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ABSTRACT Arctic sea ice concentration information can provide technical support for the safety of Arctic
shipping routes using visible and near-infrared satellite imagery, but clouds reduce detection accuracy.
According to the reflectance changes of ice, clouds, and water, and because the near-infrared reflectances of
clouds are much higher than that of ice and water, we propose a new method for identifying clouds. On this
basis, thin clouds are extracted using atmospheric precipitation. The Arctic Ocean sea ice distribution under
thin cloud cover over can be obtained based on the proposed influential factor iteration method. Finally,
we obtain the sea ice concentration in the critical region of Baffin Bay and Davis Strait on June 15, 2014
from the Medium Resolution Imaging Spectrometer (MERSI) data. MERSI is one of the major payloads
of the Chinese second-generation polar-orbiting meteorological satellite, FengYun-3, and is similar to the
Moderate-resolution Imaging Spectroradiometer. The proposed method is shown to accurately detect sea ice
concentration under thin clouds by comparison with the sea ice results from the National Snow and Ice Data
Center.

INDEX TERMS Sea ice concentration, FengYun-3 satellite, thin clouds, atmospheric precipitation,
influential factor iteration method.

I. INTRODUCTION
The Arctic is an important component of the global
climate system, and also an indicator of global cli-
mate change [1]–[3]. The atmosphere, ocean, and sea ice
directly or indirectly affect the strength of global atmospheric
circulation, heat balance and climate change. Both ice sheets
and sea ice, with high albedo, are key factors that affect
the global climate system [4], [5]. In recent decades, Arc-
tic sea ice has been shrinking and thinning year to year,
due to the effects of global warming. As a consequence,
the Arctic Passage is navigable in summer, which allows
ships to sail the Arctic Passage, connecting Asia, Europe and
North America [6]–[10]. This connection is only available
over a few months due to the comprehensive influence of

various special geographical environmental factors: compli-
cated natural environment, densely distributed islands and
icebergs as well as the lack of the shipping infrastructure
north of the Arctic Circle. Sea ice is one of the mostimportant
natural factors, which restricts the navigation in the Arctic
Passage. The detection of sea ice distribution detection in the
Arctic Ocean based on FengYun-3 (FY-3) satellite data can
provide reliable basic data and scientific evidence, which is
of great significance for polar strategy.

The application of remote sensing technology has made
sea ice detection possible. Some researchers have used opti-
cal remote sensing data to study the sea ice distribution.
For example, Zhang et al. [11] used the spectral unmixing
method for extracting sea ice concentration using two neural
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networks. Su et al. [12], [13] extracted sea ice extent using a
ratio-threshold segmentation method. Zhang et al. [14] pro-
posed the sea ice extraction method using the 0.86 µm
and 1.24 µm wave bands of MODIS based on the Nor-
malized Difference Snow Index (NDSI). Zhang et al. [15]
proposed the inversion algorithm based on the Classification
and Regression Tree (CART) to retrieve sea ice fromMODIS
images (from 2009 to 2012) in the Bohai Sea. However,
Arctic cloud cover is a limiting factor for detecting sea ice dis-
tribution in mid-summer [16], [17]. Simpson and Keller [18]
proposed the combination of Wiener filtering techniques and
the fuzzy logic classification method to segment clouds from
sea ice and a cloud-free ocean. McIntire and Simpson [19]
used a combination of feed-forward neural networks and
1.6 µm data from the FY-1C satellite to classify sea ice,
clouds, and ocean/leads. Shen et al. [20] proposed the uneven
illumination correction algorithm to remove the effect of thin
clouds and restore ground information of the optical remote
sensing image.

At present, the general method that removes interfer-
ences caused by clouds in optical remote sensing images
is a filtering approach, but the process is complicated and
time-consuming, and some information is lost. In the range
of 1-1.6 µm, the reflectances of ice and water decrease and
the reflectance of clouds gradually increases as wavelengths
increase; cloud reflectance are much higher than that of ice
and water in the near-infrared range. Thus, the discrimina-
tion condition for identifying clouds is obtained, and on the
basis of this difference, regions with the thin clouds can be
extracted. The classification threshold of sea water and sea
ice in the cloudless regions is determined using the Otsu algo-
rithm, and the sea ice distribution in the thin cloud regions is
obtained using the influential factor iteration method. Finally,
the sea ice distribution can be obtained based on the sea ice
distribution in the cloud-covered and cloudless regions added
together.

II. STUDY AREA AND DATA
The critical regions containing Baffin Bay and Davis Strait
are selected as the study area, located between 64◦-72◦N
and 49◦-69◦W. This region lies within the Northwest Pas-
sages, and is at the confluence of the West Greenland Current
and Labrador Current. Therefore, the detection of the sea ice
distribution in this region can indirectly effect ship navigation
to parts of Greenland, and the study area can be served as the
basic data for the study of climate changes in polar regions.

FY-3 satellites are sun-synchronous polar-orbiting envi-
ronmental meteorological satellites with an orbit altitude of
about 830 km. There are 11 instruments on FY-3, including
three sounding instruments, two ozone instruments, two earth
radiation budget instruments, three imaging remote sensors,
and one space environment monitoring unit. MERSI is a
spectral imaging sensor with medium resolution. The first
MERSI was launched on May 27, 2008, on board the FY-3A
satellite [21]. It is similar to the MODIS on board the Earth
Observing System satellite series, except that it does not

FIGURE 1. Original band1 gray image.

carry the mid-infrared channels. MERSI has 20 channels
that are primarily located in the visible and the near-infrared
spectral regions. Five MERSI channels (four visible and one
thermal infrared) have a spatial resolution of 250 m, which
can be used to create high-resolution earth imagery in natural
color during the day and high-resolution thermal infrared
imagery at night. The remaining MERSI channels have a
spatial resolution of 1 km [21]. MERSI products record land
surface reflectance, high-resolution vegetation index, land-
cover types, ocean color, aerosols, and condensable atmo-
spheric water.

FIGURE 2. Land masking.
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MERSI data from the FY-3 satellite are calibrated using
the polynomial method, and pixel coordinates are obtained
by projection transformation. The image of band 1 is show
in Fig. 1. Land masking results are shown in Fig. 2, where
the black area is land. The black crosses in Fig. 2 indicate
latitude and longitude intersections.

III. THEORY AND METHOD
A. SPECTRAL CHARCTERISTIC ANALYS
The spectral characteristics of ground objects are the basis
for remote sensing inversion; spectral characteristic curves of
different objects mainly reflect their electromagnetic reflec-
tion or emission. The reflection characteristics of sea ice
in the visible and near-infrared are important characteristics
for sea ice identification. According to statistical analysis of
the MODIS airborne simulator (Fig. 3) [22], the following
observations are made [16], [22]–[25]:

FIGURE 3. Reflectance curves for ice, clouds, water [21].

1) The reflectances of ice, new ice and clouds are higher
than that of water in the visible spectral range.

2) The reflectances of water and new ice decrease gradually
with the increase in wavelength in the visible and near-
infrared spectral range.

3) Reflectance changes of ice and clouds are relatively
small in the 0.5-0.7 µm range.
4) Reflectances of ice, new ice and water gradually

decrease and reflectances of clouds gradually increases in the
1-1.6 µm range.

B. IDENTIFICATION OF THIN CLOUDS
According to the spectral characteristics of ice, clouds and
water, regions with clouds are identified, and regions with
thin clouds are subsequently extracted. For cloud extrac-
tion, most methods use the Normalized Difference Snow
Index (NDSI) for distinguishing ice and clouds. However,
the reflectances of ice covered with snow are larger as well in
the vicinity of 1.6 µm. Because snow covered ice is common

in polar regions, this method cannot accurately identify cloud
regions. Through the analysis of spectral characteristics of
ice, clouds and water, we propose a discrimination condition
for cloud regions according to the changing trend of the
reflectance curve. In particular, in the 1-1.6 µm range, there
is a difference between the reflectances of clouds and the
reflectances of ice, new ice and water. The center wavelength
for band 6 is 1.64 µm and the center wavelength for band
20 is 1.03 µm for FY-3 MERSI data. The ratio of band 6 to
band 20 for the area covered by clouds is greater than 1,
and that of ice and water is less than 1. The ratio for snow
covered ice is also greater than 1 in the range of about
1.6 µm, the only condition that does not accurately extract
clouds. Reflectances of clouds are much higher than that
of snow covered sea ice in the near-infrared band based on
the reflectance characteristics of ice, clouds and water. The
center wavelength of band 7 is 2.13µm for FY-3 MERSI data
in the near-infrared band, and the appropriate threshold th1
(Otsu threshold) is chosen as another discriminating factor
for identifying clouds. The value is taken as 0.13.

The restrictions on the above two conditions can accurately
identify clouds. The discriminant for identifying clouds is:{

ρ6/ρ20 > 1
ρ7 > th1

(1)

where, ρ6, ρ20, and ρ7 correspond to the reflectances of
band 6, band 20, and band 7 for FY-3MERSI data, and th1
is the classification threshold. According to the empirical
formula for atmospheric precipitation, water vapor retrieval is
incorporated [22]. According to the difference in water vapor
retrieval results, thin clouds are identified. The water vapor
retrieval formula is as follows:

W =
[
α − lnTw

β

]2
(2)

Tw = (ρ18/ρ16) = exp
(
α − β

√
w
)

(3)

where, w is atmospheric precipitation, Tw is water vapor
transmission rate, ρ16 and ρ18 are reflectances of band 16 and
band 18 for FY-3 MERSI data.

Because the study area is in the polar regions, and ground
objects covered with clouds are sea water, or bare rocks,
α = 0.02, β = 0.651. As the atmospheric precipitation from
thick clouds is less than that from thin clouds, the discrimi-
nant for extracting thin clouds is:

W1 > th3 (4)

where, W1 is the calculated result for atmospheric precip-
itation in all cloud regions, th3 is the threshold set by the
characteristic that thin cloud precipitation occurs at higher
altitude than that of thick clouds.

The data contained in this paper all satisfy equation (4),
that is, all interferences are caused by thin clouds. In order
to verify the optimality of the selected threshold in the cloud
regions, we obtain two-dimensional scatter plots, as shown
in Fig. 4; the Y-axis is the image in band 6, and the X-axis is
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the image in band 20. According to (1) and the correlative
theories, the upper left of Fig. 4 contains the pixels with
clouds, and the slope of the straight line is the selected optimal
threshold.

FIGURE 4. Two-dimensional scatter plots obtained from band 6 and
band 20.

C. INFLUENTIAL FACTOUR ITERATION METHOD
Clouds affect the quality of remote sensing images, and thick
clouds may make remote sensing data unusable. However,
information from thin cloud regions in remote sensing images
includes both clouds and ground objects. In order to effec-
tively utilize remote sensing data, the influential factor itera-
tion method is proposed to provide secondary classification
of ground objects under thin cloud cover.

The core concept of the influential factor iteration method
is to correct the reflectances of ground objects affected by
clouds, that is, using the following mathematical model:

Y = kX (5)

where, Y is the reflectances of ground objects affected by
clouds, X is the reflectances of the same ground objects
unaffected by clouds, k is the influential factor of the ground
objects due to clouds. The existence of clouds will weaken
the reflectances of ground objects, so the range in k is 0-1.
Thicker clouds result in an influential factor close to 0, and
thinner clouds have an influential factor closer to 1.

The value of the influence factor k is determined by the
following method. First, in the image after thin cloud recog-
nition, an adjacent large dark area (open water) part of the
cloud pixel is selected and recorded as sampleW1. The pixels
in sample W1 are considered thin cloud covered sea water.
Then, a large number of dark hued area cloud-free parts of
the pixel are selected and recorded as sample W2. The pixels
in sample W2 are considered thin cloud-covered sea water.
Similarly, there are cloud pixels adjacent to the large bright

hue area (adjacent to the land ice shelf area), denoted as
sample I1, and the pixels in sample I1 are considered thin
cloud-covered sea ice pixels. A large part of the bright colored
area is selected from cloud-free part of the pixel, recorded
as I2, and sample I2 is considered to be thin cloud-covered sea
ice pixels. Because the Arctic regions have a relatively simple
climate and environment other interferences are weak. In the
study area, the influence of thin clouds on the reflectance of
the underlying surface is basically the same, that is, the effect
of sea ice and sea water is the same, because the study area
is small and cloud thickness can be considered uniform. The
value of each pixel in sample W1 is compared with W2, and
the result obtained is a set of data KW. Similarly, the value of
each pixel in sample I1 is compared with I2, and the results
are written as a set of data KI. Themean value of each element
in the set KW is the effect of thin cloud cover on each sea
water pixel. The mean value of each element in the set KI
is the effect of thin cloud cover on each ice pixel. The mean
value of all elements of the sets KW and KI are treated as
the total mean value. This obtained mean value of the image
factor k produced by thin clouds in the study area. The value
of k taken here is 0.95.

The discriminant of the cloudless classification threshold
for sea ice and sea water is obtained through analysis of the
reflectance curve as follows:{

ρ1/ρ2 > th4
ρ4/ρ3 > th5

(6)

The cloudless classification threshold for sea ice and sea
water is revised through the influential factor iterationmethod
to identify sea water as follows:{

ρ1/ρ2 > th4 × k
ρ4/ρ3 > th5 × k

(7)

where, ρ1, ρ2, ρ3 and ρ4 correspond to the reflectances of
band 1, band 2, band 3 and band 4 for FY-3 MERSI data,
respectively. th4, th5 are the classification thresholds, and k is
the influential factor of the ground objects due to the influence
of clouds. The pixel as shown for (6) is considered the sea
water pixel in the cloud regions.
In order to verify the optimality of the selected threshold

for identifying sea water, we obtain two-dimensional scatter
plots as shown in Fig. 5; the Y-axis is the image from band 1,
and the X-axis is the image from band 2. According to (6)
and the correlative theories, the upper left of Fig. 5 is sea
water, and the slope of the straight line is the selected optimal
threshold.

D. DETECTION PROCESS OF SET ICE DISTRIBUTION
1) IDENTIFY THIN CLOUDS
Equation (1) is used as the criterion identifying clouds. Then,
an empirical formula for atmospheric precipitation is intro-
duced to run the water vapor retrievals. Thin clouds are
extracted from the clouds according to the results of the water
vapor retrievals.
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FIGURE 5. Two-dimensional scatter plots obtained from band 1 and
band 2.

2) IDENTIFY SEA WATER IN THE CLOUDLESS REGIONS
The sea ice reflectance change is smaller, while the sea
water reflectance change is larger in the 0.4-0.9 µm range.
Therefore, the ratio of band 1 (center wavelength 0.47 µm)
and band 2 (center wavelength 0.55 µm) for sea ice is less
than 1, and that of the sea water is greater than 1. There-
fore, the value of th4 is chosen as 1.12. In order to distin-
guish sea water more accurately, the 0.5-0.9 µmwavelengths
are used; within this range, the reflectances of sea water
trend are small. Band 4 (center wavelength 0.865 µm) and
band 3 (center wavelength 0.65 µm) are compared. The
sea water value in the resulting ratio image is greater than
the value of new ice, and both are less than 1, but the
sea water value is closer to 1. Therefore, the appropriate
threshold th5 is selected to obtain the discriminant for sea
water identification in the cloudless regions, that is, the pixel
satisfying equation (6) can be determined from the sea-free
water pixel without clouds. The method for determining th5
also uses the largest interclass variance method, where the
value is 0.96.

3) IDENTIFY SEA WATER IN THE CLOUD REGIONS
Thus far, land, clouds and sea water from cloudless regions
have been identified. The threshold identifying sea water in
cloud-covered regions is modified by the influential factor
iteration method combined with the Otsu threshold. That is,
equation (7) is used as the criteria for identifying sea water in
cloud-covered regions.

4) EXTRACT SEA ICE DISTRIBUTION
Sea ice distribution information can be obtained in the
cloudless regions and cloud regions through the above
steps.

IV. RESULTS AND DISCUSSION
Based on (1-4), the ratio images of band 6 and band 20 are
processed to obtain the thin cloud results as shown in Fig. 6,
where black indicates thin cloud cover and white indicates
other ground objects.

FIGURE 6. Extracting thin clouds.

The values th4 and th5 in (6) are obtained from the Otsu
method, and then the sea water distribution for the cloudless
regions is obtained, as shown in Fig. 7; white indicates sea
water in the cloudless regions, black is the sea ice in the
cloudless regions, and land and ground objects covered with
thin clouds.

FIGURE 7. Sea water distribution of the cloudless regions.

On the basis of (6), the classification threshold for sea ice
and sea water under thin clouds are obtained bymodifying the
classification threshold for sea ice and sea water in the cloud-
less regions using the influential factor iteration method. The
final sea water distribution is shown in Fig. 8 under the
condition of (7); white is sea water under the thin clouds,
black is sea ice covered with the thin clouds as well as the
ground objects in cloudless regions.

The sea ice distribution in the cloudless regions is shown
in Fig. 9 based on the cloudless regions sea water dis-
tribution. The sea ice distribution under thin clouds is
shown in Fig. 10 based on the sea water distribution under
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FIGURE 8. Final sea water distribution under thin clouds.

FIGURE 9. Sea ice distribution of cloudless regions.

FIGURE 10. Sea ice distribution under thin clouds.

thin clouds. The final sea ice distribution in the entire study
area can be obtained as shown in Fig. 11 (Fig. 9 and
Fig. 10 are superimposed, and then the results are re-sampled
to 4 km). Fig. 12 is the sea ice distribution (spatial res-
olution 4 km) of NSIDC, which is obtained from DMSP
SSM/I satellite data. Through the comparison of Fig. 11 and
Fig. 12 we find that the sea ice distribution obtained using
FY-3 MERSI data is consistent with the sea ice distribution

FIGURE 11. Final sea ice distribution.

FIGURE 12. Sea ice distribution from NSIDC.

from NSIDC in the melt edge lines. But there are some
differences between the two results. It can be seen that our
results have more detailed and accurate sea ice distribution
including floating ice and drift ice by comparing with the
original color image (Fig. 1). In comparison, results obtained
from NSIDC are smoother and the overall information of the
sea ice distribution.

There are differences in the upper right part of the two
results. Among them, there are only a small amount of sea
water pixels in the upper part of Fig. 11, and there is a
large area of sea water pixels in the upper part of Fig. 12.
The reasons for these differences may be as follows: (1)
Although FY-3 satellite data and DMSP satellite data are the
same day, the transit time is different. (2) The differences
are likely to be caused by the wind. The study area is at
the junction (Baffin Bay) of the warm currents of the North
Pacific and the cold currents of the Arctic Ocean. Therefore,
even if there is brief difference in time between the two
satellites, the wind may cause some differences in the sea ice
distribution. (3) The differences are mainly sits at the junction
of the land and the sea. Studies have shown that it can cause
some errors in the inversion of sea ice concentration based on
remote sensing data at the junction of the land and the sea.

However, the proposed method is still limited, which is
only applicable to the identification of sea ice influenced by
thin clouds in the small area. We will expand the applicable
range of the algorithm in future, and we will study the Arctic
Ocean using the data with the different cloud thickness at
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the same time. Theoretical basis and implementation steps
are as follows: First of all, identify the type and thickness
of all clouds according to the water content and the height
of the clouds. Secondly, the different types of clouds and
different thickness of clouds are studied separately to obtain
their reflectance parameters. Finally, the two parameters are
combined by mathematical idea to build a model. The dif-
ficulties are how to optimize the combination of the two
parameters in a mathematical way. This will be the next
efforts and overcome the difficulties.

V. CONCLUSION
Based on the differences in reflectance of sea ice, water and
clouds in the visible and near-infrared, FY-3 MERSI data
is preprocessed. The study area is divided into the cloud-
less regions and cloud-covered regions through a binary tree
classification. First, a two-band ratio (the ratio of band 6 to
band 20) and single wave band (band 7) thresholds are
selected as the criteria identifying the basic cloud regions.
Then the empirical formula for atmospheric precipitation is
introduced to extract thin clouds from the basic cloud regions.
Due to the impact of clouds on the reflectance, there are
the different thresholds in the cloudless regions and cloud-
covered regions, so the influential factor iteration method was
used to modify the threshold in the thin cloud regions, and
then get the sea ice distribution in the thin cloud regions.
Finally, the sea ice distribution is obtained in the critical
regions containing Baffin Bay and Davis Strait. In conclu-
sion, the following conclusions can be drawn:

(1) On the premise that the thin clouds are not removed,
the proposed influential factor iteration method can identify
sea ice. The real information of the original data is preserved
effectively, and the accuracy of sea ice detection is improved.
To some extent, it also reduces the workload of the sea ice
retrieval process.

(2) Compared with the results from NSIDC, the sea ice
distribution obtained using FY-3 MERSI data is basically
the same with the sea ice distribution from NSIDC, and our
results have more detailed distribution of floating ice and
drift ice. That is, in terms of reducing the influence of thin
clouds, the proposed sea ice detection method is feasible.
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