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ABSTRACT Distributed estimation, where a set of nodes collaboratively estimate some parameters of
interest from noisy measurements, has received much attention in both science and engineering. Recent
studies mainly focus on distributed non-blind or training-based estimation, that is, a training signal and its
desired output are both known to the distributed receivers. However, in some applications, it is physically
difficult, if not impossible, to get a training signal in prior. Besides, the use of training signals consumes
much channel bandwidth. So, it is more preferable for the receivers to perform distributed estimation
without the assistance and expense of training sequences, i.e., distributed blind estimation. In this paper,
the problem of distributed blind estimation over sensor networks is considered, and a kind of distributed
diffusion generalized Sato algorithm is proposed to design a blind equalizer for channel equalization and
source signal estimation. The stability of the proposed method in mean and mean-square senses is analyzed
theoretically, and its performance is verified numerically by a series of simulations.

INDEX TERMS Blind estimation, distributed network, diffusion, blind equalization, generalized Sato
algorithm, sensor networks.

I. INTRODUCTION
Distributed in-network processing is a major tenet for wire-
less and sensor networks, where a group of interconnected
nodes cooperatively perform a predefined task, for example,
to estimate a certain parameter vector of interest from noisy
measurements. It can exploit the flexible cooperative learning
and information processing across a set of spatially dis-
tributed sensors with the ability of sensing, learning, and com-
munication. In this manner, distributed processing reduces
the amount of data communication over the networks, thus
saving bandwidth and energy, extending the network lifetime
and reducing latency. Moreover, as each node shares with
some computation and information transmission, distributed
processing avoids the fragility to the dysfunction of the center
node that exists in the classical centralized processing. Owing
to these merits, distributed processing has been considered to
be an effective approach for in-network data fusion and pro-
cessing, and been widely used in many applications, such as
precision agriculture and environmental monitoring, military
surveillance and distributed cooperative sensing in cognitive
radio networks [1], [2].

Based on the conceptual structure of distributed in-network
processing, the study of distributed adaptive algorithms for
parameter estimation, i.e. distributed estimation, has aroused
much attention. In the past few years, many distributed
adaptive schemes have been proposed, such as incremen-
tal LMS [3]–[5], incremental RLS [3], incremental affine
projection algorithm [6], diffusion LMS [3], [7]–[10], dif-
fusion RLS [11]– [12], distributed information theoretical
learning [13], [14], and distributed consensus strategies [15].

Recent studies have mainly focused on the problems of
distributed estimation that both the training signal (reference
signal) and the desired output are known in advance by
the receivers so as to adapt the estimate for the unknown
parameters [3], [7], [8], [11], [16], [17]. When used in this
way, these algorithms are classified as non-blind, or training-
based methods. However, the use of a reference signal has
some drawbacks. On the one hand, it may be physically
infeasible to obtain the training signal in prior in some
practical applications [18]– [20]. On the other hand, even
if a reference signal is available, the use of a training sig-
nal may scarify valuable channel capacity [18], [21]–[24].
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Therefore, developing distributed adaptive algorithms for
signal estimation without training sequences, i.e distributed
blind estimation, is somehow indispensable and thus more
preferable in practice.

In the literature, many kinds of blind adaptive algo-
rithms have been proposed for equalizing the channel
and furthermore for estimating the transmitted source
signal [21], [25]–[31]. Considering that many signals in
digital communication, such as Pulse Amplitude Modula-
tion (PAM), Quadrature Phase Shift Keying (QPSK), and
Quadrature Amplitude Modulation (QAM), are of some con-
stant modulus properties, a very important kind of technique
that has been proposed so far is based on the minimization of
a nonlinear error function between the output of the equal-
izer and the statistics of the transmitted data constellation
using a stochastic gradient approach. This kind of method
includes the well-known Sato’s algorithm [25], the general-
ized Sato algorithm (GSA) [26], the constant modulus algo-
rithm (CMA) [28] and their modifications [27], [29]–[31].
It is also worth pointing out that most of these blind equal-
ization algorithms are performed based on the measure-
ments of a single receiver but not a network with multiple
receivers.

Compared with traditional training-based adaptive strate-
gies, it is theoretically challenging to analyze the perfor-
mance of blind adaptive algorithms as a nonlinear cost
function is minimized in adaption. When it comes to the
case of a sensor network, combined with the effect of dis-
tributed cooperation among sensors, the performance anal-
ysis becomes more difficult. In [32], a distributed constant
modulus algorithm (d-CMA) using the incremental coop-
eration protocol has been proposed, in which a Hermitian
cyclic path through the network is required. But, such a cyclic
trajectory is vulnerable. Once a sensor fails, a new cyclic
path must be re-established, which is NP-hard especially
when a large-size network is considered. In [33], a recursive
consensus-based distributed blind equalization algorithm has
been proposed. But, to obtain the equalizer for each sensor,
a high-dimensional vector must be computed and transmitted
among neighbors, which consumes much computation and
data transmission.

In this paper, the problem of distributed blind estimation
over sensor networks is considered. To release the restriction
on the network topology in incremental cooperation [32],
a diffusion cooperation rule, where each sensor cooperates
with its direct neighbors, is used. Besides, to reduce the num-
ber of computation and transmission, only the tap coefficients
of the channel equalizers among the neighbors are transmit-
ted. The main contribution of this paper is summarized as
follows.

1) Analogous to the training-based distributed
LMS (d-LMS), it is to develop some distributed forms
of blind adaptive algorithms over sensor networks to
estimate the transmitted data symbols from a common
source in different transmission environments. To per-
form the task of estimation, some distributed blind

equalizers are designed for equalizing the channel and
estimating the source signal using GSA method. But
instead of minimizing the mean-squared error in the
d-LMS, the distributed GSAs adapt the complex-
valued tap coefficients of the channel equalizer by
quantifying a nonlinear error function related to the
complex equalizer outputs and the statistics of the
transmitted data constellation.

2) It is to provide a theoretical framework to analyze the
stability and convergence of the proposed distributed
blind adaptive algorithms in both mean and mean-
square senses, which is believed to bemore challenging
in blind signal processing.

This paper is organized as follows. In Sec. II, the system
model is described and the problem of distributed in-network
blind estimation through the design of blind equalizer is
formulated. In Sec. III, a kind of distributed GSA using
the diffusion cooperation is derived. The performance of
the proposed algorithm in mean and mean-square senses is
analyzed theoretically in Sec. IV, and verified numerically
by simulations in Sec. V. Finally, this paper is concluded
in Sec. VI.
Notation: In this paper, we use small boldface letters to

denote vectors. Boldface capital letters denote matrices. The
superscript ‘‘T’’ and ‘‘*’’ denote the transposition of a matrix
or vector, and the complex conjugate-transposition, respec-
tively. The notation ||x|| denotes the Euclidean norm of a
vector. The operators ⊗, vec{·}, diag{·} and E[·] denote the
Kronecker product of two matrices, the standard vectoriza-
tion operation, the (block) diagonal matrix, and expectation,
respectively. In denotes an n by n identity matrix. Other
notation will be introduced if necessary.

II. PROBLEM FORMULATION
Consider a network consisting of N sensors spatially dis-
tributed over a region with a certain topological structure.
Note that here the network topology is described by an undi-
rected graph, and the edge is defined if two sensors exchange
information between each other. All the sensors are interested
in the common message sender s(n) through a FIR channel
with impulse response {h(n)}, see Fig. 1. With reference to
Fig. 1, the output uk (n) collected at each sensor k , the input
data s(n) and the FIR channel {h(n)} are related by

uk (n) =
L−1∑
l=0

h(l)s(n− l)+ vk (n)

= h(n)~ s(n)+ vk (n), (1)

where notation ’~’ denotes the convolution operation, vk (n)
denotes an additive measurement noise, which is i.i.d. and
follows a complex circular Gaussian distribution, i.e. vk (n) ∼
C(0, σ 2

v,k ). Note that the measurements uk (n) can be real or
complex depending on the input s(n) and the channel h(n).
Here, complex-valued s(n) and h(n) are considered, and s(n)
is of some constant modulus properties. In this paper, we
focus on the QAM constellation, which is a typical class of
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FIGURE 1. Network and system settings. ’s’ denotes the far-end common
source, h(·) denotes the transmission channel, Nk denotes the set of the
neighbors for node k .

modulation signal with constant envelope. We consider the
case that the common source s(n) lies in a far-end field. That
is, the distance between the source and the network of sensors
is much larger than those among the sensors. Under this
situation, it is reasonable to assume that the filter h(n) applied
to the source is approximately the same at each sensor.

For QAMdata sequences, it is obvious that we can estimate
them based on the information of a single sensor instead
of a sensor network [25]–[28]. The use of one receiver is
of course low-cost from the aspect of implementation. But,
it may require a long time series of measurements to achieve
the desired performance. In practice, for efficiency reason, the
common message s(n) broadcast from the source (an access
point) may transmit only limited information. For example,
the source might be an unmanned aerial vehicle (UAV) with
a fast speed flying over a wireless sensor network (WSN)
deployed on the ground, and the broadcasting of information
lasts for only a very short period of time [34], [35]. In this
case, to achieve an acceptable estimation performance, a fast
convergence rate is required.Moreover, since sensors are usu-
ally bared in harsh environments, they can be easily damaged.
In some scenarios, it is impossible to request retransmission
when errors are detected, and thus the loss of information
cannot be recovered if only one receiver is used. Although
we can replace the sensors to avoid this to some extent, it is
difficult and costly to perform the manual maintenance in
some dangerous environments, for instance, the sensors are
located on the top of the mountains or on the deep of the
oceans.

Alternatively, the adoption of a distributed sensor network
is a good candidate, which has been widely used in wireless
cooperative communications [34], [35]. Firstly, it is more
robust to the failure of a single sensor. Secondly, it can achieve
fast convergence with a very short length of measurements by
exploiting the spatial diversity existing in distributed sensors.
Thirdly, as the sensors are low-cost devices, the use of a
sensor network does not increase much cost.

Considering this, in this paper, a distributed sensor network
is adopted to collaboratively estimate the source signal s(n)

FIGURE 2. System model for distributed estimation.

only based on the measurements {uk (n)}, without knowing
the channel h(n). Referring to the theory of blind signal
processing, we would like to recover s(n) by designing a
distributed blind equalizer to equalize the channel, reduce
the intersymbol interference (ISI) and furthermore make an
optimal estimate of s(n). The schematic structure of the pro-
posed algorithm is given in Fig. 2. As shown in Fig. 2, each
sensor k designs a distributed channel equalizer wk (·) by
fusing the information from a subset of k’s neighbors and
make the equalizer output yk (n) become a suitable estimate
of s(n). Then, following by a suitable slicer f (·), it is to give
an optimal estimate for the common source s(n), denoted as
ŝ(n). It is also noted that here, the transmission channels used
in inter-sensor communication are assumed to be perfect, i.e,
without noise and distortion.

III. DIFFUSION GENERALIZED SATO ALGORITHM
In this section, we would like to develop a distributed blind
adaptive algorithm to design a blind equalizer and estimate
the source signal based on the collections of a sensor network.
The generalized Sato’s algorithm, originally proposed in [26],
is used to design a blind equalizer, but implemented collab-
oratively with a diffusion cooperation strategy. That is, each
sensor k in the network is allowed to access the information
of its neighbors l ∈ Nk (Nk denotes the neighbors of node k ,
i.e. those nodes directly connected to k , including itself)
to design a distributed blind equalizer and furthermore to
estimate the source signal.

As stated in Sec. II, since the transmission channels are
identical at different sensors, all the sensors correspond to the
same optimal channel equalizerwo, and thus the optimization
for seeking wo is a single-task optimization problem. In the
following, based on the principle of d-LMS for non-blind
single-task optimization [8], [9], we derive a distributed blind
adaptive GSA using the diffusion cooperation rule.

Referring to the d-LMS [8], [9], two parts of cost are
considered. In the first part, we try to approximate the global
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cost at each sensor k by linearly combining the weighted
local cost of node k’s neighbors l ∈ Nk . In the second
part, we incorporate a norm constraint on the differences of
the equalizers between sensor k and its neighbors l so as
to drive the tap weights of the equalizers converge to each
other. To summarize, each node k can proceed to minimize
the following cost function

Jk (w) =
∑
l∈Nk

clkE[|γ csgn(yl(n))− yl(n)|2]

+

∑
l∈Nk\k

vlk ||w− ϕl ||
2, (2)

where the equalizer output

yl(n) = ul(n)w, (3)

with ul(n) = [ul(n), . . . , ul(n−M + 1)] being the equalizer
input vector at sensor l and w = [w0, . . . ,wM−1]T being
the vector of complex tap coefficients. The function ‘‘csgn’’
denotes the complex sign function for a complex data, which
is defined as

csgn(xr + jxi) = sgn(xr )+ jsgn(xi), (4)

where xr and xi are the real and the imaginary parts of a
complex data x, respectively. The parameter γ is a positive
constant depending on the input data symbol constellation,
which is defined as

γ =
E[s2r (n)]
E[|sr (n)|]

=
E[s2i (n)]

E[|si(n)|]
, (5)

where sr (n) and si(n) are the real and imaginary parts of the
complex data symbol s(n), respectively.
Note that the notation l ∈ Nk \ k in (2) denotes the

neighbors for node k except itself,ϕl denotes the intermediate
estimate for w at sensor l, and the non-negative real coeffi-
cients clk and vlk denote the coupling from the neighbors of
sensor k , which satisfy

V T 1N = 1N , C1N = 1N ,

vlk = 0, clk = 0, if l /∈ Nk , (6)

where 1N denotes an N × 1 vector with unit entries, C and V
are N × N matrices with entities clk and vlk , respectively.

Using an iterative steepest-descent algorithm to minimize
the cost function (2), we get

wk (n) = wk (n− 1)− µk [∇wJk (wk (n− 1))]∗, (7)

where 0 < µk < 1 is the step-size of the steepest-descent
iteration, and ∇wJk (wk ) denotes the gradient of Jk (wk ) with
respect to wk (n− 1), which is given by

[∇wJk (wk (n− 1)]∗ = −
∑
l∈Nk

clku∗l (n)[γ csgn(yl(n))− yl(n)]

−

∑
l∈Nk\k

vlk (ϕl − wk (n− 1)). (8)

Substituting (8) into (7), we can obtain a recursion for the
estimate of w at node k and iteration n,

wk (n) = wk (n−1)+ µk
∑
l∈Nk

clku∗l (n)[γ csgn(yl(n))− yl(n)]

+µk
∑

l∈Nk\k

vlk (ϕl − wk (n− 1)). (9)

Similar to d-LMS [8], we accomplish the update in two
steps by generating an intermediate estimate ϕk (n) as follows
ϕk (n) = wk (n−1)+µk

∑
l∈Nk

clku∗l (n)[γ csgn(yl(n))−yl(n)]

wk (n) = ϕk (n)+ µk
∑

l∈Nk\k

vlk (ϕl − wk (n− 1)),

(10)

where

yl(n) = ul(n)wk (n− 1). (11)

Then, by replacing ϕl and wk (n − 1) in (10) by the inter-
mediate estimate ϕl(n) and ϕk (n), respectively, the second
equation of (10) can be further rewritten into

wk (n) = (1− µk + µkvkk )ϕk (n)+ µk
∑

l∈Nk\k

vlkϕl(n).

(12)

Define akk = 1 − µk + µkvkk , alk = µkvlk for l 6= k .
Equation (12) becomes

wk (n) =
∑

l∈Nk
alkϕl(n). (13)

If the tap weights wk (n) converges to the optimal channel
equalizer wo, the equalizer output yk (n) converges to the
region that corresponds to the true s(n) with an aid of a
suitable slicer f (·) such that s(n) can be recovered more
reliably. Note that the selection of slicer f (·) depends on
the constellation of the transmitted data symbols [25]–[27].
For example, for the 4-QAM, the slicer can be selected as
f = csgn(·).
The implementation of distributed blind estimation algo-

rithm is summarized in Algorithm 1. Note that from
(10) and (13), each sensor first adapts its estimate by exchang-
ing the information of its neighbors and combine fuses the
estimates of its neighbors linearly as its own local estimate.
We name such an adapt-then-combine (ATC) diffusion GSA
as ATC-GSA. Reversing the order of adaptation and combi-
nation, we can obtain combine-then-adapt (CTA) diffusion
GSA, denoted as CTA-GSA. Its implementation is given
in Algorithm 2.
Remark 1:As shown in Algorithms 1 and 2, ATC diffusion

GSA and CTA diffusion GSA for distributed blind estimation
show similar structure as the ATC diffusion LMS and CTA
diffusion LMS for distributed non-blind estimation, respec-
tively [8]. However, due to inaccessibility to the channel
information, the instantaneous error is now a nonlinear func-
tion of the equalizer output and the statistics of the transmitted
data constellation instead of a linear function of the desired
output and the estimated output in distributed non-blind LMS.
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Algorithm 1 Adapt-Then-Combine Diffusion GSA
(ATC-GSA)

1) Initialization: The channel equalizer wk (0), k =

1, . . .N is initialized such that the center tap equals
to one and the other taps equal to zero. For each time
instant n ≥ 1 and each node k , repeat the following:

2) Blind channel equalization:
a) Adaption:

ϕk (n) = wk (n− 1)+ µk
∑
l∈Nk

clku∗l (n)

· [γ csgn(yl(n))− yl(n)],

where

yl(n) = ul(n)wk (n− 1).

b) Combination:

wk (n) =
∑
l∈Nk

alkϕl(n).

3) Source estimation: Based on wk (n) at any sensor after
convergence, an estimate of the transmitted data sym-
bol s(n) can be obtained using a suitable slicer f (·). For
example, using the final estimate of sensor k after Nm
iteration, s(n) can be estimated as

ŝ(n) = f (uk (n)wk (Nm)).

IV. PERFORMANCE ANALYSIS
In this section, the performance of the proposed diffusion
GSA in terms of mean and mean-square stability, and mean-
square deviation (MSD) is analyzed. In the following, instead
of analyzing a specified algorithm (ATC-GSA or CTA-GSA),
we give a systematic analysis of the proposed diffusion GSA
by resorting to a generalized structure, which include these
two algorithms. Based on Algorithms 1 and 2, for each
sensor k , the design of distributed blind equalizer can be
rewritten into the following generalized form

φk (n− 1) =
∑
l∈Nk

q1,lkwl(n− 1),

ψk (n) = φk (n− 1)+ µk
∑
l∈Nk

blku∗l (n)

· [γ csgn(yl(n))− yl(n)],

wk (n) =
∑
l∈Nk

q2,lkψ l(n),

(14)

and the non-negative real coefficients q1,lk , q2,lk and blk
correspond to the l and k entities of matrices Q1, Q2 and B,
respectively, which satisfy

QT1 1N = 1N , QT2 1N = 1N , B1N = 1N ,

q1,lk = 0, q2,lk = 0, blk = 0, if l /∈ Nk . (15)

Several choices for selecting cooperation weights from
graph theory have been suggested in the literature, such as
the Metropolis rule [7], [8], the relative degree [8], and the

Algorithm 2 Combine-Then-Adapt Diffusion GSA
(CTA-GSA)
1) Initialization: The channel equalizer wk (0), k =

1, . . .N is initialized such that the center tap equals
to one and the other taps equal to zero. For each time
n ≥ 1 and each node k , repeat the following:

2) Blind channel equalization:
a) Combination:

ϕk (n− 1) =
∑
l∈Nk

alkwl(n− 1).

b) Adaption:

wk (n) = ϕk (n− 1)+ µk
∑
l∈Nk

clku∗l (n)

· [γ csgn(yl(n))− yl(n)],

where

yl(n) = ul(n)ϕk (n− 1).

3) Source estimation: Based on wk (n) at any sensor after
convergence, an estimate of the transmitted data sym-
bol s(n) can be obtained using a suitable slicer f (·). For
example, using the final estimate of sensor k after Nm
iteration, s(n) can be estimated as

ŝ(n) = f (uk (n)wk (Nm)).

TABLE 1. Different GSAs with different choices of matrices.

Laplacianmatrix [7], [8]. Since theMetropolis rule has shown
to be better than the others, it is adopted in this paper. Using
different settings of matrices, the general structure of diffu-
sion GSA can be specialized into different algorithms, which
is summarized in Table 1.

To generalize the performance analysis, we define the
following global quantities:

w(o)
= col{wo, . . . ,wo}, φn = col{φ1(n), . . . ,φN (n)},

ψn = col{ψ1(n), . . . ,ψN (n)},

wn = col{w1(n), . . . ,wN (n)},

M = diag{µ1IM , . . . , µN IM },

Un = col{ul(n), . . . ,uN (n)},

Dn = diag{
∑
l∈N1

bl1u∗l (n)ul(n), . . . ,
∑
l∈NN

blNu∗l (n)ul(n)},

Gn = col{
∑
l∈N1

bl1u∗l (n)csgn(yl(n)), . . . ,∑
l∈NN

blNu∗l (n)csgn(yl(n))}, (16)
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and the extended weighting matrices

Q1 = Q1 ⊗ IM , Q2 = Q2 ⊗ IM , B = B⊗ IM . (17)

Based on the above global quantities (16), the design of
blind equalizer for the whole network using the diffusion
GSA can be rewritten into the following global form

φn−1 = QT
1wn−1,

ψn = φn−1 −MDnφn−1 + γMGn,
wn = QT

2ψn.

(18)

By cancelling the intermediate variables φn−1 and ψn
in (18), we have

wn = QT
2Q

T
1wn−1 −QT

2MDnQT
1wn−1 + γQ

T
2MGn. (19)

Define the weight error vector

w̃n = w(o)
− wn. (20)

Let w(o) subtract both sides of (19). We have the mean
weight error w̃n evolve as

w̃n = QT
2 (IMN −MDn)QT

1 w̃n−1 +QT
2M(Dnw(o)

− γGn).
(21)

To perform the following analysis, some assumptions com-
monly adopted in adaptive filtering [3], [7]–[10] and blind
equalization are assumed at first [36]–[39].
A-1: The channel is time-invariant and {s(n)}, {vk (n)},

and {uk (n)} are stationary and have zero mean. The input
sequence {s(n)} and the additive noise {vk (n)} are tempo-
rally and spatially independent identically distributed (i.i.d.)
with zero mean. We also assume that {s(n)} and {vk (n)} are
independent of each other.
A-2: The equalizer input vector uk (n) conditioned on

the source signal {s(n)} is a complex Gaussian ran-
dom vector (RV), and it is also upper bounded by a
constant.
A-3: For each node, the tap weight vector wk (n) is inde-

pendent of the equalizer input, uk (n). Besides, the central
tap weight of wk (n) is normalized to 1 such that all the
nodes converge to the same channel equalizer without phase
shift.
A-4: The components of the transformed tap weight vector

for each node k , wjk (n) are uncorrelated, and also those of
different nodes are uncorrelated.
A-5: Assuming the noise power σ 2

v,k is small enough
such that the zero-forcing solution wo ∈ CM is the
global minimizers of the cost function. Under this con-
dition, it is further assumed that the equalizer is initial-
ized such that s(n) = uk (n)wo rather than a time-shifted
version.

A. MEAN STABILITY ANALYSIS
Based on A-1, A-3 and A-4, the expectation of (21) yields

E[w̃n] = QT
2 (IMN −MD)QT

1 E[w̃n−1]

+QT
2M(Dw(o)

− γG), (22)

where

G = E[Gn]
= col{

∑
l∈N1

bl1E[u∗l (n)csgn(yl(n))], . . . ,∑
l∈NN

blNE[u∗l (n)csgn(yl(n))]}, (23)

and

D = E[Dn] = diag{
∑
l∈N1

bl1Ru,l, . . . ,
∑
l∈NN

blNRu,l}, (24)

with the covariance matrix Ru,l = E[u∗l (n)ul(n)].
Theorem 1:Assume data model (1) and the above assump-

tions A-1-A-4 hold. Then, the mean of the weight error of
the distributed blind equalizer using the diffusion GSA (14)
converges with limitation

E[w∞] = w(o)
− (IMN −QT

2 (IMN −MD)QT
1 )
−1

×QT
2M(Dw(o)

− γG), (25)

for any initial condition and any choice of matrices Q1 and
Q2 satisfying (15) if

0 < µk <
2

λmax(
∑

l∈Nk
blkRu,l)

, k = 1, . . . ,N . (26)

Proof: Based on A-2, uk (n) is bounded, and thus the
covariance matrix Ru,l and G are both bounded (Note that
|csgn(·)| is bounded by 1). For sufficiently small enough step-
size µk , the term QT

2M(Dw(o)
− γG) in (22) is bounded

within a small value and thus the stability of E[w̃n] is deter-
mined by the matrix QT

2 (IMN −MD)QT
1 .

LetG = IMN−MD. Based on the above analysis, we have
E[w̃n] converge if the maximal eigenvalue of matrix

|λmax(QT
2GQ

T
1 )| < 1. (27)

Using the matrix-2 norm,1 we have [7], [8]

||QT
2GQ

T
1 ||2 ≤ ||Q1||2 · ||G||2 · ||Q2||2. (28)

Since the matrix D is Hermitian, G is also Hermitian.
Recalling that Q1 = Q1 ⊗ IM and Q2 = Q2 ⊗ IM , we
have λ(Q1) = λ(Q1), λ(Q2) = λ(Q2). Moreover, from (15),
we have ||Q1||2 ≤ 1 and ||Q2||2 ≤ 1. Since matrix G is
symmetric, (28) reduces to the following

|λmax(QT
2GQ

T
1 )| ≤ |λmax(G)|. (29)

That is to say,

|λmax(G)| < 1, (30)

is a sufficient condition to ensure the convergence of diffusion
GSA. This requires that the step-size µk should satisfy (26).
Under this condition, when n → ∞, it is derived that
diffusion GSA converges to a biased estimate of w(o) with
limitation given in (25).

1The 2-norm of a matrix A is defined as the largest singular value of A.
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Remark 2: From (29), it is noted that ATC-GSAwithQ1 =

B = IN and Q2 = A or CTA-GSA with Q1 = A and Q2 =

B = IN has smaller spectral radius than the no-cooperation
GSA (Nc-GSA) with Q1 = Q2 = B = IN , which indi-
cates that the diffusion GSA converges much faster than the
Nc-GSA without cooperation.
As shown in Theorem 1, wn converges to a biased estimate

of w(o), and the bias depends on the envelope of the trans-
mitted QAM data constellation, which can be classified into
two types. In the first type, named as Type-I, the modulus of
the real and imaginary parts of each complex QAM data are
equal and thus we have γ = |si(n)| = |sr (n)|. For instance,
the 4-QAM belongs to this type. In the second type, termed
as Type-II, the modulus of the real and imaginary parts of
the complex QAM data can be different, while their statistics
γ as defined in (5) equal to the same constant. Such kind of
QAM includes the 16-QAM and 64-QAM. In the following,
the mean stability of these two kinds of signals is analyzed
individually.

To carry out the analysis, the following assumption is
assumed. As proved in Theorem 1, by choosing suitable µl
satisfying (26), each equalizer wl(n) converges to the optimal
equalizer wo in the mean sense with a small bias. Under
this condition, it is reasonable to assume that after a certain
number of iterations for achieving convergence,wl(n) is close
enough to the optimal wo such that the equalizer output yl(n)
converges to the half space that has the correct sign as s(n) in
majority [26], [40]. That is,

Pr[csgn(yl(n)) 6= csgn(s(n))] < ε, (31)

where ε is a small positive constant.

1) TYPE-I QAM DATA SYMBOLS
For Type-I, we have γ = |sr (n)| = |si(n)| at each iteration
n. By choosing suitable µk satisfying (26), we can ensure
that the assumption (31) holds after a certain number of itera-
tions for achieving convergence. Then, we have the following
approximation

γ csgn(yl(n)) = γ csgn(s(n))+ zl(n) = s(n)+ zl(n), (32)

where zl(n) is of zero-mean and variance σ 2
z,l , as s(n) is of

zero-mean as given in A-1. It is also assumed that zl(n) is
independent on ul(n).

Then, based on A-5 and (32), we have the element of
Dnw(o)

− γGn at each node k and iteration n as follows:

Dk,nwo − γGk,n =
∑
l∈Nk

blku∗l (n)(s(n)− s(n)− zl(n)]

= −

∑
l∈Nk

blku∗l (n)zl(n). (33)

Let

Huz(n) = col{
∑
l∈N1

bl1u∗l (n)zl(n), . . . ,∑
l∈NN

blNu∗l (n)zl(n)}. (34)

According to A-2 and A-3, the expectation (22) becomes

E[w̃n] = QT
2 (IMN −MD)QT

1 E[w̃n−1]−QT
2ME[Huz(n)]

= QT
2 (IMN −MD)QT

1 E[w̃n−1], (35)

where the second equality holds as zl(n) is of zero-mean and
also independent of ul(n).

Then, by selecting suitable step-size µk satisfying (26),
E[w̃n] converges to zero. That is to say, the estimator wn con-
verges to an asymptotically unbiased estimate of the optimal
equalizer w(o) for the Type-I QAM data.

2) TYPE-II QAM DATA SYMBOLS
For Type-II, the statistics γ is a constant. Then, based on the
assumption (31), we have

γ csgn(yl(n)) = γ csgn(s(n))+ zl(n). (36)

Different from Type-I, the second equality in (32) does not
hold, since γ 6= |sr (n)| 6= |si(n)| at each iteration n.
Letting

Hus(n) = [s(n)− γ csgn(s(n))]col{
∑
l∈N1

bl1u∗l (n), . . . ,∑
l∈NN

blNu∗l (n)}, (37)

the term Dnw(o)
− γGn becomes

Dnw(o)
− γGn = Hus(n)−Huz(n), (38)

whereHuz(n) is given in (34).
Based on A-2, A-3 and (38), the expectation (22) becomes

the following for Type-II

E[w̃n] = QT
2 (IMN −MD)QT

1 E[w̃n−1]
+QT

2ME[Hus(n)]−QT
2ME[Huz(n)]

= QT
2 (IMN −MD)QT

1 E[w̃n−1]+QT
2ME[Hus(n)].

(39)

Comparing the mean weight error for Type-II with that for
Type-I given in (35), we find that an additional bias term
related to Hus(n) is introduced in (39), which reflects the
difference between s(n) and the quantity γ csgn(s(n)). Since
the mean of term s(n) − γ csgn(s(n)) does not equal to zero,
the second term on the right hand side (RHS) of (39) always
exists. Therefore, the estimate wn yields to a biased estimate
of the optimal equalizerw(o) for Type-II QAMdata. From this
point of view, it is guessed that the performance of diffusion
GSA for estimating Type-I source signal outperforms that for
Type-II. This is also verified by simulations in Sec. V.

B. MEAN-SQUARE STABILITY ANALYSIS
By resorting to the energy conservation analysis, we have the
MSD of the weight error vector

E||w̃n||26 = E||w̃n−1||26′ + E[(Dnw(o)
− γGn)T

×MQ26QT
2M(Dnw(o)

− γGn)]
+ 2E[(Dnw(o)

− γGn)TMQ26

·QT
2 (IMN −MDn)QT

1 w̃n−1], (40)
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where

6′ = Q1Q26QT
2Q

T
1 −Q1DMQ26QT

2Q
T
1

−Q1Q26QT
2MDQT

1

+Q1E[DnMQ26QT
2MDn]QT

1 , (41)

and notation ||x||26 = x∗6x represents a weighted vector
norm for any Hermitian positive-definite matrix 6.

Let σ = vec{6} denote vectorization of matrix 6, which
is obtained by stacking the columns of its matrix argument
on top of each other. Using the vectorization operator and the
following Kronecker product property [41], [42]

vec(A6B) = (BT ⊗ A)σ, (42)

we can rewrite those terms on RHS of (40) as follows

vec{Q1Q26QT
2Q

T
1 }

= (Q1 ⊗Q1)(Q2 ⊗Q2)σ, (43a)

vec{Q1DMQ26QT
2Q

T
1 }

= (Q1 ⊗Q1)(DTM⊗ IMN )(Q2 ⊗Q2)σ, (43b)

vec{Q1Q26MQT
2DQT

1 }

= (Q1 ⊗Q1)(IMN ⊗DM)(Q2 ⊗Q2)σ, (43c)

and

vec{E[Q1DnMQ26QT
2MDnQT

1 ]}

= (Q1 ⊗Q1)E[(DT
nM)⊗DnM)](Q2 ⊗Q2)σ. (43d)

The second term in (40) gives

E[(Dnw(o)
−γGn)TMQ26QT

2M(Dnw(o)
− γGn)] = αTσ

(44)

where α = vec{QT
2M(Dw(o)

− γG)(Dw(o)
− γG)TMQ2},

and the third term in (40) gives

2E[(Dnw(o)
− γGn)TMQ26QT

2 (IMN −MDn)QT
1 w̃n−1]

= βTσ (45)

where β = 2QT
2 (IMN − MD)QT

1 E[w̃n−1] ⊗ {Q
T
2

M(Dw(o)
− γG)}.

In summary, based on the above results, the equation (40)
can be described by the following recursion

E||w̃n||2σ = E||w̃n−1||2Fσ + α
Tσ + βTσ, (46)

where

F = (Q1 ⊗Q1){IM2N 2 − IMN ⊗ (DM)− (DTM)⊗ IMN
+E[(DT

nM)⊗DnM)](Q2 ⊗Q2). (47)

Let

S = IM2N 2 − IMN ⊗ (DM)− (DTM)⊗ IMN
+E[(DT

nM)⊗DnM)]. (48)

To ensure the stability in the mean-square sense, we
should select suitable step-size µk and combination matri-
ces Q1 and Q2 such that all the eigenvalues of F satisfy

|λmax(F)| < 1. (49)

Therefore, to ensure the stability in the mean and mean-
square senses, it is required that µk should satisfy
both (30) and (49). Similar to the analysis in themean stability
and using the matrix 2-norm, we have

||F ||2 = ||(Q1 ⊗Q1) · S · (Q2 ⊗Q2)||2
≤ ||Q1 ⊗Q1||2 · ||S||2 · ||(Q2 ⊗Q2)||2
≤ ||Q1||

2
2 · ||Q2||

2
2 · ||S||2. (50)

Recalling thatQ1 = Q1⊗ IN andQ2 = Q2⊗ IN , we have
||Q1||2 = ||Q1||2, ||Q2||2 = ||Q2||2. Since matrix S is
symmetric, we obtain that

|λmax(F)| ≤ ||Q1||
2
2 · ||Q2||

2
2 · |λmax(S)|. (51)

Equation (51) implies that the stability of the overall system
is governed by the property of the matrix S and the designed
cooperation protocol (represented by Q1 and Q2). By choos-
ing suitable combination protocol satisfying (15), such as the
Metropolis and Laplacian rules, we have ||Q1||, ||Q2|| ≤ 1,
and thus

|λmax(F)| ≤ |λmax(S)|. (52)

Furthermore, for sufficiently small step-size µk satisfying
(26), we can approximate S by the following

S ≈ (IMN −DTM)⊗ (IMN −DM), (53)

which is stable if, and only if, IMN − DM is stable. This
condition is consistent with the condition (26) for ensuring
the mean stability.

To summarize, by choosing a suitable cooperation protocol
that ensures ||Q1||, ||Q2|| ≤ 1 and the step-size µk satisfying
(26), the mean and mean-square stability of the in-network
distributed GSA can be ensured.
Remark 3: If we choose the combination matrix B = IN ,

S in (53) corresponds to the case without cooperation.
According to (52), by selecting suitable combinationmatrices
Q1 and Q2, the spectral radius of F in the diffusion GSA is
generally smaller than that in the Nc-GSA without cooper-
ation. Therefore, diffusion GSA converges much faster than
the Nc-GSA in the mean-square convergence. This suggests
that the cooperation based on the diffusion protocol (14) and
(15) has a stabilizing effect on the mean and mean-square
stability in the network, which is consistent with the results
in distributed non-blind signal processing [8].

C. MEAN-SQUARE DEVIATION ANALYSIS
FOR DIFFERENT SOURCES
The mean-square deviations for Type-I and Type-II mainly
differ in the last term of RHS in (40). Next, we give the
specific results of the considered two types of QAM signals
with different envelope properties.

1) TYPE-I QAM DATA SYMBOLS
Based on (32) and (33), the vector α in (44) equals to

α = vec{QT
2MHT

uMQ2}, (54)
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where

Hu = E[Huz(n)H∗uz(n)]
= BT diag{σ 2

z,1Ru,1, . . . , σ
2
z,NRu,N }B, (55)

and for sufficiently small step-size µk satisfying (26),
we have

β = 2QT
2 (IMN−MD)QT

1 E[w̃n−1]⊗{Q
T
2M(Dw(o)

− γG)}
= 2QT

2 (IMN −MD)QT
1 E[w̃n−1]⊗ {Q

T
2ME[Huz(n)]}

= 0. (56)

2) TYPE-II QAM DATA SYMBOLS
For Type-II, based on (38), the term α in (44) becomes

α = vec{QT
2MHT

uMQ2}

+ vec{QT
2ME[Hus(n)H∗us(n)]TMQ2}, (57)

and β can be approximated by the following with a sufficient
small step-size µk

β = 2QT
2 (IMN−MD)QT

1 E[w̃n−1]⊗{Q
T
2M(Dw(o)

−γG)}
= 2QT

2 (IMN −MD)QT
1 E[w̃n−1]

⊗{QT
2M(E[Huz(n)]+ E[Hus(n)])}

= 2QT
2 (IMN −MD)QT

1 E[w̃n−1]⊗ {Q
T
2ME[Hus(n)]}.

(58)

By selecting suitable step-size µk satisfies (26), we can
ensure that matrix (IM2N 2 − F) is invertible, and thus the
steady-state MSD of the diffusion GSA equals to

E||w̃∞|| = (IM2N 2 − F)−1(α + β)Tσ. (59)

Based on the above analysis, it is noticed that an additional
term β > 0 exists for Type-II but not in Type-I, which leads
to a larger MSD in Type-II. This conclusion is also verified
by simulations in the following Sec. V.

V. NUMERICAL SIMULATIONS
In this section, two simulative examples are performed to
show the effectiveness of the proposed diffusion GSAs for
blind signal estimation through the design of distributed blind
equalizer.

In the simulations, a sensor network consisting of 16
sensors uniformly randomly distributed over 50m × 50m
square area, is adopted. Considering that the power of a
sensor is restricted, the network topology is constructed by
restricting the maximal transmission range R = 10m. That
is, two sensors are allowed to communicate with each other
if their Euclidean distance is within the maximum transmis-
sion range R. Otherwise, there is no information exchange
(no connection) between them. Finally, we obtain the network
topology as given in Fig. 3(a).

The additive measurement noise vk (n) is selected such that
the signal-to-noise ratio (SNR) for each sensor randomly
distributes within (6, 10)dB, see Fig. 3(b). The step-size for
each sensor k is set as µk = 0.001. The complex impulse

FIGURE 3. Network settings. (a) Network topology (b) Initial SNR vs node.

FIGURE 4. Channel impulse response. (a) Real part. (b) Imaginary part.

response of the transmission channel {h(n)} used in the sim-
ulation is depicted in Fig. 4. In our simulation, a 20-tap
complex equalizer of a transversal filter structure is used
and initialized such that the center tap is set to one and the
other taps are set to zeros. The coefficients q1,lk and q2,lk of
matrices Q1 and Q2 are chosen according to the Metropolis
rule, while the matrix B is simply set to be a unit matrix,
i.e. B = IN . The simulation results using the no-cooperation
GSA (Nc-GSA), the centralized GSA (where the measure-
ments {uk (n)} of all the N sensors in the network are con-
veyed to a fusion center for processing), denoted as C-GSA,
and the diffusion GSA, including ATC-GSA and CTA-GSA
are presented and compared. In the following, two types of
source signals, 4-QAM and 16 QAM, are used to testify the
performance of different algorithms, respectively.

A. EXAMPLE 1: 4-QAM DATA SYMBOLS
In the first example, Type-I source signal s(n) generated
from 4-QAM data constellation is considered. We use the
measure of residual intersymbol interference (ISI), typically
adopted in the context of blind equalization [27], [30], [43] to
evaluate the convergence behaviors of different blind adap-
tive algorithms. Fig. 5(a) shows the averaged transient ISI
of the whole network over 50 simulations, while Fig. 5(b)
depicts the averaged steady-state ISI at each sensor, which
is computed by the ISI after convergence (5000 iterations).
From the simulation results, we find that without cooperation,
the ISI is relatively larger. By cooperating with the neighbors
in the network using the diffusion cooperation, the ISI has
been significantly reduced, which is about 2dB better than the
Nc-GSA. As shown in Fig. 5, CTA-GSA andATC-GSA show
similar performance, and they both converge to the global
optimization algorithm, C-GSA. Moreover, from Fig. 5(b),
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FIGURE 5. Simulation results for 4-QAM constellation. (a) Averaged
transient ISI vs iteration. Note that the simulation results for Nc-GSA,
ATC-GSA, and CTA-GSA from 7000 to 7060 iterations are enlarged in the
subfigure for illustration. (b) Averaged steady-state ISI vs node.

it is observed that the steady-state ISIs at different sensors for
the Nc-GSA differ significantly from each other, which are
dependent on the initial SNRs and the network topological
structure as given in Fig. 3. Although the initial SNRs differ
significantly among sensors, less difference is noticed after
equalization using the diffusion cooperation.

Based on the obtained equalizers, we can recover the
source signal s(n) using the final estimate of equalizer at
any sensor, denoted as ŝ(n). To compare the performance of
different algorithms, the signal error rate (SER) is computed,
which is defined as

SER =
the number of the error symbols in ŝ(n)
the total number of the source signal s(n)

× 100%.

(60)

Note that for the diffusion GSAs and C-GSA, to further
improve the accuracy of estimation, we can determine
the transmitted data symbols at each sensor k by selecting the
recovered symbol with the largest probability based on the
estimates of k’s neighbors. The averaged SERs computed

TABLE 2. Averaged SER over sensor networks using different algorithms
for 4-QAM.

from the N sensors in the network using different algorithms
are summarized in Table 2. The results of SER are consistent
with that of the channel equalization as reflected by ISI given
in Fig. 5. That is, the better the performance of channel equal-
ization (the smaller the ISI), the more accurate the estimation
(the smaller the SER). As given in Fig. 5 and Table 2, using
a distributed diffusion cooperation, the proposed diffusion
GSA algorithms show better performance in reducing the
ISI and furthermore estimating the source, which can be
comparable to the C-GSA.

FIGURE 6. Averaged steady-state ISI vs SNR using different algorithms.

We also verify the effect of SNR to the performance of
the proposed blind equalizers. As the results evaluated by the
measure of ISI are consistent with that evaluated by the SER,
we only use the measure of ISI for performance evaluation.
In the simulation, the same initial SNR is set for each node,
and changes from 4dB to 20dB. Different methods are per-
formed and the averaged steady-states ISI over 50 simulations
are given in Fig. 6. It is remarked that, as the CTA-GSA,
ATC-GSA and C-GSA perform approximately the same, we
only give the result of CTA-GSA for illustration. From Fig. 6,
it is found that, comparing to the Nc-GSA, CTA-GSA has
improved the performance of equalization irrespective of the
initial SNRs. Moreover, with the increasing of the initial
SNR, the performance enhancement also increases a little.

The robustness of diffusion GSA in blind equalization is
also testified in Fig. 7. In this study, 4 out of 16 sensors are
assumed to be abnormal. Note that if kth-sensor is abnormal,
it loses the measurements of the source but only collects
the noise output, i.e. uk (n) = vk (n). It is also noted that
the abnormal nodes still have the ability to compute and
communicate with their neighbors. Therefore, for an abnor-
mal sensor k , based on the information transmitted from its
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FIGURE 7. Robustness analysis. (a) Transient ISI vs iteration for a normal
sensor. (b) Transient ISI vs iteration for an abnormal sensor.

neighbors ul(n), l ∈ Nk , it is still possible to give an estimate
of the channel equalizer and furthermore recover the source
signal using the proposed diffusion GSAs.

Fig. 7(a) and (b) respectively compare the ISI of a normal
sensor and an abnormal sensor in the network using the
Nc-GSA and CTA-GSA. The combination matrices B and
Q2 for CTA-GSA are selected by the Metropolis rule, while
Q1 = IN . Note that since the results of the ATC-GSA and
C-GSA are quite similar to the CTA-GSA, their correspond-
ing results are omitted here for clarity. As shown in Fig. 7(a),
if a sensor works normally, even without cooperating with
other sensors, it can reduce the ISI to some extent, see the
result of the Nc-GSA. But, it is inferior to the CTA-GSA.
On the other hand, if a sensor works abnormally, the Nc-GSA
performs poorly, and the ISI does not converge as the sensor
only observes noise. However, even if a sensor fails to collect
the information of the measurements, it still works well by
cooperating with the other sensors using the CTA-GSA, see
Fig. 7(b). The simulation results suggest that the CTA-GSA is
more robust, and thus more reliable in practical applications.

Besides, to testify the applicability of the proposed diffu-
sion GSA in a real far-end network environment, in which the

FIGURE 8. Averaged transient ISI vs iteration using different algorithms
for 4-QAM constellation with some channel perturbations.

channels share some similarity but not exactly the same, we
also perform the simulation by adding different perturbations
on the channels h(n) at different nodes. In the simulation, the
perturbation is generated from a zero-mean Gaussian with a
small variance σh,k = 0.01. Similar to the above simulation,
the results of Nc-GSA and CTA-GSA are given in Fig. 8
for comparison. From the simulation results, we find that
CTA-GSA alsoworks in this case, indicating the effectiveness
of distributed cooperation in real far-end sensor networks,
which allows for some difference among nodes.

FIGURE 9. Averaged transient ISI vs iteration using different algorithms
for 16-QAM constellation. Note that the simulation results for C-GSA,
ATC-GSA, and CTA-GSA from 2.900 × 104 to 2.906 × 104 iterations are
enlarged in the subfigure for illustration.

B. EXAMPLE 2: 16-QAM DATA SYMBOLS
In the second example, we apply the diffusion GSAs to
estimate the Type-II source signal, which is generated from
16-QAM constellation. The same parametric settings as
Example 1 are used. The averaged transient ISIs using differ-
ent algorithms are depicted in Fig. 9, while the corresponding
SERs are summarized in Table 3.
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TABLE 3. Averaged SER over sensor networks using different algorithms
for 16-QAM.

Similar to the results for the 4-QAM, the diffusion gener-
alized Sato algorithms, ATC-GSA and CTA-GSA both out-
perform the Nc-GSA and converge to the C-GSA. However,
comparing to the results in Fig. 5 for Example 1, the perfor-
mance of the diffusion GSAs for the 16-QAM constellation
is inferior to that for the 4-QAM, which is caused by the
difference between the statistics γ and the truemodulus of the
real and imaginary parts of the transmitted data symbols s(n)
as explained in Sec. IV-A. On the meanwhile, from Table 3,
it is noticed that the SERs of the estimated data series are also
larger than those in Example 1. This is because the decision
of the data symbol s(n) is dependent on the magnitude of the
equalizer output. Since the gain of total transmission system,
i.e. the channel model convolved by the designed channel
equalizer, is not exactly equal to 1, the magnitude of the
equalizer output may oscillate around the space that corre-
sponds to the right symbol s(n), which causes a larger SER.
In contrast, the decision of the 4-QAM data symbols is only
dependent on the complex sign of the equalizer output yk (n),
but insensitive to its magnitude. Therefore, a smaller SER can
be achieved for the 4-QAM.

VI. CONCLUSION
In this paper, a kind of diffusion blind adaptive algorithm,
based on the generalized Sato algorithm, is proposed to
design distributed blind equalizer to estimate the transmitted
QAM data sequences, where the channel models are assumed
to be unknown. The performance of the proposed diffusion
GSA in mean and mean-square senses is analyzed theoreti-
cally. Then, a series of numerical simulations are presented
to show the effectiveness of the proposed algorithms in blind
equalization and source estimation. Results show that by
cooperating with the nodes in the neighborhood, diffusion
GSA can efficiently reduce the ISI as well as improve the
accuracy of estimation. Moreover, it is more robust to sensor
failure and thus more applicable in practical applications.
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