
Received July 11, 2017, accepted July 30, 2017, date of publication August 11, 2017, date of current version October 12, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2738658

Enabling End-to-End Orchestration of
Multi-Cloud Applications
KENA ALEXANDER1, CHOONHWA LEE1, EUNSAM KIM2, AND SUMI HELAL3
1Department of Computer Science, Hanyang University, Seoul 04763, South Korea
2Department of Computer Engineering, Hongik University, Seoul 121-791, South Korea
3CISE Department, University of Florida, Gainesville, FL 32611 USA

Corresponding author: Choonhwa Lee (lee@hanyang.ac.kr)

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, Ministry of Science,
ICT & Future Planning under Grant 2017R1A2B4010395 and Grant 2016R1D1A1A09917396.

ABSTRACT The orchestration of application components across heterogeneous cloud providers is a problem
that has been tackled using various approaches, some of which led to the creation of cloud orchestration and
management standards, such as TOSCA and CAMP. Standardization is a definitive method of providing
an end-to-end solution capable of defining, deploying, and managing applications and their components
across heterogeneous cloud providers. TOSCA and CAMP, however, perform different functions with
regard to cloud applications. TOSCA is focused primarily on topology modeling and orchestration, whereas
CAMP is focused on deployment and management of applications. This paper presents a novel solution
that not only involves the combination of the emerging standards TOSCA and CAMP, but also introduces
extensions to CAMP to allow for multi-cloud application orchestration through the use of declarative
policies. Extensions to the CAMP platform are also made, which brings the standards closer together to
enable a seamless integration. Our proposal provides an end-to-end cloud orchestration solution that supports
a cloud application modeling and deployment process, allowing a cloud application to span and be deployed
over multiple clouds. The feasibility and the benefit of our approach are demonstrated in our validation study.

INDEX TERMS Distributed computing, middleware, software architecture, model-driven development.

I. INTRODUCTION
Cloud computing is an on-going area of distributed comput-
ing that enables the delivery of applications as services over
the Internet, as well as platform- and infrastructure-level com-
puting resources. The advent of cloud computing promises
to provide ‘‘users‘‘ the benefits of, among many, availability
of on-demand services, elimination of up-front commitment,
and pay-per use model. These benefits, however, come with
the addition of inherent issues such as availability of service,
performance unpredictability, resource scaling, and vendor
lock-in [1], [2].

The orchestration of applications and components across
cloud providers is capable of addressing some of these inher-
ent issues regarding cloud computing. However, the orches-
tration of applications and components itself is not an easy
task to accomplish [3]. The orchestration of applications
and resources in the cloud involves dynamically deploying,
managing, and maintaining those aforementioned compo-
nents in and across multiple heterogeneous cloud platforms.
As it is possible that cloud providers platforms may be built
using varying technologies and APIs [4], it is clear that

standardization can provide the answer to orchestration
across these heterogeneous cloud platforms [5]–[7].

Currently, the de-facto standard for cloud application
modeling and orchestration, OASIS TOSCA (Topology and
Orchestration Specification for Cloud Applications) [8],
provides a method of defining the topology of cloud appli-
cations through the use of an XML DSL coupled with the
detailed plans for the management of the applications. More
recently, the TOSCA simple profile in YAML was produced,
providing a declarative method for defining cloud application
topologies via TOSCA [9]. This declarative approach negates
the need for specifying deployment and or management plans
within a TOSCA Service Template, thus making TOSCA a
fully declarative specification.

OASIS CAMP (Cloud Application Management for
Platforms), is another specification whose primary purpose
is to simplify cloud application deployment and manage-
ment [6], [10]. It also uses a declarative deployment plan
defined in YAML in order to specify the artifacts that should
be deployed as well as the services that should be used to
fulfill those artifact deployments. CAMP serves as an API

18862
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017

K. Alexander et al.: Enabling End-to-End Orchestration of Multi-Cloud Applications

between the developers and cloud providers and provides a
standard way for deploying andmanaging cloud applications.
However, the orchestration of applications across multiple
providers was not one of its deliverables.

In this paper, we present TOSCAMP (TOSCA + CAMP)
which is our proposed solution for providing a standards-
based, end-to-end cloud orchestration solution by combining
the standards of TOSCA and CAMP. By building upon main-
stream standards relevant to cloud application deployment
and management and orchestration, we can simplify the
work required to deploy and orchestrate applications across
multiple heterogeneous cloud providers.

Therefore, the major contributions presented in this paper
are as follows. (1) We present a method of converting
TOSCA service templates into CAMP deployment plans and
consequently converting the components of a TOSCA ser-
vice template into appropriate deployment and management
components of a CAMP deployment plan. (2) The paper
introduces our architectural design of TOSCAMP platform
used to convert TOSCA Service Templates to CAMP deploy-
ment plans, and presents a prototype implementation to
demonstrate our approach. (3) We validate our proposed
approach using our TOSCAMP platform and analyse the
performance of our orchestration solution. (4) Finally, we dis-
cuss what differentiates our approach from the state-of-the-art
approaches.

The remainder of this paper is structured as follows.
Section II describes our motivation and challenges. This
section also contains our motivational scenario used to
validate our approach. Section III presents our TOSCAMP
architecture whose performance evaluation results are pre-
sented in the following section IV. Finally, we discuss related
and future works in Section V, after which we conclude the
paper.

II. MOTIVATION AND CHALLENGES
To illustrate our approach, we consider deploying a modi-
fied version of the WebServer-DBMS WordPress case study
example [9]. The application used in this scenario comprises
a Web application front-end which, in this case, is the Word-
Press application. The WordPress application is installed
onto the server via a supplied installation script. Apart from
the installation script, configuration scripts are also used to
configure the WordPress application which is deployed in a
clustered configuration. In this configuration, the front-end
cluster may consist of one or more WordPress servers. Each
node of the web cluster is in turn provisioned on a compute
node provided by an IaaS cloud provider. The WordPress
Web Application must connect to a database that is hosted on
a SQL DBMS server. These data management components
are also provisioned on a compute node on a cloud provider.
Fig. 1 depicts the topology of the web application.

To leverage the features of orchestration, our example
applicationmust be deployed across two heterogeneous cloud
providers. It is noted that the deployment scenario entails a
more advanced form of orchestration support beyond current

FIGURE 1. Topology of WordPress web application.

orchestration technologies in that the application spans multi-
ple clouds. Moreover, there are further constraints that should
be adhered to:

• The Web application and the database should not be
deployed on the same provider’s cloud platform.

• The web application front-end should be deployed in a
load-balanced configuration.

Our TOSCAMP approach must allow for such an application
to be deployed to the cloud as well as provide a means of
declaratively specifying the management criteria for main-
taining the application within the constraints given. There are,
however, some challenges that have to be overcome in order
to realize this solution.

A. PORTABLE APPLICATION TOPOLOGY SPECIFICATION
A standardized approach to application orchestration must
adhere to the caveat that the topology of the application
should be described in a form that is portable and inter-
operable across compliant providers. To address this chal-
lenge, we utilize TOSCA as the standard Domain Specific
Language (DSL) for specifying the topology. TOSCA pro-
vides a definition for modeling the topology of applica-
tions that may be deployed to heterogeneous cloud service
providers. In TOSCA, cloud application designersmay define
the topology of an application, also known as the appli-
cation’s Topology Template, within a declarative Service
Template document. The topology template is composed of
the application’s components which are modeled as typed
Nodes that are interconnected via typed Relationships. The
modeled application’s topology may be used to deploy the
components of the application via a TOSCA orchestrator
capable of interpreting the nodes and relationship types that
have been used. Another salient feature of TOSCA is its
ability to declare user-defined types which can be used to
fulfill components within the Topology Template. While the

VOLUME 5, 2017 18863

K. Alexander et al.: Enabling End-to-End Orchestration of Multi-Cloud Applications

specification provides a meta-model for describing the topol-
ogy of an application, it does not define how a TOSCA
compliant orchestrator may fulfill an application topology
across heterogeneous cloud providers. That is, a TOSCA
compliant orchestrator may be capable of deploying the
components on its own or leveraging the deployment capa-
bilities of another suitable deployment platform.More impor-
tantly, though, TOSCA documents are not embellished with
provider-specific information. As a result, a TOSCA docu-
ment remains portable across compliant TOSCA platforms.

B. STANDARD API FOR CLOUD PROVIDERS
Cloud providers are free to utilize any platform or API
for providing their services. For example, Amazon’s AWS
is powered by its own private platform, whereas providers
such as Rackspace makes use of OpenStack for their cloud
platform. From this, it can be seen that while some of these
may be open, there may be proprietary platforms as well,
which present proprietary APIs for connecting and perform-
ingmanagement tasks. Standardization is ameans of bringing
these disparate platforms together through a unified API.
In our approach, we use OASIS CAMP in order to provide
a standard means of interfacing with cloud providers.

OASIS CAMP defines the models, mechanisms, and pro-
tocols for the management of applications in and their use of
a Platform as a Service (PaaS) environment [6], [10]. Unlike
TOSCA, the OASIS CAMP specification describes the for-
mat of an application as well as how that application’s com-
ponents should be deployed to a CAMP compliant provider.
The CAMP specification therefore makes use of declarative
plan files written in YAML as well as a CAMP platform
consisting of platform components. A CAMP deployment
plan is constructed by creating a typed graph connecting
artifacts and services via requirements, as seen in Fig 2.

FIGURE 2. Sample structure of OASIS CAMP plan.

Artifacts used in a CAMP plans are the functional aspects
of an application to be deployed. For example, if we consider
a simple Web application packaged as a WAR file, then the
functionality of the application is contained in the WAR file
and must be deployed in order for the application to be useful.
ThisWAR file is considered to be the application Artifact and
may be deployed to a provider via a CAMP platform.

C. ORCHESTRATION-AWARE DEPLOYMENT
AND MANAGEMENT
Apart from being able to interface with heterogeneous
providers, it is necessary to be able to deploy and manage

the components of an application across those providers.
The application, ‘‘as a unit‘‘, should be maintained, even
if its components are distributed across various providers.
In other words, components are not to be managed in silos.
While OASIS CAMP is capable of deploying, and managing
an application on specified cloud providers, it is incapable
of orchestrating the components of the application across
multiple providers. To overcome this challenge, we propose
an extension to the CAMP specification through the addition
of policies that will allow for the components of CAMP
to be deployed and managed across heterogeneous cloud
providers.

Policies provide a means of management and orchestration
of complex applications over heterogeneous clouds[11], [12].
Cloud computing relies on the delivery and orchestration of
decoupled, distributed services across disparate providers in
order to meet consumers requirements. Policies, therefore,
should be used to control the state of services in an application
topology and the services used to fulfill the components
of that topology [13]. Tosca’s YAML specification consists
of provisions for declaratively specifying policies within
an application topology. In contrast, CAMP’s specification
does not contain provisions for the specification of policies
whatsoever. To address this, we propose to extend CAMP by
adding a declarative policy format, based on CAMPs YAML
specification. Our proposed policy extensions for CAMP
should provide declarative policies that may be associated
with components of a CAMP plan. One key requirement of
our extension is the policies must be declarative. Through the
use of declarative policies, we can maintain the declarative
structure of CAMP plans and reduce the complexity associ-
ated with orchestrating application components. We discuss
our declarative policy approach in detail within Section III.

D. CONVERSION METHODOLOGY FROM TOSCA TO CAMP
While both TOSCA and CAMP were derived from the same
standards body, OASIS, they serve quite different purposes
due to the fact that they have different targets. Apart from
having different targets, the models which their YAML doc-
uments are based on are also not identical matches. TOSCAs
model consists of normative types that can be used to com-
pose applications or extended to form new types. CAMPs
model, however, do not contain a static set of normative types.
Instead, a cloud provider can supply types compatible to its
namespace. Therefore, trying to provide a direct translation
from a TOSCA model to a CAMP model would prove to
be a complicated endeavor. Thus, in order to bridge the gap
between the differentmodels of TOSCA andCAMP,wemade
use of ATL (Atlas Transformation Language) to perform a
model-to-model translation. Our model conversion strategy
is elaborated in Section III.

III. TOSCAMP ARCHITECTURE
In this section, we present the overall strategy of our
approach, TOSCAMP, as well as the architecture behind our
approach. The overall approach of TOSCAMP focuses on the

18864 VOLUME 5, 2017

K. Alexander et al.: Enabling End-to-End Orchestration of Multi-Cloud Applications

idea that both the TOSCA andCAMP specificationsmake use
of typed components to describe an application topology or
deployment depending on the specification. TOSCA speci-
fication contains a collection of predefined, normative types
that may be used or extended, in order to define the topology
of an application. CAMP, on the other hand, expects that
CAMP platforms will be aware of and capable of interpret-
ing specific defined types of CAMP components. Through
this knowledge of the existence of ‘‘known‘‘ types in both
specifications, we were able to translate a TOSCA topology
into a CAMP deployment plan, so that it may be deployed and
managed in a standardmanner on a cloud provider’s platform.

FIGURE 3. TOSCAMP architecture.

A. ARCHITECTURAL DESIGN
As illustrated in Fig. 3, the TOSCAMP architecture consists
of a TOSCA parser and an extended CAMP platform joined
by a conversion engine capable of translating the TOSCA
topologies supplied to it into CAMP plans.

1) TOSCA PARSER
There exists quite a number of platforms that are capa-
ble of reading a TOSCA service template documents and
interpreting the types contained. As of this writing, we are
aware of Cloudify [14], Alien4cloud [15], Ubicity [16],
SeaClouds [17] and OpenTosca [18]. However, in order to
ensure that our TOSCA model can connect directly to our
model converter and consequently be coupled closer with

FIGURE 4. TOSCA parser architecture.

CAMP, we have developed an in-house TOSCA parser capa-
ble of parsing TOSCA normative types in YAML as well as
user-defined typeswritten as extensions to TOSCAnormative
types. Our in-house TOSCA parser is capable of parsing a
TOSCA YAML document and storing the components as
objects which can be later deployed to a provider via a
compatible platform. The parser as seen in Fig. 4 consists of
three main parts.
• The parser core contains the representations of the
TOSCA normative types and is used to process the
TOSCA service template.

• A programming API model allows for access to the
parser core through Java objects.

• Web API model allows for access to the parser core
through a Web API that consumes and produces JSON.

2) EXTENDED CAMP
Another major component is the extended CAMP plat-
form. The OASIS CAMP standard is defined to allow the
deployment and management of cloud applications, defined
as YAML plans, onto cloud provider platforms. Applica-
tions are packaged as Platform Deployment Packages, oth-
erwise known as PDPs, and delivered to a compliant CAMP
platform. Upon arriving at the platform, the PDP is parsed
into Artifacts, Requirements and Services, all of which
are used to deploy the application to an appropriate cloud
provider’s platform. The specification not only defines the
format for supplying an application to be deployed, but it
also defines a method for managing the application as well.

VOLUME 5, 2017 18865

K. Alexander et al.: Enabling End-to-End Orchestration of Multi-Cloud Applications

To do so, CAMP makes use of an infrastructure composed
of resources. Resources represent elements of the underlying
system that can be interacted with through the CAMP proto-
col exposed by the platform.

Our extended CAMP platform was created, so that it can
process policies that may be used tomanage a deployed appli-
cation or components. In a previous work, we demonstrated
the use of policies for application orchestration across hetero-
geneous clouds [19]. With that in mind, we also made special
considerations, when addressing the use of policies within our
work. TOSCAs previous, XML-based specification made use
of policies defined as work-flows in BPEL or BPMN [8]. The
state of the art has since moved from the imperative specifi-
cation of policies to a declarative specification. As TOSCAs
policies are now defined declaratively, it is necessary for us
to provide a declarative policy specification in CAMP that
will allow for the interpretation of translated TOSCApolicies.
Our approach introduces declaratively defined, typed policies
within our extended CAMP document. Our policy specifica-
tion makes use of two main components, typed policies and
typed constraints.

FIGURE 5. Sample policy specified in our extended CAMP format.

Declarative policies in our extended CAMP platform in
Fig. 5 specify state or behavior that an entity should adhere
to and do not imperatively specify actions that must be taken.
Typed policies in our extension represent a directive that may
be associated with an entity, but must be interpreted by a
policy enforcement agent and not the entity itself. Typed con-
straints capture the state that an entity should ideally be in, if it
is to conform to the policy. For example, a Placement policy
may be associated with an entity stating that the entity should
be started (e.g.,SERVICE_UP= true) and its location should
ideally be chosen from one of a supplied set of locations
(e.g., PROVISIONING_LOCATION is within [loc 1, loc 2,
loc n]). If this policy were to be enforced, it would mean that
the target must be maintained in a started state in one of the
defined locations. In the event that the target’s state stops
or fails for some reason, the through the policy their target
should be attempted to be placed back into a started state.

As declaratively defined policies define criteria that an
entity should adhere to, whether or not the entity adheres
depends not on the policy but the unit used to enforce the
policy [20]–[24]. To capture this concept, we introduced a
component known as a Policy Manager into our extended
CAMP platform. This component serves as a container for
policies and must interpret and enforce those policies on

an entity. In the case of a policy violation, the policy manager
component should be aware of actions that can be taken
on the entity in order to return that entity to a valid state.
To further our work, it is necessary to be able to specify
these actions declaratively as directives. The actions, in our
approach, are thus taken by the policy manager in order to
enforce a policy on a CAMP entity. With this approach, an
application designer would be able to declaratively define
an application to be deployed as well as define directives
to policy managers that may influence how they manage the
entities of the application.

FIGURE 6. Sample policy management directive in our extended CAMP
format.

The policy management directives as seen in Fig. 6, are
defined as a group of actions the policy manager can choose
from, that are applicable to the type of entity that the pol-
icy is associated with. Each action identifies the property
of the entity that this action influences and the transition
the property will undergo in the event of the action being
performed. For example, the policy manager may be given
the placement directives that specify two possible courses
of actions it may take, i.e., START or STOP. The START
action operating on an entity results in its SERVICE_UP
property being set to true from its initial value of false. The
same action may also affect the entitys provisioned location
by setting its PROVISIONING_LOCATION value to ‘‘any‘‘
location from its initial value of null. The initial value is
null, because a START action can only be performed, if
the entity is in a STOPPED stated. In a stopped state, the
location of the entity would not be defined and would be
null. As these actions represent known actions that can be

18866 VOLUME 5, 2017

K. Alexander et al.: Enabling End-to-End Orchestration of Multi-Cloud Applications

invoked on entities within our extended platform, the policy
manager needs only to decide on the best course of action
to be performed and invoke that action on the entity. This
decision is made by analyzing the transitions an entity will
undergo in order to be returned to a valid state. The policy
manager first gathers the actions that contain properties that
will be affected. The transitions are analyzed to determine if
their start and end states coincide with the desired state of the
entity. Transitions are weighted by the policymanager, so that
actions with the lowest transition weight are selected first.
Once an action is selected, the entity should already be aware
of how to carry out that action, since actions are represented
by CAMP operations. Thus, imperative instructions are not
passed to the entity.

FIGURE 7. Model conversion via atlas transformation language.

B. MODEL CONVERSION STRATEGY
Our approach to combining TOSCA and CAMP involves the
conversion of a TOSCA Service Template into a CAMP plat-
form deployment package using ATL (Atlas Transformation
Language) [25], [26]. The Atlas Transformation Language is
a hybrid, imperative and declarative language that can allow
the production of a number of target models from a set of
source models through the use of model elements and rules.
The model transformation language ATL works by using a
meta-model of the source model and a meta-model of the
destination model which must each in turn conform to a
common meta-meta-model as depicted in Fig. 7.

To illustrate the model conversion process, we use a typical
scenario depicting the deployment of an application using
TOSCAMP, the details of which can also be seen through
Fig. 3. The process begins with a YAML file representing
the Service Template of the application to be deployed. The
Service Template is first loaded into the parser where it is
parsed into the relative components, for example, Node Tem-
plates, Relationship Templates, and Policy Definitions. Any
user-defined types are also parsed and stored in repositories
within the parser.

The parsed Service Template object and components are
stored as Java classes within the parser. These classes can be
directly accessed by the ATL conversion engine and serves

as the TOSCA model depicted in Fig. 7. The meta-model of
the TOSCA model is also stored within the TOSCA parser
as an Eclipse ecore object. The model is used by the ATL
conversion engine along with the CAMP meta-model which
is stored in the extended CAMP platform as an ecore object.

The actual conversion from TOSCA to CAMP takes place
in the ATL conversion engine using ATL conversion rules.
To enable this process, we must deliver to the engine the
service template model, the TOSCA meta-model, and the
CAMP meta-model. The properties of the nodes and com-
ponents of TOSCA and CAMP are stored in lookup tables
and are directly accessed by the ATL rules, when convert-
ing one model to another. For example, the lookup table
may have an entry for ‘‘textttroot_password’’ property of
the ‘‘tosca.nodes.DBMS’’ node template that maps to ‘‘pass-
word’’ property of the ‘‘services.database.mysql.MySQL’’
in CAMP.

Once the conversion is complete, the ATL conversion cre-
ates Java objects that represent the PlatformDeployment Plan
of a CAMP application. This PDP object can then be directly
deployed by the CAMP platform. The declarative policies
introduced into our CAMP PDP are directly translated from
the declarative policies of the TOSCA topology. However, to
ensure our policies are enforced, we must side-load policy
directives into the CAMP platform.

During the conversion process, there are also other consid-
erations thatmust bemade, for example, CAMPplans are typ-
ically ‘‘flat’’ documents of about one level in depth, whereas a
typical TOSCA document may be a few service levels deep.
It is not possible to directly convert such a structure into
CAMP, as CAMP only captures the relationship between
Artifacts and the Services that fulfill them and not Service
to Service relationships. To mitigate this, it is necessary to
devise an approach to flatten the structure of the TOSCA
Topology prior to the conversion. Our method relies on
identifying particular patterns in the TOSCA topology. For
example, a TOSCA topology may comprise a LoadBalancer
typed node that ‘‘RoutesTo’’ an application hosted on a Web-
Server typed node as seen in Fig. 8. Our approach identifies
this pattern as a ‘‘member pattern’’ and compresses the pat-
tern into a LoadBalancer with a WebServer as its member.
In another example also seen in Fig. 8, if we consider a
database node that is ‘‘HostedOn’’ a SQL DBMS typed node.
This SQLDBMS typed node may, in turn, be ‘‘HostedOn’’
a Computer typed node with specific specifications. Our
approach identifies this ‘‘service to service’’ pattern and com-
presses the services up to the highest service, while preserv-
ing the properties of lower services for translation. Fig. 8
gives a depiction of these strategies.

IV. IMPLEMENTATION DETAILS AND EVALUATION
In order to evaluate our proposal of the TOSCAMP archi-
tecture, we have taken a two-pronged approach. Firstly, we
present a case study of the implementation of TOSCAMP as
well as a look at the manner in which our solution handles
the deployment and management of our sample application

VOLUME 5, 2017 18867

K. Alexander et al.: Enabling End-to-End Orchestration of Multi-Cloud Applications

FIGURE 8. Member and service-service pattern conversion strategies.

FIGURE 9. TOSCA specification for Wordpress application.

across two cloud providers. Secondly, we performed a stand-
alone evaluation of our solution to determine how it would
handle different scaling situations, when varying the work-
load of the application. For our case study, we have chosen
to use WordPress as the application, which is a popular, scal-
able Web blogging and publishing platform. Our WordPress
topology consists of a load balancer which routes requests to
WordPress front-end Web servers. Each Web server connects
to a MySQL database on a MySQL back-end DBMS. The
architecture is designed, so that the front-end servers can be
scaled up or down depending on the workload being expe-
rienced. The case study analyses how our solution handles
difference scenarios.

• Placement of application components
• Decision making with regards to scaling

The TOSCA service template used to represent the appli-
cation is given in Fig. 9 and corresponds to the application
topology given in Fig. 1.

A. MODEL CONVERSION
Our approach emphasizes application portability and inter-
operability by adhering to the standards TOSCA and CAMP.
By maintaining two separate models, each model can
be tailored to perform best at what they were designed
to do. This adheres to the basics of MDE (Model-Driven

18868 VOLUME 5, 2017

K. Alexander et al.: Enabling End-to-End Orchestration of Multi-Cloud Applications

Engineering) [27] of which the main objective is to ‘‘factorize
the complexity into different levels of abstraction and con-
cern from high level, conceptual models down to individual
aspects of the target platform.’’

One of the core tenets of MDE is the separation into
Platform-Independent and Platform-Specific Model, PIM
and PSM, respectively. PIM represents a model that is inde-
pendent of the platform that is used to implement it. A PIM
would thus represent a truly detached and portable model,
abstracted from the platform-specific details of its imple-
mentation [27]. A PSM however is related in some form to
the platform implementing it. Hence, the functionality that is
described in a PIM should be realized through a PSM [27].

Models, if interrogated, should be able to provide
up-to-date information about the solution they represent and
thus drive adaptation decisions. Our approach maintains two
independent models: a TOSCA model which represent the
topology of the application independent of any providers or
provider-specific resources and a CAMP model which is a
provider-specificmodel that incorporates the types capable of
deployment by specific providers. The TOSCA plan is con-
verted using our ATL model conversion rules into a CAMP
platform deployment plan representation of the WordPress
application. The original TOSCA plan remains unchanged
and there is no information injected into this model to facil-
itate the conversion. By keeping the model unmodified, the
original TOSCA plan can be used in other TOSCA platforms,
Hence, the model remains portable and reusable as provider-
specification information is omitted from this model.

To govern placement of the application components,
TOSCA placement policies are to be created and embedded
into the application’s service template. Our placement poli-
cies definition in TOSCA are also typed components that
associate the property to bemanaged, in this case, the location
of the application component, and the target node the policy
should be associated with. This approach allows for policies
to be defined separate of the components they will govern.
It also means that the application topology remains portable
as specific-information related to the policy is never embed-
ded into the component but associated, once the policy is
processed. TOSCA orchestrators capable of processing poli-
cies will process and enforce them. However, orchestrators
that are unable to process policies will not be affected by their
presence, as the policies are not embedded into the nodes.

The conversion process makes use of an Atlas Transforma-
tion Language (ATL) conversion engine to transform a model
of the TOSCA application’s service template into a CAMP
deployment plan. The conversion was done by creating and
maintaining a look-up table of TOSCA nodes and relation-
ships as well as CAMP components. During the conversion,
properties registered to TOSCA types are converted to CAMP
components. Fig. 10 presents the high-level look at our model
conversion algorithm and, in Fig. 11, we can see the converted
CAMP deployment plan.

To evaluate this algorithm, we performed a series of con-
versions of different TOSCA plans into CAMP. First, we ran

FIGURE 10. Model conversion algorithm.

a baseline conversion of a TOSCA document containing only
a WordPress Front-End (WP_FE) which refers to a Word-
Presswebapplication TOSCAnode ‘‘HostedOn’’ awebserver
node. Using the values of ten conversions runs, the average
time to convert a single application stack was found.

After our baseline was established, we then ran a series of
conversions by increasing the number of WordPress Front-
Ends. We then channeled this data into a graph of conver-
sion time against conversion run as can be seen in Fig. 12.
By looking at the data plotted, we observed that the con-
version times for each run remained consistently small.
The times for each conversion, although it fluctuated, did
not change drastically but instead remained between 0.12s
and 0.18s.

B. MULTICLOUD DEPLOYMENT AND SCALING
The placement of application components is handled in our
approach by using placement policies. Placement policies
identify the property and constraint to be enforced as well as
the targets they should be enforced on. To test the placement
of components using placement policies, we devised three
scenarios in which we used the application topology specified
in Fig. 1. To deploy the application to various cloud providers.
In scenario 1, a single policy is used to place all components
on the same provider. This scenario is used as our baseline and
is run for each provider. The time taken to deploy the topology
to each provider was recorded and can be seen in Fig. 13.
In scenario 2, we separated the components by using two
policies to place separate components on separate providers.
In this scenario, we tested the separation of services by using

VOLUME 5, 2017 18869

K. Alexander et al.: Enabling End-to-End Orchestration of Multi-Cloud Applications

FIGURE 11. Converted CAMP Wordpress PDP.

FIGURE 12. Conversion times of TOSCA document to CAMP plan.

policies to place each service on a different provider. The
times taken to deploy each service on their particular provider
as well as connect the complete application was recorded.
In scenario 3, we used a single policy to place all component
across multiple providers. This scenario tested whether it
was possible for a single policy to be used to distribute the
components of an application across multiple heterogeneous
providers. We choose to conduct these experiments using live
cloud services: Rackspace and IBM Softlayer cloud services.
For each provider, we chose two locations. It was possible to
have chosen more locations. However, in an effort to keep the
tests as simple as possible, two locations were decided to be
appropriate.

The placement policy used for scenario 3 simply chooses
randomly from the supplied providers (without affinity) and
deploys the component to the provider selected. In order to
obtain sufficient data, we therefore needed to run as many
deployments as possible. Therefore, during the experiment,

FIGURE 13. Deployment times to a single provider.

FIGURE 14. Deployment times over multiple providers.

we ran the deployments and selected the combinations that
were chosen 3 or more times. Using these combinations, we
then ran the experiments of scenario 2, obtaining a further set
of data.We found the average deployment times of these com-
binations and presented the information in Fig. 14. Through
the results of Fig. 13 and Fig. 14, we can deduce that our

18870 VOLUME 5, 2017

K. Alexander et al.: Enabling End-to-End Orchestration of Multi-Cloud Applications

strategy is capable of deploying and connecting application
components on the same provider as well as across hetero-
geneous providers. Differences in deployment time may be
attributed to different provider APIs. However, this analysis
may require further research.

In order to observe how our approach would handle scaling
of application components, we performed experiments using
a scaling policy to govern how the application components
will scale based on varying workloads. These experiments
also made use of the application topology define in Fig. 1.
The scaling policy, as with placement policies, were defined
within the TOSCA topology and then converted to a CAMP
equivalent. After translating the topology, we obtained a
scaling policy in CAMP which was deployed along with
the application via our CAMP platform. For this deploy-
ment, a multi-cloud approach was also chosen. Hence, each
component of the application was deployed on a separate
provider. The providers used were kept as Rackspace and
IBM Softlayer.

Our approach to policies requires the policy manager to be
equipped with the proper directives in order to process the
policy constraints and choose an appropriate action in case
of a violated constraint. We created and loaded a declarative
policy manager directive as can be seen in Fig 15, into out
platform prior to loading our application topology.

FIGURE 15. Scaling policy directive.

To initiate scaling, it was necessary to manipulate the
workload of the WordPress front-end servers. To do this, we
made use of the Apache JMeter (http://jmeter.apache.org) to
generate a workload for the deployed applications in order to
trigger a scaling scenario. Our application scaling rules were

configured, so that the application would scale up the number
of nodes in the WordPress front-end cluster, if the load,
i.e., the requests per second of the servers within the cluster,
is above a defined threshold.

Once the scaling policy and policy manager directives
were deployed and enabled, our platform began responding to
changes in the REQUEST_PER_SECOND_PER_NODE sen-
sor which forms part of the component deployed via our
extended CAMP. Once a violation was detected, the policy
manager determined an appropriate action based on its direc-
tives and initiated that action. In our case, the policy manager
decided that the application front-end should be scaled up.
The scale-up process took place in stages, as the policy man-
ager conservatively scaled and then checked that the violation
was alleviated. A small ‘‘hold of’’ period was used to ensure
that the policy manager does not trigger multiple actions in
quick succession.

FIGURE 16. Requests per second per node measured at the load balancer.

FIGURE 17. Scale up of nodes configured at the load balancer.

The results of our scaling experiment are shown in Fig. 16
and Fig 17. The experiment was run for 360 seconds during
which the number of requests to the Web servers was grad-
ually increased. Samples were taken of the average requests
per second on each node via the LoadBalancer at 5 second
intervals. As the number of requests increases, the requests
per second measured at the server increase as well, until the
value of 5 requests per second is crossed. At this point, the
number of nodes is scaled up to 3 since this is detected as
a policy violation. This scale up, however, fails to address
the constraint violation and as a result another scale up is
triggered at sample 17. As the constraint remains violated
even after each consecutive scale up, another scale up is

VOLUME 5, 2017 18871

K. Alexander et al.: Enabling End-to-End Orchestration of Multi-Cloud Applications

finally triggered at sample 31, bringing the number of nodes
to 6. This scale up is enough to drop the constraint so that it
is no longer in violation.

V. RELATED WORK
Cloud application orchestration has generated a consider-
able amount of popularity within the field of distributed
computing. There have been numerous approaches to cloud
application orchestration, each with varying advantages and
limitations [7], [28], [29]. Some approaches focus on creation
and use of standards, others on the use of libraries and inter-
mediary layers, while others are based on the use of semantics
of models. The authors of [28] also described a taxonomy
that was used to compare cloud application orchestration
techniques on two broad sets of criteria. From this taxonomy,
cloud orchestration techniques were judged based on two
broad areas.

• Cloud Feature: features specific to the cloud infrastruc-
ture.

• Application Feature: features specific to the application
supported in the cloud.

To gain an appreciation for how our approach stacks up
against other similar approaches, we produced a qualitative
comparison of the techniques. Table 1 depicts the compar-
ison of TOSCAMP, SeaClouds, MODAClouds, Brooklyn-
TOSCA, and Cloud Provider Orchestration features.

Brooklyn-TOSCA [30] combined the facilities of TOSCA
with the Apache Brooklyn platform. The SeaClouds
project [17] is also known for its approach to multi-cloud
deployment and management using a TOSCA DSL cou-
pled with various deployment frameworks such as Apache
Brooklyn and MODAClouds [31]. While these projects
adequately combined the frameworks for orchestration and
deployment and providemulti-cloud and cross-cloud support,
there are some differences with regards to our TOSCAMP
architecture. For example, Brooklyn-TOSCAmakes use of an
agnostic graph or intermediate graph that is used to bridge the
gap between the TOSCA and Apache Brooklyn, and allows
for resource selection and runtime adaptation. TOSCAMP
approaches these through the use of placement policies which
abstract the provider location from the application model.
The SeaClouds approach also integrates TOSCA compliant
plans and CAMP through the use of Apache Brooklyn. Our
approach, however, does not rely on an intermediate graph
in order to translate nor does it utilize Apache Brooklyn’s
CAMPDSL. Instead, it makes use of matchmaking, SLA and
monitoring components coupled with continuous refinement
to provide resource selection, lifecycle management, mon-
itoring, and runtime adaptation. For these, our TOSCAMP
approach makes use of the CAMP platform features as well
as our policy extensions for CAMP.

The concept of combining TOSCA and CAMP is not only
limited to the SeaCloud and Brooklyn-TOSCA approaches.
However, there are other studies that suggested the combina-
tion of the TOSCA and CAMP standards in order to provide

cloud orchestration features [32], [33]. The authors of [32]
proposed a strategy involving the use ofATL to convert from a
TOSCA topology into anApache Brooklyn plan in order to be
deployed to a provider platforms. The proposal also suggests
the use of an agnostic model to express the TOSCA model
in order to generate orchestration plans for the application
deployment and management. Similarly, the authors of [33]
also proposed the combination of TOSCA and CAMP via
Apache Brooklyn and suggested the use of an agnostic
graph to bridge to automate the conversion process from
TOSCAmodels to CAMPmodels. Their approach focused on
abstracting all provider-specific information from TOSCA to
provide a cross-cloud strategy that provides portability. Our
proposal, however, incorporates an extended policy support
system in order to provide cross- and multi-cloud support.

With regards to cloud application modeling, the
CloudMF [34] and MODAClouds [31] approaches provide
a model-driven approach to multi-cloud application deploy-
ment through the use of a Domain Specific Language. The
CloudMF approach introduced a cloud modeling framework
consisting of a modeling language CloudMF and a deploy-
ment and management component described as models@
run-time. This approach like ours took the two-model
approach of Model Driven Engineering. This approach, how-
ever, relies on comparison and reasoning engines that must
make modifications to the run-time model, when changes
occur in either the Cloud Provider Independent Model or
the models@run-time. While there are similarities to our
approach, this still differs, as it makes use of refinement to
transform the Cloud Provider Independent Model into the
Cloud Provider Specific Model (CPSM). Also, it does not
make use of policies to manage the deployed model, but
instead relies on a reasoning engine to determine difference
in the actual and target CPSM.More so, CloudMF is a model-
based approach not based on open standards. Hence, its DSL
does not adopt open techniques such as TOSCA and CAMP.

The MODAClouds approach, which is a reference imple-
mentation of CloudMF, highlighted the use ofmodels for both
the deployment of the system and for monitoring the run-time
environment and considered two general phases of the appli-
cation lifecycle: design time and run-time. Our TOSCAMP
approach does not perform continuous refinement of an inter-
mediate model. With continuous refinement, the model is
continually enriched with provider-specific information, as it
is translated into the provider-specific model. By not per-
forming continuous refinement, our model does not need to
be reevaluated, when provider information changes or there
is a need to target another provider.

Almost every approach relies on an interface to each cloud
platform. The Apache Brooklyn project represents a plat-
form most compatible with the tenets of OASIS CAMP [10].
Being built on the concepts of CAMP, the project provides a
blueprint document that is somewhat compliant to the CAMP
standard. While our project makes use of some of Brooklyn’s
core components, the Brooklyn blueprint only represents a
subset of the CAMP plan document. In its current form,

18872 VOLUME 5, 2017

K. Alexander et al.: Enabling End-to-End Orchestration of Multi-Cloud Applications

TABLE 1. Qualitative analysis of orchestration approaches.

VOLUME 5, 2017 18873

K. Alexander et al.: Enabling End-to-End Orchestration of Multi-Cloud Applications

the Brooklyn blueprint diverges from core CAMP in the
way policies are specified and processed. Apache Brooklyn
is capable of handling and specifying policies declaratively
within plans. In our approach, however, we decided to also
explore the ability to define and tailor new policies and policy
processing logic by providing the ability to define the policy
processing components via directives.

Cloud providers rely on an array of services within their
platforms in order to elevate their platform above others.
There have been a number of cloud service providers provid-
ing orchestration services as part of their catalog of services.
‘‘Orchestration as a Service’’ solutions such as Amazon
OpsWorks (https://aws.amazon.com/opsworks/), Amazon
Cloud Formation (https://aws.amazon.com/cloudformation/),
and Rackspace Cloud Orchestration (https://www.rackspace.
com/cloud/orchestration) provide provisioning and scaling
features for customers of these respective platforms through
the use of DevOps recipes and/or Blueprints. While ser-
vices such as these provide cloud orchestration features, by
their nature, they still lock the client into a particular cloud
provider. The DSL used by one provider may not necessarily
be compatible with that of another provider. Furthermore, the
orchestration actions performed on one provider cannot allow
for cross-provider orchestration. Our work is set apart from
others, as it provides a standards-based, complete orches-
tration solution for heterogeneous cloud platforms. Hence,
a means of cross-provider orchestration that should keep
users from being locked-in to any particular vendor.

VI. CONCLUDING REMARKS
Our work has explored a methodology for defining, deploy-
ing, and managing distributed cloud applications through
the combination of two prominent standards: TOSCA and
CAMP. We have also been successful in demonstrating that,
through extensions to the current CAMP standard, it is
possible to define declarative policies that can be used to
orchestrate the components of a deployed application over
heterogeneous cloud platforms.

We have also proposed, implemented, and tested a method
of translating TOSCA documents into CAMP plans, while
maintaining the separation of each model. We consider it
to be beneficial to maintain this separation in order to pro-
mote model interoperability and mobility by ensuring that
each model remains ‘‘pure’’ and not deviated from the stan-
dard. We would like to emphasize that our work was made
possible through some proposed extensions to the CAMP
platform. These extensions afford the platform the ability
to process orchestration policies. It should also be noted
that our approach to policies does not alter the established
components of the standard but adds new components capa-
ble of performing the required orchestration tasks on the
existing components. We view this as significant, since, with
our approach, there will be no effect to platforms that are
incapable of interpreting our policies.

There is still a significant amount of work that remains
with regards to our approach and our prototype platform.

Currently, our platform is capable of parsing a
TOSCA version 1.1 document and converting the com-
ponents into a CAMP document. The CAMP half of our
TOSCAMP architecture, however, does not have a complete
library of types that it is capable of deploying, and we plan
to increase the number of types that can be handled by the
CAMP portion. We also intend to explore the possibility of
adding new types of policies and policy managers to our
CAMP platform.

REFERENCES
[1] J. Opara-Martins, R. Sahandi, and F. Tian, ‘‘Critical analysis of vendor

lock-in and its impact on cloud computing migration: A business perspec-
tive,’’ J. Cloud Comput., Adv., Syst. Appl., vol. 5, no. 1, p. 4, 2016.

[2] M. Armbrust et al., ‘‘Above the clouds: A Berkeley view of cloud
computing,’’ Univ. California at Berkeley, Berkeley, CA, USA,
Tech. Rep. UCB/EECS-2009-28, Feb. 2009.

[3] C. Liu, B. T. Loo, and Y. Mao, ‘‘Declarative automated cloud resource
orchestration,’’ in Proc. 2nd Symp. Cloud Comput., Cascais, Portugal,
2011, pp. 1–8.

[4] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg, ‘‘Towards
model-driven provisioning, deployment, monitoring, and adaptation of
multi-cloud systems,’’ in Proc. 6th Int. Conf. Cloud Comput., Santa Clara,
CA, USA, 2013, pp. 887–894.

[5] A. Barros, M. Dumas, and P. Oaks, ‘‘Standards for Web service choreog-
raphy and orchestration: Status and perspectives,’’ Lecture Notes Comput.
Sci., vol. 3812, pp. 61–74, 2006.

[6] M.Hogan, F. Liu, A. Sokol, and J. Tong, ‘‘NIST cloud computing standards
roadmap,’’ Nat. Inst. Standards Technol., Gaithersburg, MD, USA, Tech.
Rep., Special Pub. NIST-SP-500-291, Jul. 2011.

[7] D. Petcu and A. V. Vasilakos, ‘‘Portability in clouds: Approaches and
research opportunities,’’ Scalable Comput., vol. 15, no. 3, pp. 251–271,
2014.

[8] Topology and Orchestration Specification for Cloud Applications
Version 1.0, OASIS Standard TOSCA-v1.0, 2013.

[9] TOSCA Simple Profile in YAML Version 1.0, OASIS Standard TOSCA-
Simple-Profile-YAML-v1.0, 2016.

[10] Cloud Application Management for Platforms Version 1.1, OASIS CAMP
TC Committee Specification 01, 2014.

[11] D. Breitgand, A. Marashini, and J. Tordsson, ‘‘Policy-driven service place-
ment optimization in federated clouds,’’ IBM Res. Division, Haifa, Israel,
Tech. Rep. H-0299, Feb. 2011, pp. 11–15.

[12] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, andM.Wieland, ‘‘Policy-
aware provisioning of cloud applications,’’ in Proc. 7th Int. Conf. Emerg.
Secur. Inf., Syst. Technol., Barcelona, Spain, 2013, pp. 86–95.

[13] A.-F. Antonescu, P. Robinson, and T. Braun, ‘‘Dynamic topology orches-
tration for distributed cloud-based applications,’’ in Proc. 2nd Symp. Netw.
Cloud Comput. Appl., London, U.K., 2012, pp. 116–123.

[14] Pure-Play Cloud Orchestration & Automation Based on TOSCA|Cloudify.
Accessed on Mar. 24, 2017. [Online]. Available: http://getcloudify.org

[15] ALIEN 4 Cloud. Accessed on Mar. 24, 2017. [Online]. Available:
http://alien4cloud.github.io

[16] UbicityTosca Tools and Orchestration. Accessed on Mar. 24, 2017.
[Online]. Available: https://ubicity.com

[17] A. Brogi et al., ‘‘Adaptive management of applications across multiple
clouds: The SeaClouds approach,’’ CLEI Electron. J., vol. 18, no. 1,
pp. 1–14, 2015.

[18] T. Binz et al., ‘‘OpenTOSCA—A runtime for TOSCA-based cloud appli-
cations,’’ in Proc. 11th Int. Conf. Service-Oriented Comput., Berlin,
Germany, 2013, pp. 692–695.

[19] Home—Apache Brooklyn. Accessed on Apr. 29, 2016. [Online]. Available:
https://brooklyn.apache.org/

[20] K. Alexander, C. Lee, and S. Chai, ‘‘Declarative policy support for cloud
application orchestration,’’ inProc. 19th Int. Conf. Adv. Commun. Technol.,
Bongpyeong, South Korea, 2017, pp. 102–104.

[21] L. Kagal, T. Finin, and A. Joshi, ‘‘Declarative policies for describ-
ing Web service capabilities and constraints,’’ in Proc. W3C Workshop
Constraints Capabilities Web Services, Redwood City, CA, USA, 2004,
pp. 1–5.

18874 VOLUME 5, 2017

K. Alexander et al.: Enabling End-to-End Orchestration of Multi-Cloud Applications

[22] C. Dimoulas, S. Moore, A. Askarov, and S. Chong, ‘‘Declarative policies
for capability control,’’ in Proc. Comput. Secur. Found. Symp., Vienna,
Austria, 2014, pp. 3–17.

[23] N. C. Damianou, ‘‘A policy framework for management of distributed
systems,’’ Ph.D. dissertation, Dept. Comput., Univ. London, London, U.K.,
2002.

[24] M. Sloman, ‘‘Policy driven management for distributed systems,’’ J. Netw.
Syst. Manage., vol. 2, no. 4, pp. 333–360, 1994.

[25] ATLAS Group, INRIA and University of Nantes. (Feb. 2006). ATL: Atlas
Transformation Language—ATL User Manual Version 0.7. [Online].
Available: http://www.eclipse.org/atl/documentation/old/ATL_User_
Manual[v0.7].pdf

[26] F. Jouault and I. Kurtev, ‘‘Transforming models with ATL,’’ Lecture Notes
Comput. Sci., vol. 3844, pp. 128–138, 2006.

[27] S. Kent, ‘‘Model driven engineering,’’ in Proc. 3rd Int. Conf. Integr. Formal
Methods, Turku, Finland, 2006, pp. 286–298.

[28] D. Baur, D. Seybold, F. Griesinger, A. Tsitsipas, C. B. Hauser, and
J. Domaschka, ‘‘Cloud orchestration features: Are tools fit for purpose?’’
in Proc. 8th Int. Conf. Utility Cloud Comput., Limassol, Cyprus, 2015,
pp. 95–101.

[29] K. Bousselmi, Z. Brahmi, and M. M. Gammoudi, ‘‘Cloud services orches-
tration: A comparative study of existing approaches,’’ in Proc. 28th Int.
Conf. Adv. Inf. Netw. Appl. Workshops, Victoria, BC, Canada, 2014,
pp. 410–416.

[30] J. Carrasco, J. Cubo, F. Durán, and E. Pimentel, ‘‘Bidimensional cross-
cloud management with TOSCA and Brooklyn,’’ in Proc. 9th Int. Conf.
Cloud Comput., San Francisco, CA, USA, 2016, pp. 951–955.

[31] D. Ardagna et al., ‘‘MODAClouds: A model-driven approach for the
design and execution of applications on multiple clouds,’’ in Proc. 4th Int.
Workshop Modeling Softw. Eng., Zürich, Switzerland, 2012, pp. 50–56.

[32] J. Carrasco, J. Cubo, and E. Pimentel, ‘‘Towards a flexible deployment
of multi-cloud applications based on TOSCA and CAMP,’’ Commun.
Comput. Inform. Sci., vol. 508, pp. 278–286, 2015.

[33] J. Carrasco, J. Cubo, E. Pimentel, and F. Durán, ‘‘Deployment over hetero-
geneous clouds with TOSCA and CAMP,’’ in Proc. 6th Int. Conf. Cloud
Comput. Services Sci., Rome, Italy, 2016, pp. 170–177.

[34] N. Ferry, H. Song, A. Rossini, F. Chauvel, and A. Solberg, ‘‘CloudMF:
Applying MDE to tame the complexity of managing multi-cloud applica-
tions,’’ in Proc. 7th Int. Conf. Utility Cloud Comput., London, U.K., 2014,
pp. 269–277.

KENA ALEXANDER received the B.S. degree
in computer science from The University of the
West Indies, St. Augustine, Trinidad and Tobago,
in 2005. He is currently pursuing the M.S. degree
at Hanyang University, Seoul, South Korea. His
research areas are cloud application orchestration
and inter-cloud portability and management.

CHOONHWA LEE received the B.S. and M.S.
degrees in computer engineering from Seoul
National University, Seoul, South Korea, in 1990
and 1992, respectively, and the Ph.D. degree
in computer engineering from the University of
Florida, Gainesville, FL, USA, in 2003. He is
currently a Professor with the Division of Com-
puter Science and Engineering, Hanyang Univer-
sity, Seoul. His research interests include cloud
computing, peer-to-peer and mobile networking

and computing, and services computing technology.

EUNSAM KIM received theB.S. andM.S. degrees
in computer engineering from Seoul National
University, Seoul, South Korea, in 1994 and 1996,
respectively, and the Ph.D. degree in computer
and information science and engineering from the
University of Florida, Gainesville, FL, USA, in
2006. He was with the Digital TV Research Labo-
ratory, LG Electronics, South Korea, from 1996 to
2002. He is currently an Associate Professor with
the Department of Computer Engineering, Hongik

University, Seoul. His research interests include distributed computing,
P2P streaming, cloud computing, mobile computing, and network storage
systems.

SUMI HELAL received the Ph.D. degree
in computer science from Purdue University,
West Lafayette, IN, USA. He is currently a Pro-
fessor with the Computer and Information Sci-
ence and Engineering Department, University of
Florida, Gainesville, FL, USA, and the Director of
the Mobile and Pervasive Computing Laboratory.
He also directs the Gator Tech Smart House, an
experimental facility for developing and validating
assistive technology in support of aging, disability,

and independence. His research interests include pervasive and mobile
computing, smart health and well being, and cloud-sensor systems.

VOLUME 5, 2017 18875

