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ABSTRACT Reliability demonstration testing is widely applied to the industry for the verification of
products’ certain reliability requirement. However, for long-life and high-reliability products, the sample
size and testing time are both unacceptable. To shorten the testing time, the performance degradation data
are used to predict whether one samplewill fail by the end of the testing. To decrease the sample size or further
shorten the testing time, the hardened testing method is considered. Thus, this paper proposes a hardened
reliability demonstration testingmethodwith the accelerated degradationmodel to demonstrate the structural
reliability at a high confidence level. First, an accelerated gamma degradation model for the considered
problem is formulated. Then, the transformation method of the reliability indexes under different stress
levels is proposed. Finally, we develop the optimal testing plan to obtain the stress level, sample size, and
average testing time by minimizing the total testing cost, and give the testing termination rules for one
sample. A numerical example is given to demonstrate the availability of the proposed method on shortening
the testing time and reducing the sample size.

INDEX TERMS Reliability demonstration testing, accelerated degradation, hardened stress level, gamma
process, optimal testing plan.

NOMENCLATURE
ABBREVIATIONS
RDT reliability demonstration testing
ZFT zero-failure testing
SSI stress-strength interference
ADT accelerated degradation test
MTTF mean time to failures
CDF cumulative distribution function
PDF probability density function

NOTATION
s normal stress level
k hardened coefficient
n sample size
m number of measurements on one sample
tj measurement time; j = 0, 1, 2, · · · ,m
τ measurement interval
yij the ith sample’s degradation measure at tj
fY (t)

(
yij
)

PDF of Y (t) at tj
FY (t)

(
yij
)

CDF of Y (t) at tj

αi (t) non-decreasing, continuous and
real-valued shape parameter in a Gamma
distribution for the ith sample;
i = 1, 2, · · · , n

βi shape parameter in a Gamma distribution
for the ith sample

λi, ci parameters in αi (t)
Df pre-specified threshold
Ti the ith sample’s lifetime
FTi (t) the ith sample’s lifetime distribution
8(·) standard normal distribution
0 (·) , 0 (·, ·) Gamma function and incomplete

Gamma function
AF accelerated factor
h(ks) acceleration model; λ = λi = h (ks)
a, b parameters in h(ks)
Li (2) likelihood function for the ith sample;

2 = (a, b, k, βi, ci)
FTi(ks) (t (ks)) failure probability under the hardened

stress level ks
δ specified type II error (consumer’s risk)
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δc additional type II error incurred by
hardened stress level and early termination

ρ specified type I error (producer’s risk)
Rs specified reliability index to be

demonstrated
ts time at which Rs is specified
RHs pre-specified reliability index to be

demonstrated under the hardened stress
level ks

FTi(s)U (ts (s)) the upper bound of the type II error
probability

TC total cost for an acceleration degradation
ta average test time of all samples
na the number of samples allowable for the

test critical hardened coefficient
kc critical hardened coefficient
w1 the cost of one sample
w2 test cost per unit time incurred by

manpower, electric power, etc.
w3 cost of one measurement
w4 risk cost caused by the hardened stress

level

I. INTRODUCTION
Reliability demonstration testing (RDT) is required before
the design typification and volume production, which is
the examination link of the reliability design. On the one
hand, RDT demonstrates that the design achieves the relia-
bility specified in the product planning phase; on the other
hand, RDT proves that the production process meets the
requirements of manufacturing products specified in the
product planning phase. In general, RDT methods can be
divided into two categories: failure-based methods [1]–[5],
and degradation-based methods [6], [7]. More specifically,
failure-based methods can further be divided into two
categories: (1) testing designs based on the number of
failures [1], [2]; (2) testing designs based on failure times of
each sample [3], [4].

Zero-failure testing (ZFT) is widely applied to the reli-
ability demonstration at a high confidence level in indus-
try because of its implementary convenience and simplicity
without monitoring failures or measuring the performance
degradation during the testing [8], [9]. In the application,
Sun et al. [10] provided a zero-failure RDT plan based
on the accelerated degradation testing and Weibull dis-
tribution by minimizing the expected testing time con-
strained by Type II error, sample size, and total cost.
Guo et al. [11] proposed a flexible and practical method
to estimate the system reliability and its confidence bounds
when few or no failures occur during the subsystem test-
ing. However, for long-life and high-reliability products,
ZFT requires a large sample size and a long testing time,
which makes it inefficient and high-cost. Therefore, how
to reduce the sample size or shorten the testing time has
become one crucial engineering problem for the reliability
demonstration.

Much effort has been made to solve the problem
about reducing the sample size, and there are two kinds
of most widely used strategies: 1) the use of prior
information [12]–[14]; 2) the hardened testing
method [15], [16]. A. J. Fernndez [12] proposed some gen-
eralized beta prior models on fraction defective in the relia-
bility testing plan, which significantly reduces the required
sample size. Coolen et al. [13] proposed a zero-failure
Bayesian reliability demonstration method for multi-task
systems by minimizing a linear cost model considering the
loss due to failure in the testing. George and Thomas [14]
described a Bayesian approach for RDT and compared
the Bayesian method with the classical statistical method.
X. Beurtey [15] explored the relevant hardened testing
method for the initiating explosive structure. Rong [16] pro-
posed a hardened testing method based on the stress-strength
interference (SSI) model to reduce the sample size.

In addition, the accelerated test methods and degradation
data are often used to shorten the testing time for long-
life products [17]–[22]. Baussaron [18] proposed a relia-
bility demonstration method based on ADT using Wiener
process model. Liu et al. [19] gave a Bayesian sequential
procedure using estimated performance reliability life based
on degradation test data. Guang and David [20] proposed a
reliability demonstration method for long-life products based
on the degradation testing and a wiener process Model.
Zhang et al. [21] presented a reliability demonstration
methodology for products with Gamma process by optimal
accelerated degradation testing. Specifically, Yang [22] pro-
posed a reliability demonstration testing method based on
the performance degradation for long-life products, where the
main idea is predicting whether or not a testing unit will fail
by the end of the testing using the degradation measurements.
As soon as there are sufficient data to make such a conclusion
at a high confidence level, the unit can be censored to shorten
the testing time. However, the drawback of this method is the
increase of the sample size, which cannot meet the testing
condition when the sample size is limited for the product.
The hardened testing method is a feasible way to achieve
shortening the testing time and reducing the sample size at
the same time. On the one hand, it is reasonable to believe
that the reliability index can be lowered under the hardened
stress level. Thus, how to transform the reliability index under
the normal stress level to that under the hardened stress level
is a problem we will solve in this paper. On the other hand,
the observed degradation data under the hardened stress level
can be utilized to draw a conclusion about the failure state,
which naturally requires the analysis method of the accel-
erated degradation testing (ADT). Moreover, the hardened
testing method can also be used to further shorten the testing
time.

There are two classes of models for describing ADT
data: general path model [23] and stochastic process model.
The latter is more widely applied, such as the Wiener pro-
cess and Gamma process [24]–[30]. The Wiener process
with the attractive properties of the normal distribution is
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commonly used for some specific datasets, but is not proper
for the monotonic degradation modeling [24], [25]. Thus,
the Gamma process is considered for overcoming this defi-
ciency because of its characteristic of the independent non-
negative increment [30]. Abdel [26] was the first to propose
the Gamma process as a proper model for the deterioration
occurring randomly in time. Ling et al. [27] studied the degra-
dation of light intensity of LEDs based on the accelerated
degradation analysis assuming a Gamma degradation process
and time-scale transformation. Tseng et al. [28] dealt with the
optimal step-stress ADT plan with a Gamma degradation pro-
cess by miniThus, recall thatmizing the approximate variance
of the estimated mean time to failures (MTTF) constrained
by the total experimental cost. Ye et al. [29] investigated
the semiparametric inference of the simple Gamma process
model and a random-effects variant.

Based on the good properties of Gamma process, and for
the specific product whose performance degradation can be
measured, this paper presents a RDT method based on the
hardened testing method and the use of degradation measure-
ments to both shorten the testing time and reduce the sample
size in ZFT. This paper is organized as follows. In section II,
an accelerated Gamma degradation model for the consid-
ered problem is formulated, and the relevant inferences are
presented. In section III, the sample size model under the
hardened stress level is given. In section IV, the optimal test-
ing plan and the decision rules for terminating one sample’s
testing are developed. In section V, an numerical example is
presented to illustrate the availability of the proposedmethod,
and the robustness analysis against parameters affecting the
optimal testing plan is given. In section VI, some concluding
remarks are provided.

II. MODEL DESCRIPTION AND RELEVANT INFERENCES
FOR GAMMA PROCESS
In this paper, we combine the use of degradation information
with the hardened testing method to shorten the testing time
and reduce the sample size at the same time, so the accelerated
degradation model is required naturally.

A. ACCELERATED DEGRADATION MODEL BASED ON
GAMMA PROCESS AND INFERENCES ON LIFETIME
CHARACTERISTIC
Gamma process is a stochastic process with independent non-
negative increments, which has a Gamma distribution with
identical scale parameter. Gamma process is able tomodel the
gradual damage monotonically accumulating over time, such
as fatigue, erosion, crack growth, etc [30]. In mathematical
terms, Gamma process is defined as follows. Suppose that
n testing samples are placed at a constant hardened stress level
of ks(k ≥ 1), and inspected at times 0 = t0 < t1 < t2 <
· · · < tm, where k is the hardened coefficient, s is the normal
stress level. During testing, the ith sample’s degradation is
measured as yij at time tj. The inspection is nondestructive,
which can keep the same dispersion characteristic and time-
varying characteristic. Thus, recall that Y has a Gamma

distribution with shape parameter αi > 0 and scale parameter
βi > 0 if its probability density function (PDF) is given by:

fY
(
yij
)
= Ga

(
yij |αi, βi

)
=

βi
αi

0 (αi)
yijαi−1 exp

(
−βiyij

)
(1)

In addition, let αi (t) be a non-decreasing, continuous and
real-valued function for t ≥ 0 with αi (0) ≡ 0. Thus,
Y can be amended as Y (t) denoting the degradation at time t .
In conformity with the definition of the Gamma process Y (t),
the pdf of Y (t) can be given by:

fY (t)
(
yij
)
= Ga

(
yij |αi (t) , βi

)
(2)

with

E (Y (t)) =
αi (t)
βi

, Var (Y (t)) =
αi (t)

β2i
(3)

FY (t)
(
yij
)
=

∫ yij

0

βi
αi(t)

0 (αi (t))
xαi(t)−1 exp (−βix) dx (4)

and the following properties:
(1) P (Y (0) = 0) = 1;
(2) Y (τ )−Y (t) ∼ Ga (αi (τ )− αi (t) , βi), for τ > t ≥ 0;
(3) The Gamma process has independent increments.
Empirical studies [30] show that the expected degradation

in (3) at time t generally follows a power law, which is a key
input in modeling the temporal variability in the degradation:

E (Y (t)) =
λitci

βi
, (λi, ci > 0) (5)

Thus, we let αi (t) = λitci in this paper.
Suppose T is the time-to-failure of a product at which the

degradation measure crosses a pre-specified threshold Df .
Under the settings of the above, the distribution of
the ith sample’s lifetime Ti can then be written as:

FTi (t) = Pr {Ti ≤ t} = Pr
{
Y (t) ≥ Df

}
=

∫
+∞

Df
fY (t)

(
yij
)
dyij =

0
(
λitci , βiDf

)
0 (λitci)

(6)

where 0
(
λitci , βiDf

)
=
∫
+∞

x=βiDf
xλit

ci−1 exp (−x)dx is the

incomplete Gamma function. Then, the ith sample’s reliability
at time t is given by:

RTi (t) = 1− FTi (t) = 1−
0
(
λitci , βiDf

)
0 (λitci)

(7)

In the actual application, Park and Padgett [31] proposed
a two-parameter Birnbaum Saunders distribution to approxi-
mate the lifetime distribution. In our case, we have:

FTi (t) ≈ 1−8
(
Df βi − λitci
√
λitci

)
= 8

(
1
p

(√
tci

q
−

√
q
tci

))
(8)

where 8(·) is the standard normal distribution, and
p =

√
1/
(
βiDf

)
, q = Df βi/λi.
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B. PARAMETER VARIATION RULE AND LIKELIHOOD
FUNCTION
The stress affects the degradation of testing samples, and
the failure mechanism cannot be changed under the hard-
ened stress level, whose sufficient and necessary condition
is the constant acceleration factor AF proposed in [32]. One
definition of the acceleration factor is given based on the
accelerated failure time model :

AF(1,2) = t2/t1 (9)

where testing times t1 and t2 satisfy the following equation:

F1 (t1) = F2 (t2) (10)

where F1 (t1) and F2 (t2) respectively represent the product’s
cumulative failure probability under different stress levels s1
and s2.Combining (9) with (10), we have:

F1 (t1) = F2
(
AF(1,2)t1

)
(11)

Substituting (6) into (11), we can obtain:

0
(
λi1t1ci1 , βi1Df

)
0 (λi1t1ci1)

=
0
(
λi2
(
AF(1,2)t1

)ci2 , βi2Df )
0
(
λi2
(
AF(1,2)t1

)ci2) (12)

To make (12) stand up for the arbitrary t1, the following
equation should be satisfied:{
λi1t1ci1 = λi2

(
AF(1,2)t1

)ci2
βi1Df = βi2Df

⇒

{
AF(1,2) =

(
λi1/

(
λi2t1ci1−ci2

))1/ci2
= (λi1/λi2)

1/ci2

βi1 = βi2, ci1 = ci2
(13)

Equation (13) shows us that λi should change with the
stress level, and βi, ci should keep constant with the stress
level. Thus, we let λi = h(ks), and βi, ci have no relation
with the stress, where h(ks) is a link function reflecting the
effect of the stress on the degradation process. For simplicity,
and without loss of generality, two assumptions are made as
follows:

(1) The measurement interval under the hardened stress
level is pre-determined and the same for all samples.

(2) All samples share the same link function, namely,
the expression of h(ks) is suitable and the same for each
sample, i.e., λ = λi = h (ks) , (i = 1, 2, · · · , n). The link
function follows one of the following acceleration models,
where (a, b > 0):

a) Inverse power law model: h (ks) = a · (ks)b. Then,
we have:

AF(ks,s) =
(
λi(ks)/λi(s)

)1/ci
= kb/ci (14)

b) Arrhenius model: h (ks) = a · exp (−b/(ks)). Then,
we have:

AF(ks,s) =
(
λi(ks)/λi(s)

)1/ci
= exp

(
(k − 1) b
ksci

)
(15)

c) Exponential model: h (ks) = a · exp (b · ks). Then,
we have:

AF(ks,s) =
(
λi(ks)/λi(s)

)1/ci
= exp

(
bs (k − 1)

ci

)
(16)

Specifically, when k = 1, AF(ks,s) ≡ 1 for all models.
Thus, we can amend (6-8) as follows:

FTi(ks) (t (ks)) =
0
(
h(ks)tci , βiDf

)
0 (h(ks)tci)

≈ 1−8
(
Df βi − h(ks)tci
√
h(ks)tci

)
(17)

RTi(ks) (t (ks)) = 1−
0
(
h(ks)tci , βiDf

)
0 (h(ks)tci)

≈ 8

(
Df βi − h(ks)tci
√
h(ks)tci

)
(18)

where ’ks’ in parentheses indicates the stress level.
Under the settings of the above, we have the likelihood

function for the ith sample under the hardened stress level:

L i (2) =
m∏
j=1

βi
1αi(tj)

(
1yij

)1αi(tj)−1
0
(
1αi

(
tj
)) exp

(
−βi ·1yij

)
(19)

where 2 = (a, b, k, βi, ci), 1yij = yij − yi(j−1), 1αi
(
tj
)
=

h (ks) ·
(
tcij − t

ci
j−1

)
, and m equals that tm divided by the mea-

surement interval τ . Specifically, the values of parameters
(a, b) can be determined by the grope testing, the value of k is
determined during the testing design process.

III. SAMPLE SIZE UNDER HARDENED STRESS LEVEL
In general, when the product’s life distribution is unknown,
a binomial distribution can be used to plan the testing,
the minimum sample size that ZFT requires can be calcu-
lated by:

n =
ln δ
lnRs

(20)

where δ represents the specified type II error (consumer’s
risk), and Rs represents the reliability index that needs to be
verified at a 100 (1− δ)% confidence level.

The conventional ZFT considers at a 100 (1− δ)% confi-
dence level that the product’s reliability is not lower than Rs
when no samples fail at the specified time ts under the normal
stress level, and the type II error will not exceed δ caused only
by the sampling error.

However, ZFT based on the accelerated degradation infor-
mation incurs an additional type II error δc if the testing is
terminated at tm, where tm < ts. Thus, the probability of the
total type II error is δ = δs + δc, namely, δs = δ − δc. If the
testing is terminated until ts under the normal stress level, then
δc = 0. As discussed above, we can amend (20) as:

n =
ln (δ − δc)

lnRs
(21)
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As shown in (21), the sample size increase when δc is
larger, but the increase is not significant if δc is a small
fraction of δ, as shown in Fig. 1.

FIGURE 1. Sample sizes at various values of δc .

Obviously, the reliability index Rs pre-determined by the
engineering experience should be lowered under the hardened
stress level. This paper presents a method to transform the
reliability index under the normal stress level to that under
the hardened stress level. First, we can obtain the reliability
at time ts based on (18):

RTi(ks) (ts (ks)) ≈ 8
(
Df βi − h (ks) tsci
√
h (ks) tsci

)
(22)

The values ofDf , ts is pre-determined, and when h(ks), ci is
determined, RTi(ks) (ts (ks)) can be regarded as the monotonic
function of βi. As mentioned in section II, the values of
parameters (a, b) can be determined by the grope testing, so λi
is only related to k as shown in (14-16). As for ci, some
classical values are given for the degradation of concrete
by Ellingwood and Mori [33]: corrosion of reinforcement
(linear: ci = 1), sulfate attack (parabolic: ci = 2), and
diffusion-controlled aging (square root: ci = 0.5). There is
often engineering knowledge available about the shape of the
expected deterioration, so the parameter ci can be assumed
constant for different samples and can also be determined by
the grope testing [23]. Thus, if one sample can achieve the
reliability Rs at ts, then we have (23) under the normal stress
level (k = 1) according to (22):

8

(
Df βis − h (s) tsc
√
h (s) tsc

)
= Rs

⇒ βis =

(
8−1 (Rs) .

√
h(s)tsc + h(s)tsc

)
Df

(23)

Combining (22) with (23), then we can easily obtain
the reliability index (24) that the sample should achieve
under the hardened stress level (k > 1), and the sam-
ple size under the hardened stress level can be expressed

as (25):

RHs = 8

((
8−1 (Rs) .

√
h(s)tsc + h(s)tsc

)
− h(ks)tsc

√
h(ks)tsc

)
(24)

n =
ln (δ − δc)

lnRHs
(25)

To make the reliability index RHs under the hardened stress
level more accurate, the grope testing should be conducted for
multiple samples to assure that the deviation of the parameter
value is as small as possible.

Just to show the effect of the hardened testing method
on the decrease of the sample size, we assume Rs = 0.9,
s = 104KPa, ts = 10000d, Df = 60, h (ks) = 0.02 · (ks)0.5,
c = 0.5. Thus, we can obtain the sample sizes at various
values of k and δc , as shown in Fig. 2.

FIGURE 2. Sample sizes at various values of k and δc .

Fig. 2 shows us that although the value of δc increases,
the general trend of the sample size goes down when the
hardened coefficient just increases a little, which is very
beneficial for ZFT of expensive products.

IV. OPTIMAL PLANS AND TESTING TERMINATION RULES
FOR ACCELERATED DEGRADATION ZFT
Based on the failure probability and the sample size under the
hardened stress level, we give the optimal plans and testing
termination rules for the accelerated degradation ZFT by
minimizing the cost function.

A. TWO TYPES OF ERROR PROBABILITIES
On the one hand, FTi(ks) (t (ks)) is the conditional fail-
ure probability, which is implicitly conditional on tm and
λ = h(ks) according to (17). On the other hand, two types of
error probabilities are mainly related to the estimated errors
of model parameters. As we can see, although the principle
of the constant acceleration factor stipulates that parameter
βi should keep constant under the hardened stress level, there
will always be a certain error when we directly apply β̂i esti-
mated under the hardened stress level to infer that whether
the sample will fail at ts under the normal stress level.
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From the analysis above, we assume that the true value
of parameter βi is uniformly distributed in a certain interval[
β̂i − ζ, β̂i + ζ

]
, where β̂i is the estimated value of parameter

βi for the ith sample, ζ is a known constant.
If one sample is tested until tm under the hardened stress

level of ks (k ≥ 1), and for this sample that has yim (ts (ks)) <
Df , then the failure probability FTi(s) (ts (s)) at time ts under
the normal stress level represents the type II error (con-
sumer’s risk) incurred by the hardened stress level and the
early termination of the testing at tm. In addition, considering
βi ∈

[
β̂i − ζ, β̂i + ζ

]
, we can obtain the upper bound of the

type II error probability FTi(s)U (ts (s)) as:

FTi(s)U (ts(s)) ≈ 1−8

Df
(
β̂i − ζ

)
− h(s)tsc

√
h(s)tsc

, (k = 1)

(26)

where β̂i = h(ks) · tmc/E (Y (tm (ks))) according to (5), and

E (Y (tm (ks))) ≈
n∑
i=1

yim (ks)/n, n is the sample size.

In the same way, we can obtain the upper bound of the
type I error probability (producer’s risk) as:

1− FTi(s)U (ts(s)) ≈ 8

Df
(
β̂i + ζ

)
− h(s)tsc

√
h(s)tsc

, (k = 1)

(27)

B. OPTIMIZATION MODEL BASED ON COST FUNCTION
Obviously, the cost of the accelerated degradation ZFT comes
from the sample size n and the testing time tm. However,
if the hardened stress level cannot be controlled very well,
the product may be damaged while it will not be damaged
under the normal stress level. Thus, we cannot ignore the risk
cost caused by the hardened stress level. In addition, tm varies
from sample to sample, so we use an average testing time ta of
all samples for the cost modeling, from which we can obtain
the average measurement timesm = ta/τ . Thus, the total cost
TC (n, ta, k) can be expressed as:

TC (n, ta, k) = w1n+ w2ta + w3nm+ w4 (k − 1) (28)

where w1n is the sample cost; w2ta is the cost of conducting
an accelerated degradation ZFT;w3nm is the cost of measure-
ments; w4 (k − 1) is the risk cost.

Combining (25) with (28), we can obtain themore concrete
expression as follows:

TC (δc, η, k) =
ln (δ − δc)

lnRHs

(
w1 + w3

ηts
τ

)
+w2ηts + w4 (k − 1) (29)

where η = tm/ts ≈ ta/ts.
Actually, there are two ways to connect the characteristic

between the normal testing and the hardened testing: the first
one is what we discuss above, i.e., the testing time ts keep the

same, but the reliability index Rs is lowered under the hard-
ened stress level; the second one is that the reliability index
keep the same, but the testing time should be shortened to
achieve Rs under the hardened stress level, where the testing
time under the hardened stress level is ts/AF . The second one
cannot decrease the sample size, but can further shorten the
testing time, and the total cost can be expressed as:

TC (δc, η, k) =
ln (δ − δc)

lnRs

(
w1 + w3

ηts
AFτ

)
+w2

ηts
AF
+ w4(k − 1) (30)

Equation (30) is generally applied to the situation where
the testing cost per unit time is very expensive, whereas (29)
is generally applied to the situation where each sample’s cost
is very expensive or the sample size is very limited.

To obtain the optimal values of (δc, η, k), we need to
minimize the total cost, as shown in (29) and (30). However,
TC (δc, η, k) should satisfy some constraints given by the
engineering experience: 1) the probability of the type II error
caused by the hardened stress level and the early termina-
tion of the testing for any sample cannot exceed δc/n [22];
2) the sample size cannot be larger than the number na that is
available for the testing; 3) the hardened stress level ks must
not exceed the critical stress level kcs, i.e., 1 ≤ k < kc,
or a mass of products may be damaged. Based on these
optimization criteria above, and assuming that the sample
size for the grope testing is x, then the optimization model
combining with the cost function (29) can be written as:

min
(δc,η,k)

{
ln (δ−δc)
lnRHs

(
w1 + w3

ηts
τ

)
+ w2ηts + w4(k−1)

}
(31)

subject to



1−8

Df
(

h(ks)·(ηts)c

E(Y (tm(ks)))
− ζ

)
− h(s)tsc

√
h(s)tsc


≤

δc lnRHs
ln (δ − δc)

ln (δ − δc)
lnRHs

≤ na ⇒ 0 ≤ δc ≤ δ −
(
RHs
)na

1 ≤ k ≤ kc
0 < η ≤ 1

(32)

Because the hardened coefficient k is a variable that needs
to be determined and cannot be known in advance, the degra-
dation measure yim(ks) under the hardened stress level cannot

be known, which makes E (Y (tm (ks))) ≈
n∑
i=1

yim (ks)/n

incalculable. Considering the mean degradation measure
E (Y (tm (ks))) at tm under the hardened stress level can be
approximated as E (Y (ts (s))) at ts under the normal stress
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level, we have:

1−8

Df
(
h(ks)·(ηts)c

E(Y (ts(s)))
− ζ

)
− h(s)tsc

√
h(s)tsc


≤

δc lnRHs
ln (δ − δc)

ln (δ − δc)
lnRHs

≤ na ⇒ 0 ≤ δc ≤ δ −
(
RHs
)na

E (Y (ts (s))) =
x∑
i=1

yis(s)/x

1 ≤ k ≤ kc
0 < η ≤ 1

(33)

Likewise, we can obtain the optimization model based on
the cost function (30):

min
(δc,η,k)

{
ln (δ−δc)
lnRs

(
w1 +

w3ηts
AFτ

)
+
w2ηts
AF
+ w4(k−1)

}
(34)

subject to



1−8

Df
(
h(ks)·(ηts)c

E(Y (ts(s)))
− ζ

)
− h(s)tsc

√
h(s)tsc


≤

δc lnRs
ln (δ − δc)

ln (δ − δc)
lnRs

≤ na ⇒ 0 ≤ δc ≤ δ −
(
RHs
)na

AF(ks,s) = exp
(
(k − 1) b
ksc

)
E (Y (ts (s))) =

x∑
i=1

yis(s)/x

1 ≤ k ≤ kc
0 < η ≤ 1

(35)

C. TEST TERMINATION RULES FOR ONE SAMPLE
The degradation measure for each sample is different, so the
termination time of the testing may be different for each sam-
ple. Therefore, it is necessary to give the testing termination
rules for each sample. In this paper, we quote the decision
rules in [22] for terminating the testing of one sample.

As discussed above, we can calculate and update the upper
bounds of two types of error probabilities FTi(s)U (ts (s)) and
1 − FTi(s)U (ts (s)) according to the Gamma process and the
newest measurement data during testing. For one sample that
has yim (ts (ks)) < Df , then FTi(s)U (ts (s)) represents the
upper bound of the type II error (consumer’s risk) incurred
by the hardened stress level and the early termination of the
testing. When tm is small, the type II error is too large to
be acceptable. As tm increases, the type II error decreases.
When FTi(s)U (ts (s)) is smaller than the acceptable value,
we can terminate the testing. Similarly, For one sample that
has yim (ts (ks)) > Df , then 1 − FTi(s)U (ts (s)) represents
the upper bound of the type I error, which is too large at the
beginning of the testing and decreases as tm increases. When
1−FTi(s)U (ts (s)) is smaller than the acceptable value, we can

terminate the testing. However, there will be some situations
where yim (ts (ks)) is very close to Df , then the testing should
be continued until a large tm or even ts. Thus, the decision
rules for terminating the testing of one sample are as follows:

(1) If FTi(s)U (ts (s)) ≤
δc

n
, as shown in Fig. 3, terminate

the testing after the mth measurement. The sample will not
fail at ts under the normal stress level, and the testing time is
reduced to tm.

FIGURE 3. FTi (s)U
(
ts (s)

)
is small enough, leading to rule (1).

(2) If 1−FTi(s)U (ts (s)) ≤
ρ

n
, as shown in Fig. 4, terminate

the testing after the mth measurement, where ρ represents the
producer’s risk . The sample will fail at ts under the normal
stress level, and the testing time is reduced to tm.

(3) If FTi(s)U (ts (s)) >
δc

n
and 1 − FTi(s)U (ts (s)) >

ρ

n
,

as shown in Fig. 5, continue the testing until (1) or (2) is
satisfied or the testing time reaches ts.

FIGURE 4. FTi (s)U
(
ts (s)

)
is large enough, leading to rule (2).

V. NUMERICAL EXAMPLE
The magnet ring is a crucial structure which assures to
produce the steady space magnetic field. There are mainly
two kinds of magnet rings: 1) Mn-Zn magnet ring which
is generally used to make inductors, transformers, magnetic
heads and aerial rods, etc; 2) Ni-Zn magnet which is gen-
erally used to make communication equipment lines, anti-
jamming filter lines and data cables, etc. Considering its wide
applications and important functions, the reliability must be
assured even after a long-time use. In this paper, we use the
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FIGURE 5. FTi (s)U
(
ts (s)

)
is neither too large nor too small.

TABLE 1. Opimization results.

magnetic flux to describe the performance characteristic, and
the magnetic flux will gradually decrease because of complex
environmental factors, such as temperature.We assume that if
the degradation measure of magnetic flux exceeds 3%, then
the magnet ring fails. To produce high-reliability and long-
life magnet rings, the reliability index of RDT is required to
achieve 0.98 at 1 year. We want to demonstrate this reliability
at a 90% confidence level.

A. OPTIMAL RDT DESIGN
The traditional ZFT requires 114 samples to be tested for
1 year, which will be unrealistic if the sample size is limited
to less than 114. To decrease the sample size and shorten the
testing time, we use the proposed method to demonstrate the
reliability 0.98 at a 90% confidence level.
To obtain the optimal scheme of the accelerated degrada-

tion ZFT, we select temperature to be the hardened stress and
Arrhenius model to be the acceleration model. In addition,
we assume that the normal temperature is 293K (20◦C), and
the highest temperature cannot exceed 673K (400◦C), i.e., the
critical hardened coefficient is about 2.29 (1 ≤ k ≤ 2.29).
Assuming that the average degradation measure at ts and
the estimated values of parameters have been obtained by
the grope testing (the degradation data come from 10 sim-
ilar magnet rings that have been used in the engineering):∑10

i=1 yis(s)/10 ≈ 1.55, â = 0.06, b̂ = 300.23, ĉ = 0.61.
The relevant testing costs are determined by the engineering
experience: w1 = $30 one sample, w2 = $50 per day,
w3 = $5 per measurement, w4 = $10000; the pre-specified
Df = 3% , ζ = 0.05; the allowable sample size na = 15;
the type I error (producer’s risk) ρ = 0.1, the type II
error (customerâĂŹs risk) δ = 0.1; ts = 8760h, Rs = 0.98;
the measurement interval τ = 120h. Taking the above data
into (31) and (33), then we have the optimization model,

TABLE 2. Opimization results.

as shown in (36) and (37).

min
(δc,η,k)


ln (0.1− δc)

lnRHs

(
30+ 5×

8760η
120

)
+50× 365η + 10000 (k − 1)

 (36)

subject to

1−8


3
(
0.06 exp(−300.23/293k)·(8760η)0.61

E(Y (ts(s)))
− 0.05

)
−0.06 exp (−300.23/293) (8760)0.61√

0.06 exp (−300.23/293) (8760)0.61


≤

δc lnRHs
ln (0.1− δc)

ln (0.1− δc)
lnRHs

≤ 15⇒ 0 ≤ δc ≤ 0.1−
(
RHs
)15

RHs

= 8



8−1(0.98).
√
0.06 exp(−300.23/293)(8760)0.61

+0.06 exp(−300.23/293)(8760)0.61

−0.06 exp(−300.23/(293k))(8760)0.61√
0.06 exp (−300.23/(293k)) (8760)0.61


E (Y (ts (s))) =

10∑
i=1

yis(s)/10 ≈ 1.55

1 ≤ k ≤ 2.29
0 < η ≤ 1

(37)

Solving the optimization model, we can obtain the optimal
values of (δc, η, k), the minimal total cost and the optimal
testing plan, as shown in Table 1:
Table 1 tells us that we should conduct an accelerated

degradation ZFT for 9 samples at the temperature of 539.9K
(266.9◦C). The average testing time is 4609.7h, and the aver-
age measurement times is m = ta/τ ≈ 38.
As we can see, the average testing time is a little long.

If we cannot accept the testing time, we can use the hard-
ened testing method to further shorten the testing time,
but the sample size will be larger than 114. Thus, let
na = 150, we can have the optimization model based
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on (34) and (35) as:

min
(δc,η,k)


ln (0.1− δc)

ln 0.98

(
30+ 5×

8760η
120 · AF(ks,s)

)
+
50× 365η
AF(ks,s)

+ 10000 (k − 1)

 (38)

subject to

1−8



 3

(
0.06 exp(−300.23/293k)·(8760η)0.61

E(Y (ts(s)))

−0.05

)
−0.06 exp (−300.23/293) (8760)0.61

√
0.06 exp (−300.23/293) (8760)0.61


≤

δc ln 0.98
ln (0.1− δc)

ln (0.1− δc)
ln 0.98

≤ 150⇒ 0 ≤ δc ≤ 0.1− (0.98)150

AF(ks,s) = exp
(
300.23 · (k − 1)
293 · 0.61 · k

)
E (Y (ts (s))) =

10∑
i=1

yis(s)/10 ≈ 1.55

1 ≤ k ≤ 2.29
0 < η ≤ 1

(39)

In the same way, we can obtain the optimal values of
(δc, η, k), the minimal total cost and the optimal testing plan,
as shown in Table 2:

As we can see from Table 2, the average testing time is
shortened about 2500h, but the minimal total cost increases
about $25000 and the hardened coefficient is too large. The
sample size is acceptable, but on the whole, using the hard-
ened testing method to decrease the sample size is more
acceptable and economic. Therefore, the following testing
termination rules for one sample is given based on Table 1.

(1) If FTi(s)U (ts (s)) ≤ 6.24 × 10−3, terminate the testing
of the sample. The sample passes the testing.

(2) If 1 − FTi(s)U (ts (s)) ≤ 0.011, terminate the testing of
the sample. The sample fails to pass the testing.

(3) If FTi(s)U (ts (s)) > 6.24 × 10−3 and 1 −
FTi(s)U (ts (s)) > 0.011, continue the testing until (1) or (2) is
satisfied or the testing time reaches ts.

B. DEGRADATION DATA ANALYSIS FOR ONE
TESTING SAMPLE
Suppose that the 9 samples of magnet rings are tested at the
hardened temperature of 539.9K (266.9◦C). We use Monte-
Carlo method to generate a set of degradation data, and a part
of the degradation data and relevant analysis of one sample
are shown in Table 3.

As we can see from Table 3, when we have the fourteenth
measurement at 1680h, the estimated values of α̂i

(
tj
)
and β̂i

are 3.1846 and 2.8930 (α̂i
(
tj
)
changes with time, β̂i changes

TABLE 3. Degradation data analysis for one testing sample.

with the newest degradation data). The upper bound of the
type II error probability is 0.0955, which leads to the termi-
nation rule (3). Therefore, the test should be continued.

Obviously, when we have the thirty-fifth measurement
at 4200h, the estimated values of α̂i

(
tj
)
and β̂i are 5.5692

and 3.8726. The upper bound of the type II error probabil-
ity is 0.0052 leading to the termination rule (1). Therefore,
the testing should be terminated, and the sample passes the
testing.

C. ROBUSTNESS ANALYSIS OF OPTIMAL TESTING PLAN
On the one hand, we use E (Y (ts (s))) pre-estimated from
the grope degradation testing to approximate E (Y (tm (ks))),
so the relative error on the optimal testing plan caused by this
approximation should be discussed based on the robustness
analysis against the true value of E (Y (tm (ks))). On the other
hand, the certain error ζ for β̂i is determined by the engi-
neering experience, the relative error on the optimal testing
plan caused by the engineering experience should also be
discussed based on the robustness analysis against the true
value of ζ .

To perform a numerical evaluation, suppose the true values
of E (Y (tm (ks))) and ζ are the values given by the above
example, i.e., E (Y (tm (ks))) = 1.55, ζ = 0.05, and that pre-
estimated values deviate ±10% from the true values. Then
the optimal testing plan are respectively calculated based on
different combinations of the deviations, the relative error
compared with the optimal testing plan shown in Table 1 and
Table 2 can be seen in Table 4 and 5. The relative error is
defined as (xd − xt)/xt , where xd is the approximated value,
and xt is the true value. From Table 4 and 5, we can give the
following three conclusions:
(1) The sample size and stress level have strong robustness

against the pre-estimated values of E (Y (tm (ks))) and ζ ,
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TABLE 4. Relative errors against optimazation results (Table 1) caused by
parameter errors.

TABLE 5. Relative errors against optimazation results (Table 2) caused by
parameter errors.

we may not be worried about the error on the sample size
and stress level.

(2) The value of ζ has very small effect on the optimal
testing plan.

(3) The value of E (Y (tm (ks))) has moderate effect on the
total cost TC (δc, η, k) and average testing time. Moreover,
when the pre-estimated value is larger than the true value,
both the total cost and average testing time increase, on the
contrary, both the total cost and average testing time decrease.

To sum up, the robustness of the optimal testing plan
against E (Y (tm (ks))) and ζ is great, i.e., we can believe
the rationality of the optimal testing plan obtained by the
proposed method.

VI. CONCLUSION
For the reliability demonstration of long-life and high-
reliability products, we propose the accelerated degradation
ZFT method under the hardened stress level to enrich the
traditional ZFT with binomial distribution, which aims to
shorten the testing time and reduce the sample size, and make
an improvement on the degradation bogey test (DBT) method
proposed by Yang [22]. The results of the given example
show that the sample size can be dramatically reduced under
the hardened condition when the testing time can still be
shortened, and the robustness of the optimal testing plan is
good.

The innovation points lie in two aspects. Firstly, we employ
the Gamma process and accelerated degradation model to
deduce the failure probability model, which is applied to
predict whether or not one sample will fail by the end of

the testing and shorten the testing time. Secondly, the hard-
ened testing method is considered for reducing the sample
size or further shortening the testing time.

The numerical example shows that the method we pro-
pose can efficiently shorten the testing time and decrease the
sample size, and the robustness is great as well. The optimal
testing plan obtained by the proposed method is reasonable
and feasible, which has the significance for the reliability
demonstration of long-life and high-reliability products in
some way.
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