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ABSTRACT It is well recognized that the computation of an optimal liveness-enforcing supervisor (optimal
supervisor for short) for a sequential resource allocation system is intractable due to the nature of the problem
itself, since an integer linear programming model has to be formulated to find its solution. In this paper,
a novel vector covering approach is developed to reduce the computational cost of designing maximally
permissive supervisors for flexible manufacturing systems (FMSs), by reducing the number of operation
places and legal markings (LMs) that need to be considered. A vector covering approach is used to find the
minimal covered set of first-met bad markings (FBMs). Then, a novel vector covering approach is proposed
to reduce the set of LMs to a smaller covering set. The proposed method can reduce the number of both
variables and constraints in the integer linear programming problems (ILPPs). It raises the efficiency of
designing optimal supervisors by solving ILPPs.

INDEX TERMS Petri net, flexible manufacturing system, deadlock prevention, optimal liveness-enforcing
supervisor.

I. INTRODUCTION
Manufacturing is the source of the progress of human
society. In developed or developing countries, manufactur-
ing is usually a pillar industry. FMSs are a novel pro-
duction mode, operated in an automatic way, with lim-
ited and shared resources. Every process of the sys-
tem is running in a sequence that is previously estab-
lished and competing with others for the limited shared
resources when the FMS is working [20], [30], [34].
Deadlocks occur because of the unreasonable allocation of
shared resources [19]. Deadlocks must be prevented since
their occurrence often reduces the efficiency of a system and
even might result in some devastating consequences [11],
[23], [25], [27]. Therefore, many deadlock control policies
have been put forward to prevent the occurrence of deadlocks
[8], [9], [12]–[16], [20], [26].

Petri nets [16], [26], [42], [45]–[47], automata [41],
and graph theory [23], [24] can solve the deadlock
problems in resource allocation systems (RASs) where

resource-sharing is a distinguished feature; therefore, the
competition for resources by a number of concurrently exe-
cuting processes becomes the main cause of blocking. In
recent years, Petri nets have become a popular tool to man-
age deadlocks in FMSs [3], [5]–[7], [33], [35]–[37], [43],
[44], as well as the pertinent control problems in discrete
event systems (DESs) [17], [18]. In general, there are mainly
three ways to solve the deadlocks: prevention, detection-and-
recovery, and avoidance. The first is achieved by designing
an off-line decision mechanism, whose goal is to prevent
the reachability of the deadlock states by enforcing some
constraints on a system [10]–[12], [20], [25], [29]. The role
of Petri nets in an RAS is essential and obvious. Petri nets
can naturally represent system static structure and dynamic
behavior. Specifically, a net structure can describe the struc-
ture of a system under consideration, while its initial resource
configuration, i.e., initial marking, provides the dynamics of
system evolution. The distinction of places and transitions can
be thought of as the convenient elements to well express a
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system from both static and dynamic aspects. Petri nets are
extensively adopted as a tool to investigate DESs, such as
resource allocation systems that are a generalization of many
computer-integrated complexes including automated flexible
manufacturing systems.

A deadlock control strategy is often evaluated from a
number of aspects. If all LMs are included in a controlled
system, the policy is said to be optimal with respect to the
behavior permission. The structure of a supervisor depends
on the number of control places restricting the firings of
enabled events, and computational complexity means the
computational cost when a supervisor is computed. The
maximal permissiveness usually means the full use of the
system resources. A supervisor that is structurally concise
means low software and hardware overheads to implement
the control policy. If the computational cost of a deadlock
control method is not high, it is possibly applied to real-
world systems. These years, many strategies of deadlock
prevention are developed to achieve the aspects mentioned
above [21], [28], [31], [32], [37]–[39].

Uzam and Zhou [8] propose a deadlock prevention method
for FMSs. In their research, a reachability graph (RG) is
dichotomized, i.e., one region that consists of LMs and the
other that consists of illegal markings (states), which are
sometimes called the live-zone (LZ) and deadlock-zone (DZ),
respectively. The DZ is composed of dead and bad markings,
fromwhich there is not a feasible transition sequence to LMs,
and the LZ includes all the LMs.

Deadlocks are prevented by first selecting an FBM, and
then the selected FBM can be prohibited by designing a
control place. Although the method presented in [8] is easy
to use, it cannot guarantee the optimality of the obtained
supervisor. Chen et al. [1] develop a recipe to establish a
maximally permissive supervisor (MPS) for an FMS if it
exists. In their work, an FBM is selected out at each iteration
and a control place is designed to forbid the selected FBM
and ensure that all of the LMs are reachable. To decrease the
computational cost, a vector covering approach is presented
to reduce the cardinalities of LMs and FBMs that are involved
in computing. Then, the two reduced sets are considered
for the design of optimal supervisors only. Chen and Li [2]
develop a method that can obtain an optimal controlled FMS
with theminimal number of control places. However the scale
of the ILPP designed by this method is too large and cannot
be solved within a short period of time in some large-size
Petri nets models. Chen et al. [4] formulate a technique to
compute an MPS that is composed of a compact structure.
However, there are still too many variables and constraints in
an ILPP since the number of LMs and FBMs that need to be
considered is large.

This research reports a novel vector covering technique
to further reduce the computational cost in [2]–[4], without
affecting the existence of the MPSs only. We use the vector
covering approach to work out the minimal set of LMs (SLM)
and FBMs. In general, since there exist operation places that
are not marked (have no token) at all markings in the minimal

set of FBMs (MSF), the operation places that we need to
consider can be further reduced. Thus, a vector covering
approach can be used again to reduce the cardinality of the
minimal SLM. In this case, the numbers of operation places
and markings in the minimal SLM to be considered, which
determine the number of constraints and variables in an ILPP,
can be reduced in general. Thus, the proposed method can
reduce the computational cost for the design of optimal super-
visors.

The paper is structured as follows. Section II reviews an
optimal control place design method [1]. Section III proposes
a novel vector covering approach to further reduce the places
to be dealt with and the minimal covering SLMs. We also
introduce the applications of thismethod. Section IV provides
some widely studied examples. Finally, Section V concludes
this paper.

II. CONTROL PLACE SYNTHESIS
A. ANALYSIS OF REACHABILITY GRAPH
This paper uses the standard notations and concepts of Petri
nets. We assume that a reader has the knowledge of the
preliminaries of Petri nets. For details, the reader is referred
to [40].

Markings in a reachability graph can be categorized into
four classes: good, dangerous, bad, and deadlock markings.
A reachability graph can be partitioned into a deadlock-
zone and a live-zone [8]. The DZ contains deadlock and bad
markings that unavoidably reach deadlocks. The LZ consists
of all the good and dangerous markings, i.e., the LMs. The
SLM is denoted as ML , from any of which the initial mark-
ing M0 can be reached. Generally, the SLM of a net (N ,M0)
can be defined as

ML = {M |M ∈ R(N ,M0) ∧M0 ∈ R(N ,M )}. (1)

An FBM is a marking in DZ, and it can be reached from
LZ by firing a single transition only. The set of FBMs can be
defined as follows:

MFBM = {M ∈ DZ |∃M ′ ∈ LZ , t ∈ T , s.t. M ′[t〉M}. (2)

For a Petri net, if control places forbid all the FBMs of a
system, i.e., the controlled system always works in the LZ
and cannot enter the DZ, we say that the resulting net model
is live.

B. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS
(GMECs) AND CONTROL PLACES
The work in [22] develops a method to enforce a GMEC
via a control place whose computation involves algebraic
operations only. Specifically, let [Np] be the incidence matrix
of a Petri net model with n places and m transitions and
[Nc] be the incidence matrix with respect to control places.
A control place can enforce a constraint taking the form

[L] · µp ≤ b (3)

where µp is the marking vector of the Petri net model, [L] is
an nc×n nonnegative integermatrix, b is an nc×1 nonnegative
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integer vector, and nc represents the number of constraints.
By introducing a non-negative slack variable vector µc,
Eq. (3) can be transformed into equalities:

[L] · µp + µc = b (4)

where µc is an nc × 1 vector that represents the marking of
the control places. [Nc] can be computed as follows:

[Nc] = −[L] · [Np]. (5)

The initial marking µc0 of the supervisor can be calculated as
follows:

µc0 = b− [L] · µ0. (6)

where µ0 is the initial marking of the net.

C. OPTIMAL CONTROL PLACE SYNTHESIS
Deadlocks in a system can be prohibited via enforcing a
set of GMECs that govern the evolution of the system.
The deadlock-free requirements can be represented by a set
of GMECs. To enforce the GMECs, we need to find a set
of control places, i.e., control place synthesis. If a control
place does not exclude any LM, it said to be maximally
permissive [1]. There are three kinds of places in a Petri net
model of an FMS. In this paper, P0, PA, and PR are used to
represent the sets of idle, activity (operation), and resource
places, respectively. The place partition strategy is natural
since they can respectively represent three different kinds
of components in a manufacturing system. For example, a
system is usually composed of a number of processes. Each
process can process one or more types of products using some
resources according to the predefined processing stages on
the raw parts. The availability of raw parts is modeled by
process idle places; the operations performed on raw parts
corresponding to the processing stages are modeled with
activity places, and the manufacturing resources are modeled
with resource places. In this sense, Petri nets are a natural
representation of an FMS in which there are three kinds
of distinctions as mentioned. To prevent an FBM, we just
need to consider the operation places to construct a PI (place
invariant) [8]. Let NA stand for NA = {i|pi ∈ PA}. An FBM
M ∈MFBM can be forbidden by the constraint below:∑

i∈NA

li · ui ≤ β. (7)

where

β =
∑
i∈NA

li ·M (pi)− 1. (8)

Eq. (7) represents the forbidding condition, implying that its
satisfaction prohibits the reachability of the FBMM . Thus, a
marking M ∈MFBM is prohibited due to a control place if∑

i∈NA

li ·M (pi) ≥ β + 1. (9)

To ensure the reachability of every markingM ′ ∈ML , the
coefficients li(i ∈ NA) in Eq. (9) should satisfy the following
constraint: ∑

i∈NA

li ·M ′(pi) ≤ β, ∀M ′ ∈ML . (10)

Eq. (10) is the reachability condition, implying that
any marking that satisfies Eq. (10) can be reachable
after the enforcement of the constraint. By combining
Eqs. (8) and (10), the reachability conditions of LMs can be
converted into:∑

i∈NA

li · (M ′(pi)−M (pi)) ≤ −1, ∀M ′ ∈ML . (11)

Eq. (11) means that the prohibition of an FBM M does
not forbid any LM. Then, with the method proposed in
Section II-B, we can design an optimal control
place.
Definition 1: Let M ,M ′ ∈ R(N ,M0). M A-covers M ′ if
∀p ∈ PA,M (p) ≥ M ′(p), which is denoted as M ≥ AM ′.
Let M and M ′ be two markings in R(N ,M0) with

M ≥ AM ′. If M ′ is forbidden by a PI, M is forbidden.
If M is not forbidden by a PI, M ′ is neither forbidden.
Definition 2: Let M?

FBM be a subset of MFBM. M?
FBM is

called aminimal covered set of FBMs if it meets the following
requirements:

1): ∀M ∈MFBM, ∃M ′ ∈M?
FBM, s.t. M ≥ AM ′;

2): ∀M ∈ M?
FBM,@M

′′
∈ M?

FBM, s.t. M ≥ AM ′′ and
M 6= M ′′.
Corollary 1: If all markings inM?

FBM are forbidden by PIs,
all the FBMs are forbidden.
Definition 3: Let M?

L be a subset of ML . M?
L is called a

minimal covering SLM if the following conditions hold:
1): ∀M ∈ML , ∃M ′ ∈M?

L , s.t. M
′
≥ AM ;

2): ∀M ∈M?
L ,@M

′′
∈M?

L , s.t. M
′′
≥ AM and M 6= M ′′.

Corollary 2: If no markings in M?
L are forbidden by PIs,

all the LMs in ML are reachable.
Corollaries 1 and 2 mean that we just need to consider

M?
FBM and M?

L for designing MPSs. Thus, for an FBM M ,
Eq. (11) can be reduced as follows:∑

i∈NA

li(M ′(pi)−M (pi)) ≤ −1, ∀M ′ ∈M?
L . (12)

In general,M?
FBM andM?

L are much smaller thanMFBM
and ML , respectively. This method can improve the compu-
tation efficiency for designing MPSs.

The set of FBMs that are forbidden by a PI I is defined as
FI = {M ∈M?

FBM|
∑

i∈NA li ·M (pi) ≥ β + 1}.

III. A NOVEL VECTOR COVERING APPROACH
This section presents a novel vector covering approach to
reduce the number of operation places and LMs involved in
optimal supervisor design and introduces some applications
of the proposed method.
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A. THE REDUCTION OF CONSIDERING OPERATION
PLACES AND LEGAL MARKINGS
By considering the operation places only, the SLM can be
reduced to be a much smaller one, i.e., M?

L . In the fol-
lowing, a vector covering approach further reducing M?

L is
formulated.
Definition 4: Given M?

FBM, for a place pi ∈ PA (i ∈ NA),
M?

FBM(pi) = 0, if ∀Mk ∈ M?
FBM, Mk (pi) = 0; else

M?
FBM(pi) 6= 0.

FIGURE 1. An FMS.

Considering the FMS as shown in Fig. 1, it includes a robot,
two machines, two input buffers and two output buffers. The
robot R can hold two parts at a time and each machine can
hold only one part. The parts enter the processing sequence
through the input buffers I1 and I2, and leave the sequence
through the output buffers O1 and O2. There are two pro-
cessing sequences P1 and P2 in this FMS, as shown below:

FIGURE 2. Petri net model of the FMS in Fig. 1.

Fig. 2 shows the Petri net model of Fig. 1. Places p9
and p11 represent the machines M1 and M2, respectively.
p6 represents the robot, andM0(p6) = 2 means that the robot
can hold two parts at a time. For processing sequence P1,
p2, p3, and p4 represent the operations of M1, R, and M2,
respectively. p1 represents the input and output buffers, and
the tokens in p1 mean the raw parts in the input buffer I1.
Similarly, for P2, p5, p6, and p7 represent the operations of
M1, R, and M2, respectively. The tokens in p8 mean the raw
parts in the input buffer I2.

Let us consider the Petri net model shown in Fig. 2. The
system contains 47 reachable markings, 42 of them are legal,
and three are FBMs. The idle places, operation places, and
resource places are {p1, p8}, {p2 − p7}, and {p9 − p11},
respectively.We canwork out itsMSF via the proposed vector
covering approach with M?

FBM = {p2 + 2p6, 2p3 + p5,
p2+p3+p5+p6}. It can be seen that operation places p4 and
p7 have no token inM?

FBM. Then we denoteM?
FBM(p4) = 0

and M?
FBM(p7) = 0.

Given M?
FBM and M?

L , it is not necessary to consider all
the operation places in PA for the design of optimal control
places. In the next, the operation places that we need to
consider can be reduced into a smaller set and and it does
not affect the existence of the optimal control places.
Theorem 1: ∀M ∈ M?

FBM, if there exist coefficients
li(i ∈ NA) that satisfy constraint

∑
i∈NA li · (M

′(pi) −
M (pi)) ≤ −1, then l?i (i ∈ NA) can also satisfy the constraint if

l?i =

{
li, if M?

FBM(pi) 6= 0
0, if M?

FBM(pi) = 0

Proof: ∀M ∈M?
FBM, ∀M ′ ∈M?

L , we have∑
i∈NA

l?i · (M
′(pi)−M (pi))

=

∑
i∈NA,M?

FBM(pi)6=0

l?i · (M
′(pi)−M (pi))

+

∑
i∈NA,M?

FBM(pi)=0

l?i · (M
′(pi)−M (pi))

=

∑
i∈NA,M?

FBM(pi)6=0

li · (M ′(pi)−M (pi))

≤

∑
i∈NA,M?

FBM(pi)6=0

li · (M ′(pi)−M (pi))

+

∑
i∈NA,M?

FBM(pi)=0

li ·M ′(pi)

=

∑
i∈NA,M?

FBM(pi)6=0

li · (M ′(pi)−M (pi))

+

∑
i∈NA,M?

FBM(pi)=0

li · (M ′(pi)−M (pi))

=

∑
i∈NA

li · (M ′(pi)−M (pi))

Then,
∑

i∈NA l
?
i · (M

′(pi)−M (pi)) ≤
∑

i∈NA li · (M
′(pi)−

M (pi)) ≤ −1 can be derived. It means that coefficients l?i
(i ∈ NA) can also meet Eq. (12). And then all markings
in M?

L are reachable. �
FromTheorem 1, we can conclude that not all the operation

places need to be considered. It only needs to consider all
of the places pi with M?

FBM(pi) 6= 0, pi ∈ PA,∀i ∈ NA.
Let P?A = {pi|M?

FBM(pi) 6= 0, pi ∈ PA, i ∈ NA}.
It is obvious that |P?A| ≤ |PA|. N?A can be defined as
N?A = {i|pi ∈ PA,M

?
FBM(pi) 6= 0}.

From what is mentioned above, to design optimal control
places, we just need to consider operation places in P?A.
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There will be some new vector cover relationships in M?
L .

Then, the vector covering approach is needed to perform
again for the set M?

L .
Definition 5: Let M1,M2 ∈ M?

L . M1 F-covers M2 if
∀p ∈ P?A, M1(p) ≥ M2(p) holds, which is denoted
as M1 ≥ FM2 (or M2 ≤ FM1).
Theorem 2: Let M1 ≥ FM2. If M1 is reachable, M2 is also

reachable.
Proof: Suppose that there exists a PI that satisfies con-

straint
∑

i∈NA li · Mk (pi) ≥ β + 1 to forbid any FBM
Mk ∈ M?

FBM, where β =
∑

i∈NA li · Mk (pi) − 1. The two
constraints can be reduced as

∑
i∈N?A

li · Mk (pi) ≥ β + 1
and β =

∑
i∈N?A

li ·Mk (pi) − 1 by Theorem 1. To ensure the

reachability of M1, the PI should also satisfy the constraint∑
i∈N?A

li · M1(pi) ≤ β. Since M1 ≥ FM2, then
∑

i∈N?A
li ·

M2(pi) ≤
∑

i∈N?A
li · M1(pi) ≤ β, implying that M2 is also

reachable. �
Theorem 2 means that if a control place can ensure the

reachability of marking M1 ∈ M?
L , then any marking M2,

satisfying M1 ≥ FM2, can also be reached. Based on this
theorem, M?

L can be further reduced into a smaller one. The
setM?

L of the net model in Fig. 2 is shown in Table 1. Let us
consider markings Ma,Mb ∈M?

L with Ma = p2 + 2p3 + p4
and Mb = p3 + p4 + p7. Since M?

FBM(p4) = 0 and
M?

FBM(p7) = 0, the two operation places p4 and p7 can be
discarded. Then we haveMa ≥ FMb. By Theorem 2, ifMa is
reachable, Mb is also reachable.

TABLE 1. The novel vector covering approach in Fig. 2.

Definition 6:LetM??
L be a subset ofM?

L .M
??
L is said to be

the minimal covering SLM related toM?
FBM if the following

conditions hold:
1): ∀M ∈M?

L , ∃M
′
∈M??

L , s.t. M ′ ≥ FM ;
2): ∀M ∈ M??

L ,@M
′′
∈ M??

L , s.t. M ′′ ≥ FM and
M 6= M ′′.
Corollary 3: If every FBM in M?

FBM is forbidden by a
PI and every marking inM??

L is reachable, then all of LMs in
ML are reachable.

Proof: By Definition 6, Theorem 2, and Corollary 2, the
result holds. �

For the model in Fig. 2, there are eight markings in M?
L ,

and three markings in M∗

FBM, as shown in Table 1. Since
M?

FBM(p4) = M?
FBM(p7) = 0, both p4 and p7 can be

discarded, and the further reductionmethod can be performed
to M?

L . The resulting M??
L , including six markings, has less

elements than M?
L .

B. APPLICATIONS OF THE REDUCTION METHOD
The further vector covering approach can be applied to the
study that needs M?

L such as in [1]–[5]. In this section we
select several examples from them to illustrate the reduction
problem.

According to Corollary 3, given M?
FBM and M??

L , if
PIs can forbid every element in M?

FBM and ensure that
∀M ∈ M??

L , M is reachable, all the markings in ML are
reachable. To find an optimal supervisor, themaximal number
of forbidding FBM problem 1 (MFFP1) proposed in [4] can
be modified as follows, denoted as MFFP1?.

MFFP1?:

max f =
∑

k∈N?FBM

fk (13)

subject to:
∑
i∈N?A

li ·Ml(pi) ≤ β, ∀Ml ∈M??
L (14)

∑
i∈N?A

li ·Mk (pi) ≥ β + 1− Q · (1− fk ),

∀Mk ∈M?
FBM

li ∈ {0, 1, 2, . . .}, ∀i ∈ N?A
β ∈ {1, 2, . . .}

fk ∈ {0, 1}, ∀k ∈ N?FBM (15)

where fk=1 indicates that Mk is forbidden by a PI, and oth-
erwise fk = 0. Q is a positive integer constant which is
big enough. N?FBM is the set {i|Mi ∈ M?

FBM}. The objec-
tive function f means that the designed PI can forbid as
many FBMs as possible, and f ∗ denotes the optimal value.
A PI is said to be maximally permissive if its enforcement
does not exclude any LM from the controlled system. Such a
PI is abbreviated as a maximally permissive PI (MPPI).
Theorem 3: If f ? = 0, there does not exist an MPPI that

can forbid any FBM in M?
FBM.

Proof: Suppose that f ? = 0 and there exists an
MPPI that can forbid an FBM Mk in M?

FBM. It means that
a set of parameters li(i ∈ N?A) and β satisfy Eq. (14),∑

i∈N?A
li · Mk (pi) ≥ β + 1, and fk=1. Then we have

f ∗ =
∑

k∈N?FBM
fk ≥ 1, which comes into conflict with the

assumption. Thus, the conclusion holds. �
Theorem 4: If there is a feasible solution that satis-

fies MFFP1, then the solution also satisfies MFFP1?.
Proof: Suppose that there is a feasible solution li

(i ∈ NA), β and fk (k ∈ N?FBM) that satisfies the constraints in
MFFP1. We have

∑
i∈N?A

li ·Ml(pi) ≤
∑

i∈NA li ·Ml(pi) ≤ β
and

∑
i∈N?A

li · Mk (pi) =
∑

i∈N?A
li · Mk (pi) +

∑
i∈NA\N?A

li ·

Mk (pi) =
∑

i∈NA li ·Mk (pi) ≥ β + 1 − Q(1 − fk ). It means
the conclusion holds. �
Theorem 5: If there exists a feasible solution satisfying

MFFP1?, then it satisfies MFFP1.
Proof: Suppose that there exists a feasible solution

li (i ∈ N?A), β and fk (k ∈ N?FBM) that satisfies the
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TABLE 2. The number of Constraints and Variables in an MFFP1, MFFP2, and MCPP [4].

TABLE 3. The number of Constraints and Variables in an MFFP1?, MFFP2?, and MCPP?.

constraints inMFFP1?. Then we have the solution with li = 0
(i ∈ NA \ N?A), li (i ∈ N?A), β and fk such that

∑
i∈N?A

li ·
Ml(pi) =

∑
i∈N?A

li · Ml(pi) +
∑

i∈NA\N?A
li · Ml(pi) ≤ β and∑

i∈N?A
li·Mk (pi) =

∑
i∈N?A

li·Mk (pi)+
∑

i∈NA\N?A
li·Mk (pi) =∑

i∈NA li ·Mk (pi) ≥ β+1−Q·(1−fk ). It means the conclusion
holds. �
From Theorems 4 and 5, we can conclude that all the

solutions ofMFFP1 can satisfyMFFP1?, and all the solutions
ofMFFP1? can also satisfyMFFP1, i.e.,MFFP1 andMFFP1?

have the same feasible region, andMFFP1? does not affect the
existence of the solution of MFFP1. Similarly, the maximal
number of forbidding FBM problem 2 (MFFP2) proposed
in [4] can be modified to MFFP2? by replacing M?

L and PA
byM??

L and P?A, respectively. Moreover, the minimal number
of control places problem (MCPP) proposed in [2] can be
modified as follows, named as MCPP?.

MCPP?:

min
∑

Mj∈M?
FBM

pmj

subject to:
∑
i∈N?A

lj,i · (Ml(pi)−Mj(pi)) ≤ −1,

∀Mj ∈M?
FBM and ∀Ml ∈M??

L∑
i∈N?A

lj,i · (Mk (pi)−Mj(pi)) ≥ −Q · (1− fj,k ),

∀Mj,Mk ∈M?
FBM and j 6= k

fj,k ≤ pmj, ∀j, k ∈ N?FBM and j 6= k

pmj +
∑

k∈N?FBM,k 6=j
fk,j ≥ 1, ∀j ∈ N?FBM

lj,i ∈ {0, 1, 2, . . .}, ∀i ∈ N?A and ∀j ∈ N?FBM
fj,k ∈ {0, 1}, ∀j, k ∈ N?FBM and j 6= k

pmj ∈ {0, 1}, ∀j ∈ N?FBM

where N?FBM denotes {i|Mi ∈ M?
FBM}. fj,k=1 indicates that

Mk is forbidden by PIj and fj,k=0 means that Mk cannot be
forbidden by PIj. pmj=1 indicates that PIj is selected to com-
pute a control place and pmj=0 indicates that it is unnecessary
to add a control place.
Theorem 6: If there is a feasible solution satisfying MCPP,

then it satisfies MCPP?.
Proof: Similar to Theorem 4. �

Algorithm 1 Deadlock Prevention Policy by Using MFFP1?

Input: Petri net model (N ,M0) of an FMS.
Output: An optimally controlled system (N1,M1).
1: Compute FBMs and ML for (N ,M0).
2: Compute M?

FBM and M?
L for (N ,M0).

3: VM := ∅. /? VM denotes the set of control places. ?/
4: while M?

FBM 6= ∅ do
5: Compute P?A and M??

L with respect to the remaining
markings in M?

FBM.
6: Design MFFP1? as proposed in Section 3.2.
7: Solve the MFFP1?. If f ? 6= 0, li(i ∈ N?A) and β are

the solution. Otherwise, exit, as there is no maximally
permissive Petri net supervisor.

8: Design a control place pc.
9: VM := VM ∪ {pc} andM?

FBM :=M?
FBM − FI .

10: end while
11: Add VM to (N ,M0) and the controlled net is denoted as

(N1,M1).
12: Output (N1,M1).
13: End.

Theorem 7: If there exists a feasible solution satisfying
MCPP?, then it satisfies MCPP.

Proof: Similar to Theorem 5. �
From Theorems 6 and 7, we can conclude that all the

solutions of MCPP can satisfy MCPP?, and all the solutions
of MCPP? can also satisfy MCPP, i.e., MCPP and MCPP?

have the same feasible region, and MCPP? does not affect
the existence of the solution of MCPP.

Fromwhat is mentioned above,M?
L can be further reduced

intoM??
L and PA, the places to be considered, can be reduced

into P?A. It is well known that an ILPP is NP-hard, and
the time cost to solve it is mainly subject to its constraints
and variables. From the comparison of Tables 2 and 3, it
is clear that the number of variables and constraints in the
three ILPPs for each method can be reduced due to |P?A| ≤
|PA| and |M??

L | ≤ |M
?
L |. Meanwhile, the existence of the

optimal solution is still guaranteed. For example, the total
number of constraints is reduced from |M?

FBM| + |M
?
L | in

MFFP1 to |M?
FBM| + |M

??
L | in MFFP1?, and the number

of variables is reduced from |PA| + |M?
FBM| − 1 to |P?A| +

|M?
FBM| − 1. Both of them make it more efficient to solve

the ILPP.
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Algorithm 2 Deadlock Prevention Policy by Using MCPP?

Input: Petri net model (N ,M0) of an FMS.
Output: An optimally controlled system (N1,M1).
1: Compute FBMs andML for (N ,M0).
2: ComputeM?

FBM and M?
L for (N ,M0).

3: Compute P?A and M??
L .

4: VM := ∅. /? VM denotes the set of control places to be
computed. ?/

5: Solve the MCPP?. If there is no solution, exit, as there
does not exist a linear optimal supervisor for this Petri
net model.

6: foreach pmj = 1 do
7: Use Ij,i in the solution as the coefficients of a PI and

design a place Cj to forbid Mj ∈M?
FBM.

8: VM := VM ∪ Cj.
9: Add VM to (N ,M0) and the controlled net is denoted as

(N1,M1).
10: Output (N1,M1).
11: End.

C. DEADLOCK PREVENTION POLICY
BY THE REDUCTION METHOD
This section improves two deadlock prevention algorithms
originally developed in [2] and [4], respectively, using
MFFP1? and MCPP?.
Algorithm 1 using MFFP1? can find an optimal supervi-

sor if such a supervisor exists. Compared with the original
Algorithm proposed in [4], at each iteration, we perform the
further reduction method and obtain M??

L and P?A related
to the remaining markings in M?

FBM. The sizes of the two
sets are generally less than |M?

L | and |PA|, respectively, in
the original Algorithm. The MFFP1? has less constraints and
variables.

Algorithm 2 using MCPP? can also find an optimal super-
visor with the minimal number of control places. The num-
bers of operation places and legal markings to be considered
are small, compared with those in the original Algorithm pro-
posed in [2]. We can perform the further reduction only once
since Algorithm 2 is a non-iterative method and all control
places can be obtained by solving an ILPP. The numbers of
constraints and variables in the ILPP by MCPP? are reduced
and the optimal solution is still guaranteed.

IV. EXAMPLES
This section exposes the application of the developed
methodology to four examples from manufacturing, and the
fourth has been studied as a benchmark. The computation is
carried out by a desktop computer underWindows 7 operating
system with an Intel Core 2.4-GHz CPU and 4-GB memory.
The Petri net in Fig. 3 has 132 reachable markings. The num-
ber of LMs is 120 while that of FMBs is 12. By the technique
reported in [1], we haveM?

L = {2p2 + p9 + 2p10, p2 + p3 +
p4 + 2p7, p2 + p3 + p4 + p7 + p10, p2 + p3 + p4 + 2p10,
2p4 + p6 + 2p7, 2p4 + p6 + p7 + p10, 2p4 + p7 + p9 + p10,
2p4 + p9 + 2p10, p2 + p4 + p6 + 2p7, p2 + p4 + p6 +
p7 + p10, p2 + p4 + p7 + p9 + p10, p2 + p4 + p9 + 2p10,

FIGURE 3. Petri net model of an FMS.

2p2+p6+2p7, 2p2+p6+p7+p10, 2p2+p7+p9+p10} and
M?

FBM = {2p2+ p3, p6+ 2p10}, i.e., the number of elements
in M?

FBM and M?
L are 2 and 15, respectively, and the num-

ber of operation places is 7. We can illustrate the reduction
effects by the comparison between MFFP1 proposed in [4]
and MFFP1?.

First we use the MFFP1 proposed in [4]. At the first itera-
tion, let I1 be a PI, ensuring the reachability ofM?

L , such that
as many FBMs as possible are forbidden. MFFP1 is hence
presented as follows:

MFFP1:

max f = f1 + f2
subject to 2l2 + l9 + 2l10 ≤ β

l2 + l3 + l4 + 2l7 ≤ β

l2 + l3 + l4 + l7 + l10 ≤ β

l2 + l3 + l4 + 2l10 ≤ β

2l4 + l6 + 2l7 ≤ β

2l4 + l6 + l7 + l10 ≤ β

2l4 + l7 + l9 + l10 ≤ β

2l4 + l9 + 2l10 ≤ β

l2 + l4 + l6 + 2l7 ≤ β

l2 + l4 + l6 + l7 + l10 ≤ β

l2 + l4 + l7 + l9 + l10 ≤ β

l2 + l4 + l9 + 2l10 ≤ β

2l2 + l6 + 2l7 ≤ β

2l2 + l6 + l7 + l10 ≤ β

2l2 + l7 + l9 + l10 ≤ β

2l2 + l3 ≥ β + 1− Q · (1− f1)

l6 + 2l10 ≥ β + 1− Q · (1− f2)

li ∈ {0, 1, 2, . . .}, ∀i ∈ {2, 3, 4, 6, 7, 9, 10}

β ∈ {1, 2, . . .}

fk ∈ {0, 1}, ∀k ∈ {1, 2}.

Solving the ILPP, an optimal solution can be obtained with
l2 = 1, l3 = 1, β = 2, f1 = 1, and all other variables being
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TABLE 4. The comparison of MFFP1 and MFFP1? in Fig. 3.

zero. Then a supervisor pc1 is designed by I1: u2+u3+upc1 =
2 to forbid FBM1. By removing the FBM from M?

FBM, we
have M?

FBM={p6 + 2p10}.
At the second iteration, let I2 be a PI to be computed. Then

the new MFFP1 can be constructed as follows:
MFFP1:

max f = f2
subject to 2l2 + l9 + 2l10 ≤ β

l2 + l3 + l4 + 2l7 ≤ β

l2 + l3 + l4 + l7 + l10 ≤ β

l2 + l3 + l4 + 2l10 ≤ β

2l4 + l6 + 2l7 ≤ β

2l4 + l6 + l7 + l10 ≤ β

2l4 + l7 + l9 + l10 ≤ β

2l4 + l9 + 2l10 ≤ β

l2 + l4 + l6 + 2l7 ≤ β

l2 + l4 + l6 + l7 + l10 ≤ β

l2 + l4 + l7 + l9 + l10 ≤ β

l2 + l4 + l9 + 2l10 ≤ β

2l2 + l6 + 2l7 ≤ β

2l2 + l6 + l7 + l10 ≤ β

2l2 + l7 + l9 + l10 ≤ β

l6 + 2l10 ≥ β + 1− Q · (1− f2)

li ∈ {0, 1, 2, . . .}, ∀i ∈ {2, 3, 4, 6, 7, 9, 10}

β ∈ {1, 2, . . .}

f2 ∈ {0, 1}.

Solving the ILPP leads to an optimal solution with
l6 = 1, l10 = 1, β = 2, f2 = 1, and all other variables being
zero. Then we can have I2: u6+ u10+ upc2 = 2. The iteration
terminates sinceMFBM? = ∅.
Next, we consider MFFP1? proposed in this paper. At the

first iteration, we perform the further reduction method, and
the set of places to consider N?A is {p2, p3, p6, p10}. We have
M??

L = {2p2 + 2p10, p2 + p3 +2p10, 2p2 + p6 + p10}. Then,
the following constraints can be obtained:
MFFP1?:

max f = f1 + f2
subject to 2l2 + 2l10 ≤ β

l2 + l3 + 2l10 ≤ β

2l2 + l6 + l10 ≤ β

2l2 + l3 ≥ β + 1− Q · (1− f1)

l6 + 2l10 ≥ β + 1− Q · (1− f2)

li ∈ {0, 1, 2 . . .}, ∀i ∈ {2, 3, 6, 10}

β ∈ {1, 2, . . .}

fk ∈ {0, 1}, ∀k ∈ {1, 2}.

An optimal solution, l2 = 1, l3 = 1, β = 2, and f1 = 1,
can be obtained. i.e., the same solution as the first iteration
of MFFP1. Then we have M?

FBM = {p6 + 2p10}.
In the next iteration, using the further reduction method,

the set of places to consider, i.e., N?A, is {p6, p10}. Then the
following constraints are constructed:
MFFP1?:

max f = f2
subject to l6 + l10 ≤ β

2l10 ≤ β

l6 + 2l10 ≥ β + 1− Q · (1− f2)

li ∈ {0, 1, 2 . . .}, ∀i ∈ {6, 10}

β ∈ {1, 2, . . .}

f2 ∈ {0, 1}.

We solve the above ILPP and obtain an optimal solution
with l6 = 1, l10 = 1, β = 2 and f2 = 1, i.e., the same solution
as the second iteration of MFFP1. The iteration terminates
since M?

FBM = ∅.
From the comparison of MFFP1 and MFFP1?, we can see

that both MFFP1 and MFFP1? can find the same supervisor
since the optimal solutions of the two ILPPs are the same
at each iteration. However, the number of variables and con-
straints in MFFP1? is much smaller than that in MFFP1, as
shown in Table 4. The numbers of variables and constraints
in MFFP1 are denoted as Nvar and NLP, respectively. N ?var
and N ?LP denote the numbers of variables and constraints in
MFFP1?, respectively. rV=N ?var/Nvar and rC = N ?LP/NLP
show the comparison between the two ILPPs. τLP and τ ?LP
denote the computational time of solving the MFFP1 and
MFFP1? at each iteration, respectively.

The Petri net model in Fig. 4 is an S4PR with nine places
and seven transitions. It has the following place set partition:
P0 = {p1, p7}, PA = {p2 − p6}, and PR = {p8, p9}. The
net model has 13 reachable markings. There are 11 LMs
and one FBM. Using the vector covering approach, we have
|M?

FBM| = 3 and |M?
L | = 1. Table 5 shows the reduction of

constraints, variables and computational time by comparing
MFFP1 and MFFP1?.
The third example, a model that has 17 places and

13 transitions, is considered as visualized in Fig. 5.
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TABLE 5. The comparison of MFFP1 and MFFP1? in Fig. 4.

TABLE 6. The comparison of MFFP1 and MFFP1? in Fig. 5.

FIGURE 4. S4PR model of an FMS.

FIGURE 5. Petri net model of an FMS.

The places can be partitioned into P0 = {p1, p9, p10},
PR = {p14 − p17}, and PA = {p2 − p8, p11 − p13}. The
total number of reachable markings is 3531. There are 61
FBMs and 3465 LMs.M?

L has 290 markings andM?
FBM has

13 markings. There are 10 operation places. Table 6 shows

the reduction of constraints, variables and computational time
by comparing MFFP1 and MFFP1?. Both the variables and
constraints can be simplified by using the proposed vector
covering approach. For MCPP?, the constraints and variables
decrease from 4095 and 299 to 949 and 260, respectively.
Moreover, the computational time of solving MCPP? is 17s,
which is less than the time cost for solving MCPP, i.e., 48s.

To further illustrate the advantages of this approach, we
put different tokens in idle places and resource places at
the initial marking. Table 7 shows some parameters of the
net, where the first column represents the tokens of places
p1, p9, p10, p14, p15, p16, and p17 at initial markingM0, |MR|,
|PA| and |P?A| indicate the numbers of reachable markings,
operation places, and the operation places to be considered,
respectively. The last column is rL = |M??

L |/|M
?
L |.

From Table 7, it can be seen that rL decreases with the
increase of initial markings, which actually implies that the
proposed methodology in this paper can be efficient for large-
size real-world systems since the number of markings that are
taken into account decreases significantly.

Table 8 shows the comparison of MFFP1 and MFFP1?

in Fig. 5 with M0(p1) = M0(p10) = 11, M0(p9) = 14,
M0(p14) = M0(p15) = 3, and M0(p16) = M0(p17) = 4.
It is clear that solving the MFFP1? is more efficient.

Let us consider the fourth example in Fig. 6. It is a widely
used net for the deadlock control problem in the recent lit-
erature [20], [26]. This flexible manufacturing cell has four
machine tools and three robots. Machine tools are used to
perform processing stages of different part types. Robots
are in charge of part movement among the machine tools.
A machine tool can process two parts at a time while a
robot can hold one part type at a time. Three part types can
be produced, implying that the system has three concurrent
processes. We use seven places to model the four machine
tools and three robots and 16 activity places to model the
processing stages of the three part types. Three process idle
places model the maximal number of raw parts that can be
concurrently processed in the system.

The considered system can be modeled as a Petri net
with 26 places and 20 transitions. The net model has 26750
reachable markings. The number of LMs is 21581 and that
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TABLE 7. Parameters in the model depicted in Fig. 5 with different markings.

TABLE 8. The comparison of MFFP1 and MFFP1? in Fig. 5 with M0(p1) = M0(p10) = 11, M0(p9) = 14, M0(p14) = M0(p15) = 3, M0(p16) = M0(p17) = 4.

TABLE 9. The comparison of MFFP1 and MFFP1? in Fig. 6.

FIGURE 6. A Petri net model in [20].

of FBMs is 4211. We further have |M?
FBM| = 34 and

|M?
L | = 393. There are 16 places in PA. Table 9 shows

that the constraints are reduced significantly at each iteration
step by the comparison between MFFP1 and MFFP1?, and
the number of variables is reduced too. It can also be seen
that MFFP1? is more efficient than MFFP1. Comparing with
MCPP, the constraints and variables in MCPP? decrease from
15640 and 1700 to 7412 and 1598, respectively. The number
of constraints is reduced more than 50%.

V. CONCLUSION
The method presented in this particular research significantly
lowers the computational overheads in designing optimal
Petri net supervisors. As is known, an ILP problem is in
theory NP-hard. This effective method is reported to decrease
the places to be considered and LMs, as well as the set of
FBMs such that the computational cost, when solving an
ILPP related to M?

L and M?
FBM, is reduced. The experi-

mental results show that the constraints remarkably decrease,
especially in large-size models. Hence, the computational
overhead to solve an ILPP decreases accordingly. However,
the method still needs the enumeration of all reachable mark-
ings. In future work, structural analysis techniques can be
combined into a deadlock prevention policy to efficiently
identify the FBMs and the minimal set of covering LMs.

APPENDIX
BASICS OF PETRI NETS
A Petri net is a 4-tuple N = (P,T ,F,W ) where P and T are
finite and non-empty sets. P is a place set and T is a transition
set with P ∪ T 6= ∅ and P ∩ T = ∅. F ⊆ (P× T ) ∪ (T × P)
represents the arcs with arrows from places (transitions) to
transitions (places).W : (P×T )∪ (T ×P)→ N is a mapping
that assigns a weight to an arc: W (x, y) ≥ 0 iff (x, y) ∈ F ,
and W (x, y) = 0, otherwise, where x, y ∈ P ∪ T and N is
the set of non-negative integers. Given a node x ∈ P ∪ T ,
•x = {y ∈ P ∪ T |(y, x) ∈ F} is called the preset of x, while
x• = {y ∈ P ∪ T |(x, y) ∈ F} is called the postset of x.
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A marking is a mapping M : P → N. M (p) denotes the
number of tokens in place p. Usually

∑
p∈PM (p)p is used

to denote vector M . For instance, M = (1, 0, 2, 4, 0, 3)T is a
marking of a net with six places. It can bewritten as p1+2p3+
4p4+3p6. The pair (N ,M0) is called a Petri net system andM0
is called the initial making. Incidence matrix [N ] of net N is
a |P|×|T | integer matrix with [N ](p, t) = W (t, p)−W (p, t).
A P-vector is a column vector I : P → Z indexed by P

and a T-vector is a column vector J : T → Z indexed by T ,
whereZ is the set of integers. P-vector I is called a P-invariant
(place invariant, PI) if I 6= 0 and IT [N ] = 0T . Let I be
a PI of (N ,M0) andM be a reachablemarking fromM0. Then,
ITM = ITM0. The dynamic of a Petri net system depends on
the transition enabling and firing. A transition is enabled if its
input places has enough tokens. At a markingM , an enabling
transition t can fire, leading to a new marking M ′, which is
denoted by M [t〉M ′. The concepts of the transition enabling,
firing rules, initial marking (denoted by M0), reachability
graph (denoted by G(N ,M0), and marking reachability set
(denoted by R(N ,M0) for a net system (N ,M0)) can be found
in [40].
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