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ABSTRACT Fairness, low latency, and high throughput with low energy consumption are desired attributes
for medium access control (MAC) protocols. The IEEE 802.15.4 standard defines the MAC and physical
layers standard for IPv6 over low power personal area network (6LoWPAN). When a non-appropriate
parameter setting is used, the default MAC parameters generate excessive collisions, packet losses, and
high latency under high traffic when a large number of 6LoWPAN nodes being deployed. A search of the
literature revealed few studies that investigate the impact of optimizing these parameters to achieve high
throughput with minimum latency. This paper proposes a new intelligent approach to selecting the optimal
6LoWPAN MAC layer parameters set; the introduced mechanism depends on artificial neural networks,
genetic algorithm, or particles swarm optimization to select and validate the optimized MAC parameters.
The obtained simulation results showed that utilizing the optimal MAC parameters improved 6LoWPAN
network throughput by 52–63% and reduced the end-to-end delay by 54–65% in which the enhancement
percentage depends on the number of deployed sensor nodes in the network.

INDEX TERMS 6LoWPAN, artificial neural network, genetic algorithm, particle swarm optimization,MAC
parameters.

I. INTRODUCTION
There are many different trends that need to be taken
into account when considering the development of the
Internet-of-Things (IoT) [1], which include the IEEE
802.15.4 compliant protocols [2], future Internet [3], and
Machine-to-Machine (M2M) networks [4]. Nowadays, the
IEEE 802.15.4 is a common standard used by the Low
power Wireless Personal Area Network (LoWPAN) devices
for lower protocol layers. However, problems emerge when
presenting the upper layers of the protocol stack. To address
this, ZigBee Alliance [5], an industrial group, developed
the ZigBee protocol in 2003 as an IEEE 802.15.4 com-
pliant protocol and specified the vertical upper layers of
the protocol stack. The ZigBee protocol has suffered from
many limitations including the dependency on a single wire-
less link and application profile, along with scalability and
Internet integration. The term future Internet was intro-
duced in [6] and [7] to depict the Internet architecture and
protocols research in the next 20 coming years. There are
several European projects targeting future Internet research
(i.e., EU 4WARD [8]), but are not focusing on embedded

Internet devices and LoWPANs. Internet integration was not
considered in traditional LoWPAN, because it was thought to
be completely isolated. However, the EU SENSEI project [9]
has focused on the integration of embedded devices with
IPv6 over Low power Personal Area Network (6LoWPAN)
functionality in the current and future global Internet. M2M
networks are cognitive systems that have the ability to com-
municate with each other without human intervention [10].
The traditional M2M devices include cellular modems along
with an Internet based back end system for IP communica-
tions. Recently, the M2M gateway has been used to bridge
local embedded networked device with IP based networks.
6LoWPAN can be connected to the Internet via M2M gate-
way and encouraged both the research community and indus-
try to become involved with the IoT revolution [11].

The IEEE 802.15.4 standard defines the Medium Access
Control (MAC) and Physical (PHY) layers characteristics for
low-data rate and low-power wireless devices [12]. Internet
Engineering Task Force (IETF) working group introduced
the 6LoWPAN [13] in order to adopt the implementation
of Internet protocols over wireless embedded devices that
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are characterized by limited memory size, being power con-
strained, and having relaxed throughput. The 6LoWPAN pro-
tocol stack is similar to the TCP/IP stack. However, there
are a few differences between them because of the large
size of IPv6 packet compared to the IEEE 802.15.4 packet.
Accordingly, the IETF working group added an extra layer
to 6LoWPAN protocol stack, which is called the adapta-
tion layer. This layer is responsible for header compression,
fragmentation and reassembly of an IPv6 packet when it is
sent or received over the IEEE 802.15.4 standard.

Wireless M2M sensor networks are usually composed of
hundreds to thousands of energy constrained and short range
communication devices. These limitations affect the selection
of one protocol stack over the others. In fact, the increasing
interest in M2M sensor networks has led to the development
of a range of different communication protocols, but their
diversity has limited the integration of different networks.
Regarding the MAC and PHY layers, a widely used solution
has been offered by the IEEE 802.15.4 standard and the
IPv6 because the IP layer will cope the isolated network
integration problems. This paper focuses on optimizing the
MAC layer parameters of the 6LoWPANprotocol stack based
on the specifications released by IETF working group [13].

AnyMACprotocol forM2M sensor network should ensure
prudent energy consumption in all M2M nodes in order to
prolong the network lifetime. This paper motivated from the
work developed by Zayani et al. [14] which is an enhance
work inspired from the work presented by Park et al. [15].
In both works [14] and [15], the analytical model for the
main characteristics of IEEE 802.15.4 standard was studied
and verified using Markov chain model and Monte-Carlo
simulation. The level of contention at the MAC layer influ-
ences the network throughput and end-to-end delay. In addi-
tion, the performance indicators at MAC and PHY layers
showed that the selection of appropriate MAC parameters
led to minimize the energy consumption, enhance reliability
and reduce the end-to-end delay. The core contribution of
the proposed approach is to select the optimal MAC layer
parameters, the selection was carried out by using a) artificial
neural networks; b) intelligent optimizer scheme. Moreover,
the results are validated using Generic Algorithm (GA) and
Particle Swarm Optimisation (PSO) to verify the selected
MAC layer parameters sets.

The rest of this paper is organized as follows. Section II
reviews the relevant recent works of the literature. Section III
gives an overview of the basic soft-computing techniques.
The methodology and proposed approach are illustrated in
Section IV. In Section V, the interactions between MAC
parameters are studied, in addition to the numerical evalua-
tions of the proposed approach. Finally, Section VI concludes
this paper.

II. RELATED WORKS
The IEEE 802.15.4 MAC layer standard of 6LoWPAN
has received much attention, with a focus on its perfor-
mance in terms of successful packet reception probability,

packet delay, throughput, and energy consumption. Nowa-
days, IEEE 802.15.4 standard is a key technology for the
development of M2M and IoT. Consequently, many works in
the literature are generally verified by simulation tools such
as MATLAB, NS-2, NS-3, OPNET, or OMNET. These stud-
ies have studied the performance of Carrier Sense Multiple
Access/Collision Avoidance (CSMA/CA) mechanism of the
IEEE 802.15.4 standard and proposed different algorithms
either to enhance the end-to-end delay or improve the energy
consumption. The energy consumption and end-to-end delay
in WSN are affected by a variety of MAC parameters and the
challenge of optimizing WSN networks in terms of a low-
energy consumption with minimum latency has been a diffi-
cult problem need to be addressed by research community.

Ergen et al. [16] presented a novel approach forminimizing
the energy consumption of un-slotted IEEE 802.15.4 MAC
protocols using optimisation techniques. The objective func-
tion was related to the total energy consumption in the trans-
mit, receive, listen, and sleep states, in addition to the delay
and reliability of the packet delivery. While the decision vari-
ables were the sleep and wake time of the receivers. Storing
light look-up tables in the receiver nodes represented the
optimal solution and made it easy to implement on existing
IEEE 802.15.4 hardware platforms.

Fischione et al. [17] conducted an analysis of un-slotted
IEEE 802.15.4 MAC, the expressions of which were repre-
sented as a function of sleep time, listening time, traffic rate
and MAC parameters. The analytical results were then used
to optimize the duty cycle of the nodes and MAC protocol
parameters. The authors reported that significant reduction
of sensor node energy consumption compared to existing
solutions was achieved.

Marco et al. [18] provided an analysis of the fundamen-
tal MAC and routing protocols for Low-power and Lossy
Networks (LLNs): IEEE 802.15.4MAC and IETF IPv6 Rout-
ing Protocol for Low-power and lossy networks (RPL). The
characterisation of their cross layer interactions was pre-
sented in the form of a mathematical description, with a
protocol selection mechanism being implemented to select
the appropriate routing metric andMAC parameters for given
specific performance constraints. Both the analytical and
experimental results showed that the behaviour of the MAC
protocol affected the performance of the routing protocol
and vice versa, unless these two were carefully optimized
together.

Wallace et al. [19] proposed a fuzzy CSMA/CA MAC
protocol with two separate fuzzy logic controllers. The first
controller was used to optimize the MAC parameters and
sleeping schedule duty-cycle, whilst the second controller
was aimed at optimizing the size of the contention window
using three performance metrics as inputs. These two fuzzy
logic controllers were deployed to ensure maximum power
efficiency achievement while utilizing the optimized param-
eters in sensor network.

Liu and Li [20] proposed a Collision-Aware Backoff algo-
rithm (CABEB) to improve the performance of a slotted
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CSMA/CA for the IEEE 802.15.4 standard. The CABEB
algorithm provided dynamic selection of a backoff period
depending on the current collision probability of the net-
work. The proposed approach was able to configure theMAC
layer parameters autonomously based on the available chan-
nel state information. The analytical results were based on
Markov chain modelling, while the simulation results were
based on OMNET++ simulation software. The obtained
results showed that the CABEB algorithm performed better
that the default IEEE 802.15.4 standard and the knowledge-
based exponential backoff algorithm.

Abdeddaim et al. [21] applied models that led to the
idle sensing access method of IEEE 802.11 to the slotted
CSMA/CA of IEEE 802.15.4 standard. They were taking into
account the central role of the coordinator as well as the burst
nature of the traffic. The contention window was adjusted
depending on optimal values to achieve high throughput
along with low duty cycles and minimum energy consump-
tion in sensor nodes.

Pinto et al. [22] proposed a Genetic Machine Learning
Algorithm (GMLA) for Wireless Sensor Network (WSN)
data fusion applications, with the aim of improving com-
munication efficiency. Random topologies were used in the
simulation and GMLA presented almost 13% of gain over
IEEE 802.15.4 in 1,000 simulation rounds.

Brienza et al. [23] compared off-line computation, model-
based adaptation, and measurement-based adaptation by sim-
ulation in to select the optimal MAC parameter setting to
provide reliability with minimum energy consumption with
the IEEE 802.15.4 standard. The adaptive algorithms per-
formed well compared to other models, that were unsuitable
in practical scenarios, where the transmission errors could not
be neglected.

Li and Sikdar [24] developed a queueing model to evalu-
ate the delay of a class of discrete-time, throughput-optimal
MAC protocols. Then, the queuing model was used to derive
the optimal parameter settings for the MAC protocol. The
parameters selection and the delay model were validated
using simulation tools. Their approach addressed the problem
of selecting parameters that minimize the average packet
delay.

Elshaikh et al. [25] focused on optimizing WSN protocols
using the Ichi Taguchi (Taguchi) optimization method. That
is, the energy consumed by sensor nodes were optimized
using the Taguchi method to predict network topology design
parameters. The simulation results were obtained using an
OMNET++ simulator, with the results showing the impact
of the network protocols on energy consumption.

Francesco et al. [26] proposed the Adaptive Access Param-
eters Tuning (ADAPT) algorithm for dynamically adjusting
the MAC parameters, based on the desired level of reliability
and actual operating conditions experienced by the sensor
nodes. The simulation results showed that the ADAPT algo-
rithm was able to provide the desired reliability with a very
low energy expenditure, even under operating conditions that
dynamically change with time during network operation.

Park et al. [27] proposed an adaptive tuning mech-
anism for IEEE 802.15.4 MAC layer parameters. their
proposed protocol was adjusted dynamically to mini-
mize the sensor node energy consumption using a con-
strained optimisation scheme that run on each device in the
network.

Akbar et al. [28] proposed a Tele-Medicine
Protocol (TMP) based on beacon-enabled IEEE 802.15.4
standard. The TMP optimized the sensor node duty-cycle
and tuning MAC layer parameters to conserve sensor node
energy.

As seen in the above literature review, many studies have
shown that IEEE 802.15.4 may suffer from severe limitations
in terms of network reliability and energy efficiency, if non-
appropriate parameter settings are used. Many efforts have
been made regarding MAC layer’s parameters selection in
terms of achieving better power consumption and overcom-
ing delay constraints: optimized proposals for beaconless-
enabled IEEE 802.15.4 standard conducted in [16]–[18].
Alternatively, the beacon-enabled IEEE 802.15.4 standard
proposals conducted in [19]–[28]. Most of the aforemen-
tioned proposals tried to optimize the sensor node duty-cycle
and tuning MAC parameter settings for minimizing sensor
node energy expenditure. However, less attention has been
paid to optimizing these parameters and selecting the exact
optimal set that provide high reliability with minimum energy
consumption. This issue is solved in this paper by propos-
ing an intelligent scheme for optimal MAC parameters set
evaluation. The evaluation technique is based on Artificial
Neural Network (ANN) and optimisation techniques to
achieve high throughput with minimum delay. Also, a com-
parison between Genetic Algorithm (GA) and Particles
Swarm Optimisation (PSO) was conducted to choose the
best intelligent optimizer that provides the optimal set for
6LoWPAN MAC layer parameters.

To the best of our knowledge, there are several important
areas where this work makes several noteworthy original
contributions. This paper contributes to existing knowledge
of 6LoWPAN MAC layer optimisation by:
1) Predicting the 6LoWPAN network behaviour using

ANN with exhaustive search to select optimal ANN
topology and LevenbergMarquardt (LM) learning
algorithm. The trained neural network is ease the
understanding of MAC layer parameters using non-
parametric model while most of statistical methods in
the literature are parametric model that need higher
background of statistic;

2) Introducing an intelligent optimizer for 6LoWPAN net-
work to maximize the reliability and minimize the
end-to-end delay with relative to MAC parameters set.
Two evolutionary algorithms (EA) are used to find
the optimal MAC parameter set: PSO and GA. Both
EA algorithms are compared in terms of effective-
ness (finding the true global optimal solution) and com-
putational efficiency. The performance comparison of
the GA and PSO is conducted using MATLAB 2017a;
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3) Providing comprehensive comparisons between the
default MAC parameters setting suggested by the stan-
dard and the optimal parameters settings achieved from
the proposed approach in this paper.

III. SOFT-COMPUTING TECHNIQUES
Soft-Computing (SC) is one of the possible ways for build-
ing intelligent and wiser machines. It aims to model and
provide solutions for existing problems that are not mod-
elled or not easy to modelled mathematically. Accordingly,
SC will achieve a robust, tractable and low-cost solution from
uncertainty and approximate reasoning [29]. The techniques
of SC are nowadays being used successfully in many applica-
tions and three of them are used in the proposed approach to
determine the optimal MAC layer parameters for 6LoWPAN
networks, these techniques are:

A. ARTIFICIAL NEURAL NETWORKS
Artificial Neural Networks (ANN) are a family of models
inspired by biological neural networks, which can be viewed
as a network of simple processing elements called neurons.
These neurons work in harmony to provide the solution for
scientific problems, such as pattern recognition or data clas-
sification, through a learning process. In general, they are
composed of three layers, which are an input layer, some hid-
den layers and an output layer. The pool of neurons or simple
processing elements communicate by sending signals to each
other over a large number of weighted connections. These
connections have numeric weights that can be tuned based on
experience, making the ANN adaptive to inputs and capable
of learning system behaviour [30].

ANN are typically organized in layers, these being com-
posed of a number of interconnected neurons, which contain
an activation function. The input data are presented to the
ANN via the input layer, which is linked to one or more
hidden layers for actual data processing through a system of
weighted connections. The hidden layers are then linked to
an output layer where the predicted output is found. The pre-
dicted output can be found by minimizing the error between
the ANN output(s) and the actual output(s).

The most efficient and accurate learning process in ANN
is the Feed-Forward (FF) and the selection of proper ANN
topology depends on the number of neurons in the input,
hidden and output layers. Moreover, there are two main
approaches to make the topology selection: a) evolutionary
algorithms (EAs), such as a GA or PSO; and b) exhaustive
search, which is based on the neurons prediction number in
each layer. This paper is based on exhaustive search method
in order to build the optimal ANN topology.

B. GENETIC ALGORITHM
A Genetic Algorithm (GA) is a method for solving both
constrained and unconstrained optimisation problems based
on a natural selection process. It evolves a set of individuals,
also called chromosomes, which constitutes the generational
population and produces a new population. These individuals

are developed according to selection rules and other genetic
operators, such as mutation and crossover, with each indi-
vidual receiving a measure of fitness. The selection rules
focus on the individuals that have high fitness. Mutation and
crossover provide an attempt to simulate the natural breeding
process that simulates the reproduction process [31].

GA is implemented through the procedure described in
Algorithm 1, where ps, ef and gn are the population size,
the expected fitness of the returned solution and themaximum
number of generations allowed, respectively. The procedures
are repeated until the particular fitness is accepted (termi-
nation criterion is reached), or the predetermined number of
iterations (generations) have been run.

Algorithm 1 Genetic Algorithm
Require: population size ps, expected fitness ef,

generation number gn,
Ensure: the problem solution
generation = 0
population = initial_Population()
fitness = evaluate(population)
repeat

parents = select(population)
population = mutate(crossover(parents))
fitness = evaluate(population)
generation = generation + 1

until (fitness[i] = ef , 1 ≤ i ≤ ps) or generation ≥ gn

C. PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimisation (PSO) is a computational
method that tries to solve complicated problems using an
iterative approach to optimize a candidate’s solution with
regard to a given performance. The main steps of the PSO
algorithm are described in Algorithm 2, where each particle
has a velocity and an adaptive direction that determines its
next movement within the search space. The particle is also
endowed with a memory that makes it able to remember the
best previous position that it passed by [32].

The PSO is formed by a set of particles, each one of which
represents a potential solution to the given problem. The
particle has a velocity value to indicate how much the data
can be changed across position coordinates in n-dimensional
search space. The PSO algorithm keeps track of three global
variables to reach the target:

1) Target value or condition;
2) Global best value indicates which particle’s data is

currently closest to the target;
3) Stopping value indicates when the algorithm should

stop if the target is not found.
To update the position of each particle i, there is a set

of velocities, each of which is the element that promotes
the capacity of particle location and can be computed as
described in (1), wherew is called the inertia weight, r1 and r2
are random numbers in the interval [0,1], c1 and c2 are
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Algorithm 2 Particle Swarm Optimisation Algorithm
for i = 1 to n-particles do

Initialize the information of particle i
Random initialize position and velocity of particle i

end for
repeat
for i = 1 to n-particles do
Compute the Fitnessi of particle i
if Fitnessi ≤ Pbest then
Update Pbest using the position of particle i

end if
if Fitnessi ≤ Gbest then
Update Gbest using the position of particle i

end if
Update the velocity of particle i
Update the position of particle i

end for
until Stopping condition is true
return Gbest and corresponding position

positive constants, yij is the best position (Pbest) found by the
particle iwith respect to dimension j, and finally yj is the best
position (Gbest) with respect to dimension j. The position of
each particle is updated according to the formula in (2).

vij(t + 1) = wvij(t)+ c1r1(yij − xij(t))+ c2r2(yij − xij(t))

(1)

xij(t + 1) = vij(t + 1)+ xij(t) (2)

while xij(t+1) is the current position and xij(t) is the previous
position of the particle.

IV. PROPOSED OPTIMAL MAC PARAMETERS SELECTION
In this section, a brief and clear explanation for the proposed
mechanism of optimal MAC parameters selection will be
given. As stated earlier, this paper is motivated and based on
the mathematical models introduced by Zayani et al. [14] that
was inspired from Markov chain analytical model developed
by Park et al. [15].

Low energy consumption is vital in M2M sensor networks
and nodes can achieve high throughput by extending the net-
work lifetime or reducing packet drops. Packets are dropped
either because the channel is busy or the maximum number of
retries limit has been reached. Extension of network lifetime
with reduced delay can be achieved by selecting the optimal
MAC parameters set as depicted in Fig. 1 and the detailed
steps for the proposed optimisation scheme are as follows:
1) Data Collection: complete data sets were collected

from the proposed mathematical model in [14] for
different network sizes;

2) Data Analyses: collected data were analysed and pre-
processed prior to the training stage. The datasets are
separated into inputs and outputs, and divided ran-
domly into three subsets: training set (70%), testing
set (15%), and validation set (15%);

3) ANNTraining: the analysed data (training set) were fed
as inputs to the ANN for complete output prediction
prior to optimisation stage. The MAC layer parameters
set represented by input data while the throughput and
latency represented the output of the ANN;

4) Data Post-Processing and Testing: the predicted ANN
output was verified with unseen raw data (validation
set) to validate ANN training and determine its accu-
racy using the testing data set;

5) Data Optimisation: once the ANN output was verified,
two optimisation techniques (PSO and GA) were run
individually to choose the optimal MAC parameters
of 6LoWPAN network with different network size.
These EAs were compared among each others to give
more certainty to the optimal selected parameters of
the MAC layer, and which one is more efficient than
the other when it being deployed in the developed
approach.

The performance of an ANN is dependent on the number
of hidden layers and hidden neurons in each layer. The latter
determines the neural network architecture design. On one
hand, a smaller number of hidden neurons restricts the com-
petence of the ANN to model the problem. Such ANN may
not train properly to obtain a reasonable error. On the other
hand, a larger number of hidden neuron forces the ANN to
memorize the data rather than learning them and may result
in high computational time.

The Levenberg Marquardt algorithm (LM) was used to
train the ANN. During the training phase, the data set was
first tested using a single hidden layer but, unfortunately,
the training failed to give a good performance in terms of
Mean Square Error (MSE). Multiple ANN layers were stud-
ied to determine the best number of neurons in both the first
and second hidden layers in a nested loop fashion, as depicted
in Fig. 2. Hence, the optimal topology for ANN was selected
by conducting an exhaustive search. The number of hidden
neurons is determined by altering the number of neurons,
starting with a few hidden neurons, and then adding neurons
until the computed MSE for the training patterns comes to
a minimum. The number of hidden neurons at that point is
taken as the optimal. Owing to the random initialisation of
the ANN parameters (weights and biases), every selected
topology was trained ten times to ensure that the network
was not trapped in the local minima. The performance of the
network as MSE versus the network architecture for single
and double layers are shown in Fig. 3 and Fig. 4, respectively.

The IEEE 802.15.4 [12] is a standard for low-rate,
low power, and low-cost Personal Area Networks (PANs).
It defines two different channel access methods, namely
a beacon-enabled mode and a non-beacon-enabled mode.
This paper will focus on the non-beacon-enabled mode only,
since it is the channel access mechanism for 6LoWPAN that
use un-slotted carrier sense multiple sense/collision avoid-
ance (CSMA/CA).

Fig. 1(b) shows the proposed optimizing scheme for select-
ing the optimal MAC layer parameter set of a 6LoWPAN
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FIGURE 1. Optimal MAC layer parameters selection scheme. (a) Trained ANN model. (b) MAC layer parameters optimization mechanism.

FIGURE 2. Exhaustive searching scheme of optimal ANN topology
selection.

network. The optimizer suggested the following input param-
eters in order to achieve maximum throughput with minimum
end-to-end delay:

• Backoff exponent (BE) is a random number determines
the random backoff interval before sensing the channel.
ThemacMinBE andmacMaxBE represent minimum and
maximum BE for the IEEE 802.15.4 MAC layer;

• Maximum CSMA backoff (macMaxCSMABackoffs) is
the number of times that the node stays in the

FIGURE 3. Performance of a single hidden layer ANN.

backoff stage after unsuccessful channel sensing before
the packet being dropped;

• Maximum frame retries limit (macMaxFrameRetries) is
the number of the retransmissions limit when there is
no acknowledgement received and the packet will be
dropped.

TheseMAC parameters were fed into the ANN as inputs in
addition to the desired network size (number of nodes), while
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FIGURE 4. Performance of a double hidden layer ANN.

the outputs were throughput and delay. As stated earlier in
this subsection, the ANN was trained in order to predict the
actual output and to prepare data for the optimisation stage.
The objective function attempts to obtain the optimizedMAC
layer parameters set that gives maximum throughput with
minimum delay for a given nodes number.

In this study, a novel optimisation scheme is proposed to
select optimal 6LoWPANMAC layer parameters set for ade-
quate and reliable communication while reducing the energy
consumption in 6LoWPAN nodes. A constrained optimisa-
tion problem is utilized to evaluate the optimized sets. The
objective function (Econsumed ) is related to the total energy
consumed by the 6LoWPAN nodes during transmitting and
receiving of IPv6 packets over IEEE 802.15.4 standard. The
optimisation constraints are given by the channel through-
put and mean service time. For a transmitting 6LoWPAN
sensor node, the constrained optimisation problem can be
expressed as:

min
M

Ẽconsumed (M ) (3)

s.t. ˜TH (M ) ≥ THmin (4)

s.t. ˜MST (M ) ≤ MSTmax (5)

M0 ≤ M ≤ Mm (6)

where TH is the channel throughput and THmin is the mini-
mum in demand channel throughput.MST is the mean service
time for a successful transmitted packet, and MSTmax is the
maximum desired latency at theMAC layer of the 6LoWPAN
node. The constrained optimisation variable M0 ≤ M ≤ Mm
follows the IEEE 802.15.4 default values for the MAC
parameters that are given in Table 1. The symbol ∼ indicates
that the throughput, mean service time, and 6LoWPAN node
energy consumption are approximated by the ANN. These
approximations enhance the proposed approach accuracy and
reduced optimisation computational complexity. The optimal
6LoWPANMAC layer parameters set represents the solution
of the constrained optimisation problem that each 6LoWPAN
nodes utilizes to minimize its energy consumption.

TABLE 1. 6LoWPAN MAC layer parameter values.

The decision variables of the 6LoWPAN optimizer are
denoted by the vector M = (m0,m1,m, n) and each vari-
able is given in Eq. (7a-d) which are subjected to network
throughput and end-to-end delay constraints.

m0 , macMinBE (7a)

m1 , macMaxBE (7b)

m , macMaxCSMABackoffs (7c)

n , macMaxFrameRetries (7d)

The optimisation problem becomes combinatorial as the
decision variables adopts only discrete values. The vector
of decision variables M is practical if and only if the net-
work throughput and the end-to-end delay constraints are
true. In other words, the optimal solution can be reached by
analysing every combination of the vector M elements that
leads to minimum objective function. It is obvious that this
approach suffers from high computational complexity and
time-consuming processes: there are 8×6×7×8= 2688 com-
binations of 6LoWPAN MAC layer parameters that have
to be analysed and checked. The scope of this study is to
introduce an intelligent algorithm based on ANN to evaluate
the objective function of optimizer more quickly, and hence
reduce the computational complexity and processing time.

V. PERFORMANCE EVALUATION RESULTS
After investigating the performance of different ANN archi-
tectures using an exhaustive search method, the best trained
ANNwith two hidden layers was reached by 15 neurons in the
first and 12 in the second. This ANN topology demonstrated
that the MSE is less than 1.29×10−22. Fig. 5 and Fig. 6
show the performance of the network in terms of MSE versus
the number of samples in the training and testing phases,
respectively. The results of the linear regression of the trained
and tested samples are shown in Fig. 7, with their verifying
the validity of the trained ANN and its ability to.

MATLAB has been used as a simulator for medium
and large scale M2M sensor networks to implement the
6LoWPAN MAC layer represented by the IEEE 802.15.4
standard. A 6LoWPANnetworkwith 50 and 100M2M sensor
nodes are considered, with the impact of each single MAC
parameter being evaluated in terms of node throughput. In the
conducted simulation scenario, it is assumed that the message
generation process is periodic to evaluate saturated and unsat-
urated traffic. Fig. 8 and Fig. 9 are for 50 and 100 sensor
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FIGURE 5. Actual and predicted output for training sets.

FIGURE 6. Actual and predicted output for testing sets.

nodes, respectively and the MAC parameters observations
are:

1) Impact of macBE:
Fig. 8(a)(b) and Fig. 9(a)(b) show the impact of the
macMinBE and macMaxBE on throughput, respec-
tively. macMinBE is in the range between 0 and 7,
macMaxBE is in the range between 3 and 8, while
the other parameters with their default values are
shown in Table 1. For a fixed value of maxMacBE,
the throughput tends to be improved when increasing
minMacBE, because a larger initial backoff window
reduces the collision probability in the first backoff
stages;

2) Impact of macMaxCSMABackoffs:
Fig. 8(c) and Fig. 9(c) show the impact of macMaxC-
SMABackoffs on network throughput. This parameter

is in the range between 0 and 5, whilst the others, are
with their default values, as shown in Table 1. When
maxMacCSMABackoffs value increases, the node’s
throughput will increase to some extends in medium
size network as shown in 8(c), after that the through-
put decreased when the traffic increases as multiple
nodes try to access the channel many times and col-
lisions occur frequently. Fig. 9(c) shows the impact of
maxMacCSMABackoffs in large networks, whereby the
throughput decreases as its value increases, because
nodes have a high probability of sensing the channel
and it is busy in dense networks;

3) Impact of macMaxFrameRetries:
Fig. 8(d) and Fig. 9(d) show the impact of mac-
MaxFrameRetries on network throughput. This param-
eter is in the interval between 0 and 7, while the
others have the default values shown in Table 1.
The throughput remains constant for the values equal
to or greater than 2 in medium size networks, as shown
in Fig. 8(d) and to or greater than 3 in larger networks
Fig. 9(d).

Table 1 shows the optimal MAC layer parameter values
obtained from the two optimisation techniques (GA and
PSO). The input and output sets of the ANN fed back to
an optimizer running GA and PSO to predict the input set
that provides maximum throughput and minimum delay. The
optimizer outputs are the optimal 6LoWPAN MAC parame-
ters given in the last column of Table 1. To summarize, from
the above analysis it is concluded that macMaxCSMABack-
offs and macMaxFrameRetries should set to the optimal val-
ues (not the default MAC parameters setting suggested by the
standard) as the sensor nodes need to adapt optimal BE to
increase the throughput and minimize the latency.

Rather than setting the default values of the
6LoWPAN MAC layer, the optimized parameters achieve
highest throughput and less service delay for a given node
number, as shown in Fig. 10 and Fig. 11, respectively. The
optimized MAC parameters enhance network throughput
by 52 – 63% depending on the 6LoWPAN network size.
The range of optimized macMaxFrameRetries in Table 1
means that the retransmission would not affect the optimi-
sation process of the other parameters because when the
macMaxFrameRetries equal to 0 means that 6LoWPAN net-
work runs User Datagram Protocol (UDP) while the mac-
MaxFrameRetries has certain value means that 6LoWPAN
network runs Transfer Control Protocol (TCP).

Fig. 12 shows the access channel probability versus differ-
ent node numbers in 6LoWPAN network. The most obvious
finding to emerge from the analysis is that the reduction
in access channel probability and mean service time led to
enhancement of the network throughput as more packets
were successfully delivered to the destination. In addition,
This reduction reduces the end-to-end delay by 54 – 65%
depending on the 6LoWPAN network size.

Extensive simulations were carried out to find the optimal
initial parameters for GA and PSO, like population size,

16236 VOLUME 5, 2017



B. R. Al-Kaseem et al.: A New Intelligent Approach for Optimizing 6LoWPAN MAC Layer Parameters

FIGURE 7. Linear regression of the ANN output. (a) The linear regression of targets vs outputs for training sets. (b) The linear
regression of targets vs outputs for testing sets.

FIGURE 8. The effect of MAC layer parameter for 50-node network size and offered load 1000 packet/node. (a) macMinBE. (b) macMaxBE.
(c) macMaxCSMABackoffs. (d) macMaxFrameRetries.

FIGURE 9. The effect of MAC layer parameter for 100-node network size and offered load 1000 packet/node. (a) macMinBE. (b) macMaxBE.
(c) macMaxCSMABackoffs. (d) macMaxFrameRetries.

initial condition, weight, etc. Due to the randomness of the
initialisation stage, 10 simulation runs were performed inde-
pendently of each algorithm. The performance for both GA
and PSO are shown in Table 2. Clearly, the performance
of the PSO-based optimisation indicates better achievement
regarding the convergence speed as well as computation time
than with GA.

The 6LoWPAN nodes are generally battery powered, and
hence, energy efficiency is one of the key issues of 6LoWPAN
network. As the Internet traffic increases, the energy utili-
sation becomes one of the most important factor that need
to be considered in order to improve energy efficiency and
reduce energywaste. Fig. 13 shows the total remaining energy
versus simulation rounds for a 6LoWPAN network consists
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FIGURE 10. Network throughput.

FIGURE 11. Mean service time.

TABLE 2. GA and PSO execution time.

of 100 nodes with 0.5 J per node. Compared with the default
MAC layer parameters set, it is obvious that the optimized
MAC layer parameters effectively prolong the nodes’ opera-
tional time and hence, the overall lifetime of the network will
be extended. The proposed MAC layer optimisation scheme
succeeded in prolonging the 6LoWPAN network lifetime by
40%, whilst enhancing its throughput and reducing the end-
to-end delay compared to a traditional 6LoWPAN network
with default MAC layer parameters set.

FIGURE 12. Access channel failure probability.

FIGURE 13. Residual network energy.

VI. CONCLUSION
In this paper, a simple optimized analytical model for the
IEEE 802.15.4 MAC layer standard has been developed,
also investigated the MAC parameters effects in medium and
large size networks. An ANN has been proposed to find
the correlation between the most effective MAC parameters
inputs and throughput as output. The various topologies of
the ANN were tested by applying one and two hidden layers
with different numbers of neurons. Moreover, LM was used
as learning algorithm in the feed-forward ANN structure.
Moreover, LM was used as learning algorithm in the feed-
forward ANN structure. Two optimisation techniques used to
optimize the 6LoWPAN MAC layer parameters for a given
channel throughput and the number of nodes in the network.
GA and PSO algorithms used for deriving the optimal settings
of IEEE 802.15.4 MAC layer in 6LoWPAN networks in
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order to guarantee the reliability requirements of the appli-
cation with minimum computational complexity and both
algorithms performed well.

The obtained results showed that the optimal MAC param-
eters were feasible for both unsaturated and saturated con-
ditions with or without retransmission option. The obtained
results were validated by simulation and showed that the
channel throughput can be increased by setting the MAC
layer with the optimized parameters for a given number of
nodes in the network. Moreover, the optimized MAC param-
eters showed that the throughput was considerably higher
than the network set by the default MAC parameters of IEEE
802.15.4 standard. Hence, the future extension of this paper
will be carried out by implementing the optimal parameters in
real 6LoWPAN network and validated the simulation results
by experimental indoor testbed.
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