20 of
the XGBoost model using the top 50% features exclud-
ing historical relevance scores is 0.852. To SIGIR, the pre-
diction performance NDCG@20 of XGBoost model using
top 20% features is 0.922, which is higher than the prediction
result of GBDT with 0.906. For SIGMOD, the prediction
performance NDCG@20 of XGBoost model using top 70%
features excluding relevance scores of institutions is 0.862.

IV. CONCLUSION
In this paper, we study a data-drivenmethod for predicting the
contributions of different institutions in eight top conferences.
Previous studies have mainly focused on adopting historical
relevance scores of each institution to predict the impact
of institutions. Unlike previous researches, by exploring the
factors that can drive the changes of the impact of institutions
such as author-based features, geographical distance-based
features, economic features, and the relevance scores-based
features, we have developed a high-performance prediction
model, which has the ability to generate accurate predictions
and explain which features have contribution to the predictive
performance.

Several important findings are listed as follows: (1) the
relevance scores of the accepted papers of each institution are
not the most crucial factors for the prediction performance for
top conferences. Via feature selection, we find that author-
based features are critical in determining the number of
accepted papers for an institution in the future. Compared to
theQ value andH-index, the AIF features aremore relevant to
the number of accepted papers for an institution. (2) to ICML,
KDD, MobiCom, and SIGCOMM, the authors’ impact such
AIF, Q value, and H-index are the most relevant factors for
predicting the impact of institutions. (3) for the selected top
conferences excluding ICML and KDD, the performance of
prediction using the fractional features is better than using all
the features. (4) for KDD and SIGCOMM, the performance
of prediction without using relevance scores of each insti-
tution is approximate to using the relevance scores of each
institution. (5) geographic location of institution feature and
state GDP feature can improve the predictive performance.
Therefore, we draw a conclusion that the data-drivenmethods
are crucial to the success of predictive models.

In the future, we will further explore the relationships
between the impact of institutions and the features driving
the impact of institutions change to enhance the predic-

tion performance. In addition, this work is conducted only
on literatures from the eight top conferences based on
MAG dataset, examining other conferences for the same
observed patterns could widen the significance of our
findings.

REFERENCES
[1] F. Xia, W.Wang, T. M. Bekele, and H. Liu, ‘‘Big scholarly data: A survey,’’

IEEE Trans. Big Data, vol. 3, no. 1, pp. 18–35, Mar. 2017.
[2] W. Wang, S. Yu, T. M. Bekele, X. Kong, and F. Xia, ‘‘Scientific collabora-

tion patterns vary with scholars’ academic ages,’’ Scientometrics, vol. 112,
no. 1, pp. 329–343, 2017.

[3] G. Setti, ‘‘Bibliometric indicators: Why do we need more than one?’’ IEEE
Access, vol. 1, pp. 232–246, 2013.

[4] A. M. Petersen et al., ‘‘Reputation and impact in academic careers,’’ Proc.
Nat. Acad. Sci. USA, vol. 111, no. 43, pp. 15316–15321, 2014.

[5] F. Xia, X. Su, W. Wang, C. Zhang, Z. Ning, and I. Lee, ‘‘Bibliographic
analysis of Nature based on Twitter and Facebook altmetrics data,’’ PLoS
ONE, vol. 11, no. 12, p. e0165997, 2016.

[6] X. Bai, F. Xia, I. Lee, J. Zhang, and Z. Ning, ‘‘Identifying anomalous
citations for objective evaluation of scholarly article impact,’’ PLoS ONE,
vol. 11, no. 9, p. e0162364, 2016.

[7] S. J. Bensman, ‘‘The evaluation of research by scientometric indicators,’’
J. Assoc. Inf. Sci. Technol., vol. 62, no. 1, pp. 208–210, 2011.

[8] P. Vinkler, The Evaluation of Research by Scientometric Indicators.
Amsterdam, The Netherlands: Elsevier, 2010.

[9] L. Bornmann, M. Stefaner, F. de Moya Anegón, and R. Mutz, ‘‘Ranking
and mapping of universities and research-focused institutions worldwide
based on highly-cited papers: A visualisation of results from multi-level
models,’’ Online Inf. Rev., vol. 38, no. 1, pp. 43–58, 2014.

[10] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. New York, NY, USA: Springer-Verlag, 2009.

[11] V. Sandulescu and M. Chiru. (2016). ‘‘Predicting the future relevance
of research institutions—The winning solution of the KDD Cup 2016.’’
[Online]. Available: https://arxiv.org/abs/1609.02728

[12] R. K. Pan and S. Fortunato, ‘‘Author impact factor: Tracking the dynamics
of individual scientific impact,’’ Sci. Rep., vol. 4, May 2014, Art. no. 4880.

[13] J. Xie, ‘‘Predicting institution-level paper acceptance at conferences:
A time-series regression approach,’’ in Proc. KDD Cup Workshop, 2016,
pp. 1–6.

[14] Y. Orouskhani and L. Tavabi. (2016). ‘‘Ranking research institutions
based on related academic conferences.’’ [Online]. Available: https://arxiv.
org/abs/1611.08839

[15] S. B. Bruns and D. I. Stern, ‘‘Research assessment using early citation
information,’’ Scientometrics, vol. 108, no. 2, pp. 917–935, 2015.

[16] P. Klimek, A. S. Jovanovic, R. Egloff, and R. Schneider, ‘‘Successful
fish go with the flow: Citation impact prediction based on centrality
measures for term–document networks,’’ Scientometrics, vol. 107, no. 3,
pp. 1265–1282, 2016.

[17] X. Cao, Y. Chen, and K. J. R. Liu, ‘‘A data analytic approach to quantifying
scientific impact,’’ J. Informetrics, vol. 10, no. 2, pp. 471–484, 2016.

[18] C. Stegehuis, N. Litvak, and L. Waltman, ‘‘Predicting the long-term
citation impact of recent publications,’’ J. Informetrics, vol. 9, no. 3,
pp. 642–657, 2015.

[19] L. Bornmann and A. I. Pudovkin, ‘‘The journal impact factor should not
be discarded,’’ J. Korean Med. Sci., vol. 32, no. 2, pp. 180–182, 2016.

VOLUME 5, 2017 16381



X. Bai et al.: Implicit Multi-Feature Learning for Dynamic Time Series Prediction

[20] O. Penner, R. K. Pan, A. M. Petersen, K. Kaski, and S. Fortunato, ‘‘On
the predictability of future impact in science,’’ Sci. Rep., vol. 3, no. 10,
Art. no. 3052, 2013.

[21] Y. Dong, R. A. Johnson, and N. V. Chawla, ‘‘Can scientific impact be
predicted?’’ IEEE Trans. Big Data, vol. 2, no. 1, pp. 18–30, Mar. 2016.

[22] J. E. Hirsch, ‘‘An index to quantify an individual’s scientific research
output,’’ Proc. Nat. Acad. Sci. USA, vol. 102, no. 142, pp. 16569–16572,
2005.

[23] D. E. Acuna, S. Allesina, and K. P. Kording, ‘‘Future impact: Predicting
scientific success,’’ Nature, vol. 489, no. 7415, pp. 201–202, 2012.

[24] R. Sinatra, D. Wang, P. Deville, C. Song, and A. L. Barabási, ‘‘Quantifying
the evolution of individual scientific impact,’’ Science, vol. 354, no. 6312,
p. aaf5239, 2016.

[25] P. F. Svider et al., ‘‘Are industry financial ties associated with greater schol-
arly impact among academic otolaryngologists?’’ Laryngoscope, vol. 127,
no. 1, pp. 87–94, 2016.

[26] T. Chen and C. Guestrin, ‘‘Xgboost: A scalable tree boosting system,’’ in
Proc. 22nd ACMSIGKDD Int. Conf. Knowl. Discovery DataMining, 2016,
pp. 785–794.

XIAOMEI BAI received the B.Sc. degree from the
University of Science and Technology Liaoning,
Anshan, China, in 2000, and theM.Sc. degree from
Jilin University, Changchun, China, in 2006. She
is currently pursuing the Ph.D. degree with the
School of Software, Dalian University of Technol-
ogy, Dalian, China. Since 2000, she has been with
Anshan Normal University, China. Her research
interests include computational social science, sci-
ence of success in science, and big data.

FULI ZHANG received the master’s degree in
software engineering from the Dalian University
of Technology, China, in 2008. He is currently
a Senior Experimenter with the Library, Anshan
Normal University, China. His interests include
big data, computational social science, science of
success in science, and complex networks.

JIE HOU received the B.Sc. degree from the
Dalian University of Technology, China, in 2017,
where he is currently pursuing the master’s degree
with the School of Software. His research interests
include computational social science, science of
success in science, and big data.

FENG XIA (M’07–SM’12) received the B.Sc.
and Ph.D. degrees from Zhejiang University,
Hangzhou, China. He is currently a Full Professor
with the School of Software, Dalian University of
Technology, China. He has published two books
and over 200 scientific papers in international
journals and conferences. His research interests
include computational social science, network sci-
ence, data science, and mobile social networks. He
is a Senior Member of ACM.

AMR TOLBA received the M.Sc. and Ph.D.
degrees from the Faculty of Science, Menoufia
University, Egypt, in 2002 and 2006, respec-
tively. He is currently an Associate Professor with
the Faculty of Science, Menoufia University. He
is on leave from Menoufia Univesity with the
Computer Science Department, Community Col-
lege, King Saud University, Saudi Arabia. He has
authored/co-authored over 30 scientific papers in
international journals and conference proceedings.

His main research interests include socially aware network, Internet of
Things, intelligent systems, big data, recommender systems, and cloud
computing. He serves as a technical program committee member in several
conferences.

ELSAYED ELASHKAR received the M.Sc. and
Ph.D. degrees from the Applied Statistics Depart-
ment, Faculty of Commerce, Mansoura Univer-
sity, Egypt, in 2009 and 2014, respectively. He
is currently on leave from Mansoura University
to Administrative Sciences Department, Riyadh
Community College, King Saud University, Saudi
Arabia, as an Assistant Professor. His main
research interests include statistics, social network
analysis, Internet of Things, and big data analysis.

16382 VOLUME 5, 2017


