
Received May 30, 2017, accepted June 23, 2017, date of publication August 8, 2017, date of current version September 6, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2728720

NPi-Cluster: A Low Power Energy-Proportional
Computing Cluster Architecture
SEBASTIÃO EMIDIO ALVES FILHO1, AQUILES MEDEIROS FILGUEIRA BURLAMAQUI2,
RAFAEL VIDAL AROCA3, (Member, IEEE), AND
LUIZ MARCOS GARCIA GONÇALVES2, (Member, IEEE)
1Departamento de Informática, Universidade do Estado do Rio Grande do Norte, Mossoró 59610-090, Brazil
2Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
3Universidade Federal de São Carlos, São Carlos 13565-905, Brazil

Corresponding author: Sebastião Emidio Alves Filho (sebastiaoalves@uern.br)

ABSTRACT This paper presents the NPi-Cluster, an energy proportional computing cluster that automati-
cally powers ON or OFF the number of running machines according to the actual processing demand. A theoret-
ical model is proposed, discussed, and implemented on a cluster composed of Raspberry Pi computer boards
designed and built in order to test the proposed system architecture. Experimental results show adequate
performance of the proposed platform when compared with other web servers running on traditional server
architectures, but with considerably less power consumption. The power consumption of the entire cluster
is about 14 W when running at maximum performance. In this situation, the system is able to handle more
than 450 simultaneous requests, with about 1000 transactions per second, making it possible to be used as a
server capable of handling real web workloads with acceptable quality of service. When the requests demand
is reduced to a minimum, the power consumption is dynamically reduced until less than 2 W. Additionally,
the proposed cluster architecture also provides high availability by reducing single points of failure on the
system.

INDEX TERMS Energy efficiency, scalability, quality of service, distributed computing, low power
electronics.

I. INTRODUCTION
One of the biggest challenges for green computing is the
reduction of energy consumption in data centers. In recent
years, various techniques and solutions have been proposed to
alleviate this problem, among them the energy proportionality
and the use of architectures or clusters based on servers
with ultra low power consumption are used. In this paper,
we propose the NPi-Cluster, a low power consumption cluster
architecture with energy proportionality, capable of automat-
ically scaling the number of running machines according
to the current processing demand. As a proof of concept,
a cluster consisting of 7 nodes is presented, which acts as web
server subjected to different demands of webpage requests.
Raspberry Pi computers are used as the processing unit of
each node.

Experimental evaluation shows that the proposed clus-
ter has better energy efficiency when compared to other
machines with ARM and x86 architectures. In addition,
the maximum power consumption of the proposed system
is 14 Watts: less than the energy used by an energy-saving

light bulb, even with request response times similar to a
machine with Intel Xeon processor with 4 cores, a machine
typically used for enterprise grade servers. The results also
show a notable performance difference between the Rasp-
berry Pi boards with single-core and multi-core processors,
in both cases having their performance limited by the network
adapter. Tests performed with the proposed system show
also that the use of energy proportionality enables a better
efficiency when there is a lower demand. In that way, one
contribution of this work is a dynamic provisioning algorithm
and overload detection technique that is able to automatically
compute the adequate number of active nodes, activating new
nodes as fast as the demand grows up, which provides a trust-
worthy and predictable control system for energy efficiency.

Towards meeting the green computing paradigm, another
contribution of this article is a web server architecture for
clusters with load balancing features, scalability and low
power consumption through hardware proportionality. Thus,
it is known that green computing requires more efficient
systems, so server systems should have energy consumption

VOLUME 5, 2017
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

16297



S. E. Alves Filho et al.: NPi-Cluster: A Low Power Energy-Proportional Computing Cluster Architecture

adjusted according to their workloads, but unfortunately
this does not occur frequently in modern servers [1].
In most cases, traditional computers typically consume
dozens or even hundreds of watts (W) of power, and are often
underutilized. One example from the academic environment,
is that each laboratory has its own server, which is always
powered on and consuming the same amount of power, but
may be receiving only a few accesses per day. On the other
hand, embedded computing systems such as smartphones and
tablets have always been designed to optimize the use of
energy, seeking to increase the duration of their batteries.
One typical platform used in embedded systems is based
on ARM processors, one of the most used architectures in
the world, and commonly used in embedded systems and
in the mobile industry [2]. Some works present ARM based
low power clusters, where nodes are turned on all the time.
Another approach used in traditional clusters with energy pro-
portionality consists in setting underutilized nodes in suspend
mode, thus consuming a reduced amount of energy. In these
cases there is a consumption reduction, but there is still energy
to be saved.

In order to provide a scalable cluster with low power
consumption, we use the Raspberry Pi (RPi) boards as nodes
of the proposed system, which was named NPi-Cluster.
In such cluster, nodes are turned on and off automatically
according to the overall system workload. NPi-Cluster archi-
tecture has been experimentally tested on two models of
a 7-node RPi web server cluster and validated during several
months of exhaustive automatic testing with several load
conditions, which results in a system that presents a perfor-
mance of 140 transactions per second per Watt with more
than 450 simultaneous connections. The system also pro-
vides high availability, as in the eventual failure of any node,
the remaining nodes are capable of taking over the services
of failed nodes. In addition, we introduce quantitative and
qualitative results carried out on the performance of the RPi
as a web server and a comparison of these results with the
performance of traditional web servers.

Besides the proposed system architecture and proof of
concept system built and validated, we also propose algo-
rithms for making the system work properly according to
the necessary amount of nodes necessary for a given scale
of workload. Moreover, the proposed architecture is generic:
though validated with RPi boards, it is applicable to any
type of computer architecture. So, although the RPi has been
designed initially with an educational focus, it is explored
in this article as a web server with low cost and low power
consumption.

This text is structured as follows: sections II and III dis-
cusses the theoretical aspects and background of the pro-
posed system, including a discussion of green computing
aspects and related works. Section IV depicts details of the
NPi-Cluster architecture, while section V presents and dis-
cusses the obtained results. Finally, sectionVI brings our final
considerations regarding the conducted experiments, results
and concluding remarks.

II. GREEN COMPUTING
Paek [3] presents a different perspective on belief that infor-
mation technology (IT) is environmentally friendly, even
allowing to save materials that come from nature, such as
paper. He argues that IT brings side effects such as the
disposal of electronic products in short periods of time and
causes increasing need for electricity, thus causing damage
to nature in the same way, for our generation and for future
generations. In this direction, efforts and initiatives denom-
inated as Green Computing or Green IT are being adopted
to attenuate such problem, which aims for more environmen-
tally friendly computing.

Agarwal and Nath [4] points out that there is a growing
global movement to implement Green computing that repre-
sents an environmentally responsible way to reduce power
and environmental waste. He argues that green computing is
about the environmentally friendly usage of computers and
related technologies and that current trends include energy
efficient CPUs and peripherals, power reduction through
known energy-conserving approaches, and the proper recy-
cling and disposal of all the components. Issues related
to the use of toxic materials, recycling and e-waste dis-
posal are well known by industry, which includes Green
Chain Supply Management (GCSM) practices on products
life cycle as discussed in the work of Srivastava [5]. Stan-
dards and certifications have been proposed too [6], but none
of them are globally required. In such a way, the Green
IT research has, currently, a major focus on energy consump-
tion (or energy saving).

The Key World Energy Statistics report from the Inter-
national Energy Agency [7] claims that more than 80% of
primary energy supply uses oil, natural gas and coal, which
are non-renewable energy sources that produce pollution,
contributing to the greenhouse effect. In addiction, a report
from Gartner Inc. [8] estimates that the information and com-
munication industry accounts for approximately 2 percent
of global carbon dioxide (CO2) emissions. Thus, reducing
energy consumption is fair not only for environmental pro-
tection, but also for organizations in order to save money.
Nonetheless, this reduction should not affect productivity
significantly.

As said, one goal of Green IT is to provide energeti-
cally efficient systems, for example, by fulfilling the largest
amount of work as possible, given a power consumption level
limit. In general, considering each equipment individually,
manufacturers try to keep performance while requiring less
energy to perform the same task. The most simple strategies
for energy consumption reduction are to turn off compo-
nents or to activate low power modes, when available. More
complex strategies can also be adopted with changes at the
architecture level, using multicore processors, or with the
design of energy proportional hardware.

Multicore machines have two or more processing units in
the same physical processor, sharing the same power supply,
the same cooling system and other components. According
to Blake [9], the main advantage of such systems is the

16298 VOLUME 5, 2017



S. E. Alves Filho et al.: NPi-Cluster: A Low Power Energy-Proportional Computing Cluster Architecture

performance enhancement that is achieved by adding new
cores that might have a reduced consumption when not used.
This provides better energy efficiency if compared to the
energy necessary for executing the same tasks in a single core
system with a higher clock frequency, or yet if another com-
plete processing unity would be attached separately. On the
other side, the use of energy proportional hardware makes
possible to define different levels of performance accord-
ing to some criteria of use. For example, if the system is
idle, ideally it should have no energy consumption. With
little processing demand, the system would a small power
requirement and would have to use the maximum of its
performance for higher demands of processing [10]. A known
technique that can be used in such cases is the dynamic
voltage and frequency scaling (DVFS), in which steps of
clock frequency that use different levels of power can be
defined [11]. However, as DVFS systems have a number
of fixed/discrete speed/frequency/power levels, it must be
analyzed if the energy to be saved compensates the time taken
with the levels changing and step granularity.

Energy consumption can not be thought individually for
each equipment. With the increasing demand driven by the
information technology and communication industries, and
with the popularization of cloud computing, servers that were
decentralized in office buildings are now concentrated in
specialized data centers with clusters of dedicated computers
in order to provide services. According to Bianzino et al. [12],
data centers rely on machines with lots of resources and
are generally projected to support peaks usages and adverse
conditions. As depicted by Kaur and Chana [13], with the
sudden rise in electricity consumption levels, many peer-
reviewed studies were conducted to analyze the problems
and levels of energy consumption in the data centers. In their
work, they provide a survey and taxonomy for the main tech-
niques for dealing with energy efficiency in cloud computing.
Energy optimization measurements in the data centers are
classified as location-based, hardware-based, software-based
and infrastructure-based.

Location-based approaches propose that the choice of
the places for data centers implantation should take into
account the presence of environmentally friendly energy
sources near the planned data center, for example, near
an hydroelectric or a wind power plants. Infrastructure-
based approaches are generally related to green buildings.
That is, physical buildings that provide a better use of
energy with lower consumption for non IT equipments,
mainly the heating and cooling system. Techniques known as
hardware-based focus on reduction of consumption in
each equipment just as the ones cited previously. Finally,
the software-based approach for green computing take into
account the techniques performed in software design or
through its use. Finally, others techniques use the network
and the hardware characteristics in order to enhance per-
formance or to share resources, as parallel programming,
virtualization, resource throttling, resource provisioning, and
scheduling techniques.

The work of Chen et al. [14] describes two techniques
that we used to reduce energy consumption in this work:
dynamic provisioning and load distribution. In dynamic pro-
visioning, the machines can be turned on or off according to
the demand, similarly to what is proposed in this work. If the
services of a machine are underused, they can be migrated to
another machine and the underused one can be shutdown until
an increase in processing demand makes the other servers
overloaded. Later, the machine can be turned on again, thus
providing energetic scalability. The load distribution is used
when a service is running with redundancy in more of one
server or when a server is overloaded with several requisi-
tions. In this case, services are migrated to machines that are
less utilized, thus also contributing for an improvement in the
service quality.

III. RELATED WORK
With the advances of computer technologies, high perfor-
mance processors have been developed, as the ARM archi-
tecture. These specific platforms are designed and developed
to support network operating systems, thus making possible
the implementation of a web server with low energy con-
sumption. For example, a study [1] has demonstrated that a
Cortex-A9 ARM processor presents energy efficiency up to
eleven times superior than a classical server based on a Intel
Xeon processor. Another work Aroca and Gonçalves [15]
analyzes two ARM based systems, a PandaBoard and a
BeagleBoard. The authors provide systematic measurements
of performance and energy efficiency of several systems
running with the x86 architecture in comparison to ARM
Cortex-A8 and ARM Cortex-A9 processors. It is experimen-
tally demonstrated that the ARM architectures are capable
of attending hundreds or even thousands of web requests
per second. Besides, it is also observed that ARM processors
have better energy efficiency than several computers based
on the x86 architecture.

Regarding clusters based on ARM processors, one of
the first prototypes presented is composed of 196 ARM
Cortex-A8 boards [16]. A similar, however smaller, project
is the Apple TV Cluster [17], that is composed of six nodes.
An important initiative is the Mont Blanc [18] project that
aims to build an energy efficient ARM CPU/GPU based
cluster.

Several other works have used clusters with different con-
figurations (refer to Table 1) for different applications. Exper-
imental evaluations [19]–[24] show that low-power clusters
present a good performance for classical scientific and math-
ematical applications. They are usually submitted linear sys-
tems solving benchmarks (the LINPACK [25] and HPL [26]).
In another work [27] a cluster was used to compile all the
packages of the Ubuntu Linux for the ARM architecture.

Some works present solutions to build distributed web
servers using a cluster [28]–[30]. Others [31], [32] relies
on cluster nodes to support cloud computing infrastructure.
Distributed filesystems is another application that has been
receiving attention [23], [28], [30], [33]–[36], specially the

VOLUME 5, 2017 16299



S. E. Alves Filho et al.: NPi-Cluster: A Low Power Energy-Proportional Computing Cluster Architecture

TABLE 1. Technical features about low power systems from literature.

Hadoop [37]. Finally, other works [38], [39] discuss the usage
of low power devices to provide services for video streaming.

However, some experiments andworks do not present good
results for all computer boards and applications, especially
due to hardware limitations. Therefore, the application per-
formance is as important as choosing low power consumption
devices for the cluster composition. Abrahamsson et al. [31]
describe tools for configuring cloud services, monitoring, and
for infrastructure maintenance, which consume less resources
than traditional ones. Tso et al. [32] present a system using
Linux Containers, a lightweight operating system-level virtu-
alization method for running multiple servers on a single host
control.

For video manipulation, Velthuis [38] argues that the per-
formance is not good, showing that the limited bandwidth and
CPU performance affect the user experience. Ou et al. [39]
explains that as the demand increases, more nodes would be
needed on the cluster, reducing energy efficiency unlike other
architectures. Finally, Loghin et al. [30] indicates that
I/O-intensive MapReduce workloads are more energy-
efficient on the x86 machine while database query processing
was always more energy-efficient on ARM servers.

Table 1 shows the main characteristics of the selected
works found in the literature. NPi-Cluster shares their advan-
tages and limitations, but none of the cited applications has
energetic scalability. The nodes are permanently turned on in
all mentioned works, independently of the amount of work-
load. In other works [29], [41], [42], energy proportionality
is achieved by placing the devices in suspend mode. In this

mode, they consume less power and would take less time
to return to normal operation. However, with suspend mode,
the devices continue to consume an amount of energy that
would be enough to sustain one or more RPi boards oper-
ating with maximum throughput. Furthermore, in our tests,
after a RPi boots, it takes about 10 seconds to become fully
operational.

IV. NPi-CLUSTER ARCHITECTURE
The proposed architecture aims to enable the construction of
low-cost clusters, with energy consumption proportional to its
workload and also with high availability feature, thus being
energy efficient. The energy efficiency is not only from the
processor point of view. Computers and traditional clusters
use hard disks, cooling fans, and other mechanical devices
that wear out and eventually break with use, even causing
unavailability of the system if not using redundancy. Server
power consumption is not only related to its processing either.
Heller et al. [43] claim that the largest consumers of energy
in data centers are servers and cooling systems. The use of
an ARM based system leads a lower demand for refrigera-
tion, once these systems are projected for dissipating a much
lower level of heating, with a passive ambient cooling [23].
In fact, we noticed during the tests that the temperature of the
processor keeps below 45◦C , even without using any active
cooling system.

Investigations about energy performance and its trade-
offs, conducted with different ARM development boards,
pointed that the Raspberry Pi was the best option to

16300 VOLUME 5, 2017



S. E. Alves Filho et al.: NPi-Cluster: A Low Power Energy-Proportional Computing Cluster Architecture

FIGURE 1. Overview of the NPi-Cluster architecture with its electrical and
networking connections shown.

build a power-aware low cost embedded cluster [44], [45].
RPi has also shown to have one of the greatest cost/benefit
when considering performance per cost. Moreover, it uses
ARM processor, which has a low power design since its early
project conception. As described by Tso et al. [32], some
of the platforms developed in the Raspberry Pi project [46]
look as ‘‘toy-devices’’ and have not been designed to perform
the same amount of compute-intensive operations per unit of
time as on traditional servers. However, these devices have
been successfully used recently in clusters because they share
many of the properties of cloud-based servers, such as limited
storage and peripheral capability, albeit at a smaller scale.
Such findings support the design decision made on this work,
which proposes a cluster based on the Raspberry Pi boards.

Figure 1 shows an overview of the NPi-Cluster architec-
ture. Several nodes are connected through a Gigabit Ethernet
bus (in black). As shown by the red lines, only one node
is directly connected to the power supply, while the power
supply to all other nodes is managed by an 8-relay board,
that allows each node to be fully powered on or off by digital
commands sent from the cluster manager node, which also
has the ability to monitor the system power usage by a USB
power meter connected between the cluster and the power
supply. Power measurement does not include the Ethernet

switch because our focus is on the server consumption, but
a typical 8-port desktop switch needs up to 5 Watts in full
operation, which does not occur in the experiments.

Electrical connections going through relays can be nor-
mally closed (NC) or normally open (NO). Normally open
connections only provides power to the connected device
when the controlling unit (node manager, in this case) enables
a digital output line, while normally closed will turn off the
power when the digital input line is enabled. The digital lines
used are output ports available in the General Purpose Input
Output (GPIO) ports of the cluster manager Raspberry Pi.
The proposed design uses normally closed contacts as a high
availability approach: if the cluster manager fails or if digital
output lines fail or even if the relay board fails to operate,
the normal state of the relays is closed, so all boards are
powered on. In fact, this is the default state when the system
start up ends: all nodes are up and running even if the man-
ager or the relays board fails. In that way, a manager failure
does not mean a complete cluster failure but only a temporary
loss of its dynamic aspect. However, it should be noted that
such situation is difficult to happen because the manager does
not receive any workload.

Right after the start up sequence, the node manager detects
no workload and turns off all other nodes by opening the
normally closed relays via the GPIO interface and the relays
board. For the proposed setup, two RPi boards are turned on
at the beginning of each experiment, one for serving HTTP
requests and another for managing the cluster resources,
however only the cluster manager could be on, aggregating
the manager and service handler. As more processing is
required, the manager provides the dynamic node provision.
Thus, other nodes are turned on (or off) automatically through
relays that are connected to the digital signal outputs of
the other nodes. It should be clear that although the system
was built with Raspberry Pi boards, each with a 100 MBit/s
network interface, the usage of a 100MBit/s switch should be
avoided, as in experimental evaluation it caused considerable
cluster performance bottleneck due a bandwidth usage about
350 MBit/s. In that way, a Gigabit switch must be used to
connect all the parts.

Besides low energy consumption, it should be noted that
some computers consume about 10 W of energy simply by
being in standby mode, however, these machines can not
execute any operation. On the other side, a RPi machine
at 700 MHz consumes less than 2 W (in our tests) and
it could execute several tasks thus corroborating with the
studies described by Kaup et al. [47]. In that work, boards
consume 1.75W with CPU-bound applications and 2.1 W
for wi-fi data transfer. Another advantage of an ARM based
system is space saving, as this could be a problem in certain
cases [48].

A. LOAD BALANCING AND DYNAMIC PROVISIONING
Load balancing in distributed systems is a well known prob-
lem with different approaches for solving it [49]. Among
the solutions, one that is more generally applied to compact

VOLUME 5, 2017 16301



S. E. Alves Filho et al.: NPi-Cluster: A Low Power Energy-Proportional Computing Cluster Architecture

systems is the centralized technique, that presents an opti-
mally global performance. In such approach, all the nodes are
passive regarding the reception and execution of tasks, which
is managed by a central controller. Two of such approaches
are discussed in the work of Cardellini [50].

The first is called DNS-based, where the name server
is properly responsible for distributing the tasks between
a pool of servers, according with the demands that come
from the clients. In the Dispatch-based approach, there is
a mediating component between the clients and the cluster.
This element is responsible for verifying the load attributed
to each node and to send solicitations to the nodes that
have better conditions to serve them. Besides, another dis-
tributed approach known as server-based is also introduced
by Cardellini [50], which is adequate for the local area net-
work context. We tested all of these three solutions using the
approaches mentioned above.

For the Dispatch-based, we use the proxy balancer module
of the Apache web server [51] and the TCP/HTTP HAProxy
load balancing software [52]. Note that both of them work
in a similar way, receiving requests and sending them to
the available servers, equally, randomly, or according to the
number of answers received. However this approach could
not work as well as desired, as the dispatcher is known to be
the bottleneck of the system [50]. In fact, our experiments did
not show performance gains when more than two nodes were
used, due to the dispatcher processing limitation, that may
have been limited by hardware or software resources.

For the second tested approach (server-based), the scalable
high availability cluster resource manager Pacemaker [53]
is used. When operating, the resources and services made
available by the cluster are managed in two ways. They can
be divided among available nodes and can migrate in case of
fails (active/passive configuration) or they are equally avail-
able in all nodes that perform the load balancing (active/active
configuration). In both cases, there is a large amount of
exchanged messages in order to keep the high availability.
Conducted tests have shown that such setup can affect the
performance substantially in Raspberry Pi nodes.

In that way, the chosen solution for distributing load
is the DNS-based approach, more specifically the Round-
Robin DNS (RRDNS). With this technique, the DNS server
answers each name resolution request in the Internet with
a different IP, generally in a sequential way [54]. For
example, in the case that a client tries to access the
address http://www.example.com and supposing that this
one has a sequential range of addresses reserved starting
with 93.184.216.34, the DNS server will answer the first
request with the IP 93.184.216.34. In the following request,
the IP will be 93.184.216.35. Next, the response will be
93.184.216.36 and it will proceed in this way until the end
of the IP list is reached, then the process restarts with the
first IP. The use of this technique allows direct, distributed
and easy implementation of a load balancing system as it can
be noted that it is often used joint with other techniques based
on the pooling of IP in network firewalls and switches [55].

In such cases, it is possible to attribute weights to determined
addresses or yet distribute load based on some criteria as the
minimum number of active connections.

A possible problem with this approach is that the
DNS server configurations should be changed every time a
node is inserted or removed from the cluster, in order to have
a consistently updated list of IP addresses. To avoid this,
we use a static set of addresses that is proportional to the
number of nodes in the cluster. This set is distributed among
active nodes using IP aliasing, which allows the same network
card to be configured with different addresses. In this way,
every time that a user requires a web page, the RRDNS server
answers with a different IP that is not necessarily in a different
machine.

The resource manager constantly monitors accesses and,
when the load exceeds some configurable threshold, the man-
ager node automatically turns on the next RPi and stays
monitoring the instant when this one will be available to
service requests. Once it gets ready to receive web requests,
themanager node sends amessage to others RPis deactivating
an address of its list of configurable IP addresses that are,
then, activated on the newer one. As the Ethernet switch
can have the correspondence between the physical network
address (MAC) and the IP address stored in cache, the nodes
also send ARP messages to update the MAC table of the
switch. From this moment on, each node has a proportional
list of the IP addresses, thus each node receives a propor-
tional number of the HTTP requests. This IP division process
happens while there are available nodes. Figure 2 shows an
example for the case in which only a single node is on (top)
and three nodes are on (bottom). In such case, the 6 red labels
represent IP addresses attributed to the hosts, initially all of
them concentrated in a single node and divided among the
nodes in the second situation (two for each node).

When the processing load decreases below a configurable
limit, the last active nodes are turned off one by one. This
can happen until only a single node is active (or a defined
number of nodes). It can be noted that the number of active
nodes decreases, but is enough to still provide processing
capacity to service requests, thus keeping processing capacity
above the minimum limit. Also, it is important to set a time
interval for measuring the processing load of the nodes in
order to avoid an oscillatory behavior of on/off operations
and avoiding the system of loosing control. This technique,
which is called Vary-On Vary-Off (VOVF), turns nodes on
and off to adjust the number of active servers according
with the workload. The work of Zheng and Cai [56] shows
a mathematical model of energy proportionality based on
service quality metrics (slowdown and request time), similar
to those presented in this work, but just simulated.

Algorithm 1 details the processing of the cluster control to
perform the dynamic provisioning. Note that four states are
established: low, normal, high and critical. In the normal state,
it is considered that the number of active nodes is adequate to
the demand. In the low demand, the cluster would be under-
utilized thus meaning a energy waste, so some nodes could be

16302 VOLUME 5, 2017



S. E. Alves Filho et al.: NPi-Cluster: A Low Power Energy-Proportional Computing Cluster Architecture

FIGURE 2. Example situations of the load balancing by IP in a 6-node
NPi-Cluster with 1 and 3 hosts turned on.

deactivated. In the high and critical demands, the nodes are
overloaded, with the total cluster processing capacity below
the needed. The critical state is undesired, since it may cause
some requests to be thrown away besides a simple delay in
the answer that configure the high demand.

Some parameters must be provided to the algorithm: the set
of nodes (Nodes), the number available addresses (Addresses)
for the balancing and theminimumnumber of nodes that must
be on. Utilization rate thresholds are defined as (thigh, tcritical)
for classifying non normal use of the cluster (overloaded).
In order for the cluster to be set in a given state, the cor-
responding value have to be kept in the same state using
the above limits during a determined number of times
(rlow, rhigh, rcritical) in repetitive measures done regularly at
time intervals (sleep_interval).

To avoid influence of an isolated measure on the previ-
ous ones, some counters are defined at line 4 (clow, chigh,
ccritical). During execution these counters are incremented
each time a state is detected and decremented in case it does
not occur in the current measure. For being considered as a
high or critical utilization state, the current level of use unow
of the cluster (line 6) should be higher than the thresholds
(lines 7 to 10). The mean of the utilization rate for the current
demand is calculated for u∗now considering less one node in
the cluster (line 12). It can be considered in the low state if

Algorithm 1 Algorithm for NPi-Cluster Dynamic
Provisioning
Input: cluster features

Nodes = {RPi1,RPi2, . . . ,RPin} set of n work nodes
Addresses = {IP1, IP2, . . . , IPa} set of a addresses in the
DNS server(a ≥ n)
thigh, tcritical tresholds for the cluster utilization state
rlow, rhigh, rcritical number of repetitions of a same state
in order for the controller actuate
min_nodesminimum number of active nodes all the time
sleep_interval time interval for cluster state checkings
Initialisation :

1: Active = Nodes set of active nodes
2: Inactive = ∅ set of inactive nodes
3: clow, chigh, ccritical = 0 counters (positive integers) for

number of accumulated repetitions of each state
4: Assign virtual IPs in Addresses to Active nodes
Control loop :

5: while true do
6: unow = average (ui) where ui a weight representing

the resource utilization at node RPii | RPii ∈ Active
7: if ( unow > tcritical) then
8: Increment chigh and ccritical , decrement clow
9: else if ( unow > thigh) then
10: Increment chigh, decrement clow and ccritical
11: else
12: Compute u∗now =

∑
ui

|Active|−1 resource utilization if an
active node would be turned off (|Active| > 1)

13: if (u∗now < thigh and |Active| > min_nodes) then
14: Increment clow, decrement chigh and ccritical
15: else
16: Decrement clow, chigh and ccritical
17: end if
18: end if
19: if (chigh > rhigh or ccritical > rcritical) and |Inactive| >

0) then
20: Turn on a node RPij ∈ Inactive
21: Active = Active ∪ {RPij}
22: Inactive = Inactive \ {RPij}
23: else if (|Active| > min_nodes and clow > rlow) then
24: Turn off a node RPik ∈ Active
25: Active = Active \ {RPik}
26: Inactive = Inactive ∪ {RPik}
27: end if
28: if ( |Active| changed ) then
29: Reassign virtual IPs to Active nodes proportionally
30: Reset counters clow, chigh, ccritical = 0
31: end if
32: Sleep for a sleep_interval time
33: end while

this average is below thigh (line 13). That is, the cluster would
not get overloaded in the case that one node is deactivated.
In the case that one of the counters accumulate the number

VOLUME 5, 2017 16303



S. E. Alves Filho et al.: NPi-Cluster: A Low Power Energy-Proportional Computing Cluster Architecture

of repetitions enough for characterizing an state, the cluster
should turn on or off a node (lines 19 to 27) and reassign the
IP accordingly (line 29). To the end of each run there is a
pause to then proceed with the next measurement (line 32).

B. OVERLOAD CRITERIA
In principle it would be natural to establish measures of CPU
and memory usage as the overload criteria of a server. How-
ever, we noticed that the CPU usage varies a lot in a short
time slot and that some processes consumes a substantial
processing time to handle input-output interruptions. On its
turn, memory is not substantially affected with the increasing
in processing demand. In this way, as we could not observe
a straight relation between server demand and state of use
of the CPU, we decide to adopt another criteria for overload
detection.

A key issue that can determine the success or failure of a
web system is the time spent for loading pages. An investiga-
tion done with more than 25 hundred users of on-line stores
at England and USA [57] shows that two thirds (67%) of UK
and more than a half of US shoppers (51%) cited the slow
loading times as the top reason for giving up a purchase.
Thus, when considering the performance of a web server
cluster, its capacity to answer the higher number as possible
of requisitions at a small time slot has to be taken into account.
Some steps for answering an HTTP request are cited by
Dilley et. al [58]: 1) client sends the request; 2) request is
received in the server side; 3) request is sent to the service
process; 4) a parsing is performed on the request; 5) the
request is processed; 6) an answer is sent to the client; and,
7) finally, the client receives the answer. The time spent
for completing all of the above processing is called request-
response time. It can be divided in two phases. The connec-
tion phase involves all steps until the requisition becomes to
the server process. In the response sending phase the server
effectively attends the client requisition (see Figure 3).

FIGURE 3. Phases of a HTTP request-response processing (adapted
from [58]).

For the server connection, all the requests follow the same
processing sequence, independently of their content. The
nature of the request (static or dynamic) is only detected
after the parse phase of the server process. In the context
of static files (HTML files, style-sheets, images, scripts, and
others) the time for sending a response refers to the time
spent for locating the file on the disk and sending it to the
client. This depends, basically, of the size of the file to be
sent. For dynamic contents, it is hard to estimate the amount
of time taken to process each request because this might
depend on several operations, such as access to a database
and processing of the obtained data. Nonetheless, on other

than synchronous services as streaming the server transforms
the response in static contents and send it to the client. Thus
the request-response time can be given approximately by:

tresponse(page) ≈ tconnection + tsend (page) (1)

Here, the connection time is assumed to be constant for
all requests and the sending time increases according to the
size of the page. Assuming that an empty page (file with-
out any content) would not have a relevant sending time
(tsend (∅) = 0), the connection time could be understood as
the time to access an empty page, that is:

tresponse(∅) ≈ tconnection + tsend (∅) = tconnection (2)

To provide a function for approximating the sending time
according to the size of the page we have done experiments
in one of the cluster machines. Basically, we provide HTML
pages with sizes varying from 3 to 30 KB, incremented
by 3 KB each time. For each page size, requests from a client
are done during 5 minutes and each test is repeated 10 times.
At the end, we calculate the average response time of each
request, which is summarized in the plot shown in Figure 4.
These results are then smoothed by a Bézier filter. This shows
that the growing of response time is somewhat linear with
respect to the page size. With this, we can get the relationship
tsend (page) ≈ tperbyte ∗ size(page). In this way, Equations 1
and 2 can be obtained.

tresponse(page) ≈ tresponse(∅)+ tperbyte ∗ size(page) (3)

FIGURE 4. Relation between time spent in each requisition and the size
of the requested file for a web server on Raspberry Pi machine.

This time refers to a single request, however, as the cluster
proposal is to treat situations of high demand, it is necessary
to determine when a node is overloaded (or not). If a server
receives several requests simultaneously, not all of them are
immediately processed. Some of them are received and stay
waiting to be sent to the referring processes in the server
and other are received and put in a queue (say of type first
in first out) in order to be sequentially processed. Even the
ones being processed have to wait and share the processor

16304 VOLUME 5, 2017



S. E. Alves Filho et al.: NPi-Cluster: A Low Power Energy-Proportional Computing Cluster Architecture

time according to the operating system scheduling algorithm.
In this way, the connections established at the web server
port (in general the 80) consumes a certain time to be pro-
cessed that would cause a delay at the next requisitions that
arrive. This time can be calculated from Equation 3 as:

tdelay ≈
∑

pageq∈Queuedrequests
tresponse(pageq) (4)

In order for this approach to work, it is necessary to pre-
viously know the size of the file, before the the parsing is
performed, but this is not possible. However, a previous study
of the accesses patterns of the web server allows to estimate
the average size of the files that compose the pages that are
requested and assume that the forthcoming requisitionswould
have this size. In this way, it is possible to estimate the time
that it takes to process all the requests that are in the row
updating Equation 4 as:

tdelay ≈| Queuedrequests | ×tresponse(averagefile) (5)

The resource utilization ui for the proposed dynamic provi-
sioning algorithm is calculated by taking tdelay values for each
node RPii ∈ Active set. In this way, it is possible to define that
a host is overloaded when average response time expectation
is above the acceptable threshold by a certain period of time.

V. RESULTS AND DISCUSSION
Section III discusses that some works use equipments with
ARM architecture for cluster implementations and, further,
section IV discusses the low energy consumption of the RPi
boards. In this direction, we aim to verify the viability of
the use of a cluster with dynamic provision composed of
Raspberry Pi nodes. The NPi-Cluster includes load balancing
for HTTP service from the performance, quality of service,
and energetic efficiency perspectives. For this empirical ver-
ification, two experiments are performed: the first one ver-
ifies the performance of the cluster on a static manner, that
is, with all devices continuously poewered on. The second
experiment compares the static and the dynamic provisioning
with the overload criteria proposed in Section IV. These
experiments are conducted for two models of RPi boards,
whose characteristics can be seen in Table 2, one of them is a
single core and the other is multicore.

TABLE 2. Features of the Raspberry Pi machines used in the NPi-Cluster
experiments.

Software used on each node is the Nginx [59] web server
with its standard configurations over the GNU/Linux Rasp-
bian distribution [60]. The web content served is stateless,
that is, no session or cookie is created. Both clusters use
7 machines and a Gigabit Ethernet switch in order to connect

them to a wired network. For the RPi model 1 based cluster,
all of the nodes are for requisition processing while for the
cluster based on RPi2, six of the nodes are used for serving
web requests and the last one is used to manage the cluster.
Power measurement is obtained using the same methodol-
ogy used by Aroca and Gonçalves [15] and a shell script is
used to collect these measures automatically. Figure 5 shows
a picture of the environment where the experiments were
performed. Note that such cluster is assembled as a wall-
mountable frame, which can be fixed to walls, reducing the
needed space for the system.

FIGURE 5. Complete NPi-Cluster, assembled on a wall-mount
frame (version with Raspberry Pi 1 nodes).

A. FIRST EXPERIMENT - ENERGETIC PERFORMANCE
WITH STATIC CLUSTER
A performance comparison between x86 and ARMmachines
is provided in a previous work [15]. In that work,
HTTP requests for a page of about 3KB are generated simul-
taneously. The number of simultaneous requests varied from
1 to 1000, incremented by 25 each time, and, from the
responses received, the tool Apache Benchmark (ab) [61] cal-
culated some metrics, such as the number of requests effec-
tively attended per second, throughput, time to serve each
request, and availability rate. Data related to performance,
temperature, and energetic performance were also obtained.

In that way, we decided to repeat the same experiment
described above in order to verify the energetic performance

VOLUME 5, 2017 16305



S. E. Alves Filho et al.: NPi-Cluster: A Low Power Energy-Proportional Computing Cluster Architecture

of RPi based clusters, based on the models listed on Table 2,
in comparison to the machines described in the mentioned
work. In both cases, all the machines are previously and
continuously turned on. For each test batch, the average of
the results for 10 different runs is obtained, which requires
150,000 times the same page originally used. The results are
presented using graphics (analyzed and discussed next) that
are smoothed by using Bézier curves.

The first result to be analyzed (Figure 6) relates to the aver-
age power consumption. Note that both clusters consumes
roughly the same amount of power (about 14 watts), which
is higher than other devices with ARM and Atom proces-
sors. This is naturally comprehensible since each cluster has
7 machines. However, even in this case, the cluster presents
less power consumption than the Turion processor and almost
4 times less power consumption than the Xeon processor
machines.

FIGURE 6. Average power consumption for the first experiment, with all
nodes turned on for each NPi-Cluster model.

An interesting fact is that besides having processors with
4 cores in each node and higher clock speed, the energy
consumption of the system based on the RPi2 boards is very
similar.Moreover, in the tests where the number of concurrent
connections is smaller, the RPi2 consumption is smaller than
the RPi1 machines showing the possible action of efficiency
policies, such as the DVFS.

Figure 7 depicts the results relative to performance with the
number of requests served per second. This first test shows
that the clusters have obtained results that are better than the
majority of other evaluated platforms. The RPi1 cluster has
inferior performance when compared with the Xeon machine
with 4 cores and at the initial scenarios to the Xeon with only
1 core enabled. However the RPi2 cluster is better than all the
other machines in practically all the scenarios.

The plot shown on figure 7 depicts the performance differ-
ence between the two clusters. For RPi2, even with 4 cores
and a higher clock frequency in each node, and considering
that the requests do not obey an ordered sequence, there is
no system or process that can run 100 % in parallel. In fact,

FIGURE 7. Comparison of successful transactions per second for the first
experiment (all nodes always on).

according to the laws of Amdhal and Gustafson [62] this
limits a global speedup. A more detailed analysis of perfor-
mance shows that this difference occurs due to the way inter-
rupts from the Ethernet chipset are handled by the Raspberry
Pi hardware.

As described in Section IV, the RPi boards were not orig-
inally designed to be used as web servers. In its implemen-
tation, network hardware interrupts are treated by the CPU.
Considering this fact, a test was performed, where several
network packages of small sizes were generated, and it was
observed that the operating system process that handles net-
work interrupts occupies more than 90 % of the processor
capacity in the RPi1. This makes the request processing
slower than it should be once the web server processes are
left in background, due to lower priority.

On the RPi2 machine a similar issue occurs, that is,
the process that services network interrupts also occupies the
CPU more than 90% of the time. However, as there are four
cores and this occurs only in one of them, the other ones are
available to run the web server processes. Even with this,
we can conjecture that the performance of these machines
is also prejudiced by the way its implementation is done.
It concentrates the device interruptions in a single core instead
of allowing the operating system to manage this issue. This
is known as the SMP affinity at Linux [63]. It can be noticed
during experiments that theweb server processes occupy little
more than 30% of the other cores, system memory is not full,
and network throughput is about 50 MBit/s. Thus, network
interrupt handling is also a bottleneck for the RPi2 machines
performance.

This problem can also be seen when we analyze the quality
of service that can be obtained from the plot shown in Figure 8
that brings the average response time for each request. It is
expected that, for having a better performance in terms of
requests served per second and also for having the overall
effort divided between the several machines, the response
time of the cluster requests could be smaller. However the
results show that the RPi1 gives a response time that is similar

16306 VOLUME 5, 2017



S. E. Alves Filho et al.: NPi-Cluster: A Low Power Energy-Proportional Computing Cluster Architecture

FIGURE 8. Average time to complete each transaction during the first
experiment (all nodes always on).

to the machine with Xeon with one enabled core, which is
about 250 ms. The RPi2 machines response time is similar to
the machine with Xeon 4 cores, about 100 ms. Yet, it can be
noticed that the number of failed requests is inferior to 0.5%
of the total, including when 1000 requests are simultaneously
generated.

Even with the above mentioned problems, the plot shown
in Figure 9 demonstrates that the energetic performance of the
clusters relative to the number of effectively served request
per second per each Watt of energy consumed are better. The
RPi1 devices have the third better energy performance mea-
sure. Next, the machines with ARM Cortex-A9 processors
with two cores. Further, the RPi2 cluster is the best one with
a performance that is at least twice better than the second one.

FIGURE 9. Power efficiency on successful transactions for the first
experiment (all nodes always on).

As it can be seen from the plots, even with the bottle-
neck caused by the network interface interrupts, the clusters
have presented results that are better than a computer with
x86 multi-core CPU. This is the computer type generally
used as server in the web server infrastructure. Furthermore,

the clusters have consumed a low quantity of energy com-
pared to the x86 and, at the same time, obtaining a high
number of served requests per second with low latency. It can
be noticed from the experiments reported that they get the
first and third best results in terms of energetic performance
including overcoming other ones based onARM architecture.
So it is empirically verified their capacity of being web
servers.

B. SECOND EXPERIMENT - STATIC
VERSUS DYNAMIC CLUSTER
From the first experiment, it is clear that the RPi2 hardware is
better than RPi1 for the cluster since its multi-core processor
smooths the mentioned network interrupt handling problem,
resulting in a better energy efficiency. However, the tests con-
ducted on the first experiment were not energy-proportional.
In this sense, it is possible to enhance this aspect through a
police for the partial (or proportional) use of the hardware
with dynamic provisioning. In this way, the second experi-
ment aims to compare the performance of the RPi2 cluster
when the algorithm for dynamic provisioning described in
Section IV-A is used. In order to do that, two changes have to
be done in the methodology used in the first experiment.

The first change is related to the available web-pages.
A typical web server has not only one file in its file system
to be served, and the size is not only of 3 KB as assumed
in the study done by Aroca and Gonçalves [15]. In order
to provide a real-world workload, an analysis performed
at the site HTTParchive.org [64] was conducted. This site
collects and permanently stores the web digitized contents.
The graphic illustrated at Figure 10 shows that, as of first of
July, 2016, a web page has in average 2,046 KB distributed
between files of the type HTML, style-sheets, scripts, source
codes, videos, images, and others. In this way, in order to run
this experiment, we created a repository of files with different
sizes, names, types, and paths relative to the default URL.

FIGURE 10. Average bytes per page by content type on 2016,
July 1st (Source: HTTPArchive [64]).

In order to make the tests closer to real world sce-
narios, we use a methodology based on the work of
Urdaneta et al. [65]. In that work, the authors collected
about 10% of all the accesses of WikiMedia Foundation site.

VOLUME 5, 2017 16307



S. E. Alves Filho et al.: NPi-Cluster: A Low Power Energy-Proportional Computing Cluster Architecture

All of the languages were sampled during the period between
September 19th 2007 and January 2nd 2008, and they used
a database dump and files to recreate the same environment
and to test their benchmark software, the Wikibench.

Due to some complications brought by Wikipedia system
updating, availability of the dumps of the registered data
access and the huge size of the files and database we decided
to simplify our approach as follows: First, we arbitrarily
choose a subset of sequential access registers to pages that
are present at the log files that could be more available
(october 2007). In addition, this is done in such a way that the
contents to be downloaded could fit in the memory cards of
the RPi machines. Thereafter, all the selected register files are
downloaded from Wikipedia site through a script and copied
to the memory cards of all nodes. Thus, a request to a static
file could be attended by any cluster node since they have
the same contents. Data related to the characteristics of these
contents are present at Table 3.

TABLE 3. File set characteristics for the static web content prepared for
the second experiment.

The second change with respect to the first experiment is
related to the benchmark software used to measure perfor-
mance. The Apache Benchmark does not have support to
multiple URL (at least until the date when the experiments
where done), which is necessary in this new context. We use
then a new software, the Siege [66], which allows to config-
ure the number of simultaneous connections and produces
similar statistics as the Apache Benchmark, as the number
of successful transactions, throughput, and average response
time, among others. In addition, it allows the benchmark to
be done with a set of URL defined in a file and also that the
test could be applied by a determined period of time without
limits on the number of requests.

To our tests, we created a file containing about
480 thousand requests from the access log files of the
Wikipedia. In those, the field relative to the server domain
was substituted by the intern DNS server address. This server
uses the round-robin algorithm to balance the load between
the attributed addresses. Initially, the cluster is turned on
with two active nodes, a manager and one for attending the
requests (min_nodes = 1). This last node is commissioned
with all addresses. As there is an increase in demand, a new
node is turned on and the addresses are divided with the new
nodes as shown in Figure 2.

Note that the cluster can have up to 6 nodes acting as
servers. So, to get a better load distribution, we attribute a

set of 12 possible IP addresses. With 2 active nodes, each one
answers to 6 addresses, and, so on, down to 2 addresses (with
6 active nodes). Nonetheless, it can be noted that with 5 active
nodes as servers there occurs a disparity in the number of
requests sent by the DNS to each node, as 1, 2, 3, 4, and 6
are divisors of 12. In this way, the cluster and DNS servers
are independent, being only necessary that the manager node
has the list of addresses available for the round-robin. It will
distribute these addresses between the nodes that it would
judge are necessary to keep on according to the cluster current
state. The manager gets the current state of the cluster by
looking at the number of requisitions (connections) to theweb
server process in each activated node. The load is given by
the expected average delay tdelay according to Equation 5 of
Section IV-B.

Assuming that the traffic characteristics is unknown by
the server, the average file size for the component tresponse
(averagepage) is given by the rate obtained by dividing the
total transferred size and the number of requests per web page
using the statistics given by the HttpArchive.org [64]. The
value obtained (as of February 2016) is 2, 253 KB/100 files
thus resulting in 23,070 bytes per file in average. Through
previous tests that are partially shown in the graphic of
Figure 4 we get the values of tresponse(∅) and tperbyte in
such a way that tresponse(averagefile) = 1.47 ms. With
this, the average delay for obtaining each file would be
tdelay = 1.47× | queuedrequests |.

In order to serve the requests of a complete web page,
the total time depends on the tdelay of each file plus the time
taken to process each file. In a favorable scenario, the requests
distributed in parallel to more than a cluster node. And,
it could happen, in a single node, requisitions of other files
to the same page. However, in general a client gets access to
the DNS server only once and all requisitions are sent to the
same address. In an overloaded scenario it could happen that
no other requisitions in the list are for files of the same page
thus accumulating delays for the page requisition. In other
words, if a page is composed of 100 files, the total waiting
time would be the sum of all tdelay.
We could not observe in the literature any standard about

what can be considered an acceptable time for waiting the
downloading of a web page. To this end we came up that
even the number of files can and their sizes vary from year
to year. Thus it is a good idea to let the network administrator
to determine these parameters for some desired quality of
service.With this inmind, we take the time of 5s as acceptable
for a page to be completely downloaded. This means that each
one of the 100 files that compose a page, in average, could
have the maximum delay of 50 ms in the worst case. In the
same way, we consider that a time above 10 seconds (100ms
per file) is undesirable thus coming up with the thresholds
thigh = 50ms and tcritical = 100ms.
In order to complete the algorithm parameters with the goal

of establishing a minimum time for detecting overloading
of under-utilization we define from the tests the verification
interval sleep_interval = 5s. Also, the number of repetitions

16308 VOLUME 5, 2017



S. E. Alves Filho et al.: NPi-Cluster: A Low Power Energy-Proportional Computing Cluster Architecture

of a same state in order for the controller to act are set as
for rlow = 6, rhigh = 6 and rcritical = 3. These values are
chosen in such a way that the cluster has be in the critical
state during 30s or in the overloaded during 60s. In these
cases a new node is made active. Also, it has to present the
sub-utilization state for at least 30s in order for, in this case,
a node to become inactive. Table 4 provides a synthesis of the
parameters for the algorithm of dynamic provisioning.

TABLE 4. Dynamic provisioning algorithm parameters.

Finally, about the number of concurrent connections to be
used during the test of the cluster, we noticed that the main
web browsers establish from 6 to 8 simultaneous connections
with the server when files are requested. Thus, the benchmark
tests start with 8 simultaneous requests simulating a browser,
using another independentmachine connected to the network.
At each test, this request number is increased by 24 thus
representing 3 new clients and it scales up to 488, that corre-
sponds to 61 total clients, simultaneously. As it is necessary
some time to turn on and off the nodes according to demand,
each test is performed during 10 minutes and the results
presented in Figure 11 represent the mean for 10 consecutive
executions. At the end of each run, and previous to starting a
new execution, there is a waiting time for the system to get to
its initial state with only one node operating.

Figure 11 shows the evolution of energy consumption with
time, during 10 minutes of each execution. Each line rep-
resents a different scenario, that is, with a different number
of simultaneous connections configured. The graph includes
delimiters to relate the number of nodes, allowing it to repre-
sent the energy consumption in terms of the number of active
nodes. It can be noticed that with the increase in demand the
bigger is the number of active nodes and that this happens
earlier. From 200 simultaneous connections on, the cluster
turns all of the 6 nodes active with the last one turned on
with about 300s. Thus at each minute a new node gets active.
Two interesting conditions could be noted, separated in two
figures for better understanding (next).

Figure 12 depicts some situations where the cluster starts
making new nodes active until they get a use level considered
normal thus stabilizing. Any new node is made active from
this moment and consumption keeps the same until the end
of this run.

In Figure 13 some deactivation occurs, that is, new nodes
are made active until a certain condition is detected. At this
moment it is detected that a node is made active without
enough demand for justifying this. This occurs because when

FIGURE 11. Power consumption over time for the proposed dynamic
provisioning system with different demands.

FIGURE 12. Demand scenarios where dynamic provisioning algorithm
finds a ideal number of nodes.

FIGURE 13. Demand scenarios where nodes are turned off when cluster
is considered underutilized.

the cluster is overloaded there is an excessive number of req-
uisitions to be attended at the list, however, as new nodes are
turned on these requisitions are processed and the demand is

VOLUME 5, 2017 16309



S. E. Alves Filho et al.: NPi-Cluster: A Low Power Energy-Proportional Computing Cluster Architecture

not sustained anymore. After turning off one of the machines
the cluster has found its equilibrium state and this current con-
figuration has stabilized. Some oscillation is expected during
the node on/off transitions, as the boot process consumes
more power than the system operation after the boot.

Figure 14 shows a comparison of average power consump-
tion during 10 minutes for the static and dynamic clusters.
It can be noticed that the static cluster has an average con-
sumption of about 13Wwith a little variation in the tests with
less demand since the hosts work with a certain clearance.
In the dynamic cluster the average is smaller. In the first
scenarios with very low demand its value is still smaller once
there is no need of turning on all of the nodes. Each mark
in the line means that a new node is made active in relation
to the previous one for that scenario. The first line segment
that has an ascent curve representing not only an increasing
in the machine use as well the new nodes that are made active
more fast. This is because as higher the demand gets easier
the cluster enters in the critical situation and requires the
provisioning in a faster way.

FIGURE 14. Average power consumption comparing the static and
dynamic provisioning approach for different demands.

This capability of offering scalability according to demand
can be noted in Figure 15, which shows a plot of the response
time versus the number of requests. The curves that repre-
sent the static and dynamic behaviors are somewhat similar.
Nonetheless, the response time of the static cluster is smaller
once all of the nodes are initially on and ready to receive
requisitions. In the dynamic cluster the nodes are activated
according to demand not allowing the uncontrolled growing
of latency. The values obtained for response time are above
the desired ones between 50 and 100ms coming to some
400ms in the case of high demand. However, it can be noted
that the requested files sizes as shown in Table 3 are bigger
than the mean size defined as 23KB for the algorithm calcu-
lations. It can yet be noted that with time the cluster manager
could recalculate these values according to status data given
by the web servers and better adjust its perception about the
nodes overload.

FIGURE 15. Average time to complete each web file transfer transaction
for static and dynamic provisioning approach.

Regarding the performance, the static cluster has always
a higher number of served requests per second, as expected,
and this is shown in Figure 16. This difference is higher in the
beginning once it is ready to giving its better performance.
However, in the scenarios with higher demand, in which
the nodes of the cluster are activated faster, this difference
becomes gradually reduced because the performance of the
static cluster stays stable while the dynamic cluster one
enhances.

FIGURE 16. Successful web file transfer transactions per second for static
and dynamic provisioning approach.

Figure 17 shows the values for the energy efficiency for
the two methodologies. Here the used metric is the number
of requisitions attended per second by each unity of energy
consumed. As it was expected, in the scenarios where demand
is smaller the energetic efficiency is lower for the static
approach. This is due to the under utilization of the cluster
that keeps all of its machines on without necessity. On the
other side, when there is an increase in demand, its energetic
efficiency also increases and keeps stable because it reaches
its maximum capacity for requests processing.

16310 VOLUME 5, 2017



S. E. Alves Filho et al.: NPi-Cluster: A Low Power Energy-Proportional Computing Cluster Architecture

FIGURE 17. Power efficiency on successful web file transfer transactions
for static and dynamic provisioning approach.

In the approach with dynamic provisioning, the behavior
is the opposite. The energetic performance begins with better
values just because it keeps off the nodes are not necessary for
attending the current demand. However, with an increasing in
the number of connections, the energetic efficiency decreases
until it gets smaller than the static cluster. This indicates
that, for that scenario, it is necessary a maximum of perfor-
mance of the cluster what occurs some 300s later as seen
in Figure 11. At higher demands where a faster provisioning
is performed, the energetic efficiency values approximate to
each other tending to about 120 requisitions/second per power
unity (Watt).

It can be noted that while the energetic efficiency of the
static cluster may vary considerably (twice) depending on
demand, the values for the dynamic cluster present approx-
imately 10% of variability. For an IT infrastructure adminis-
trator this means a trustworthy and predictable approach for
estimating the costs and energy consumption since the ener-
getic efficiency keeps close values independent of demand.

VI. CONCLUSION
The main contribution of this work is a generic cluster archi-
tecture with a dynamic provisioning algorithm. It controls
the number of active nodes according to the demand in
real time to obtain energy consumption proportional to the
demand, while keeping acceptable quality of service and even
high availability. In order to validate the proposal, a real
prototype was built and is now fully functional. Moreover,
in order to be classified as a green computing cluster we
provide, also as a contribution of this work, several analyses
of the obtained performance. In the work, the NPi-Cluster
is empirically proven to have performance similar or even
better than conventional computers used to this same goal.
For example, we have shown that the efficiency can be com-
pared to the x86 architecture with multi-core Xeon machines,
however with a substantially reduced energy consumption.
Thus, the proposed cluster solution has demonstrate to
have an energetic efficiency that is superior to the others
presented.

It could be shown also, through empirical tests that the pol-
icy for dynamic provisioning provides an increase in energy
efficiency, mostly in the cases in which there is a low demand
for requisitions. In these situations, the cluster keeps nodes
that are not necessary powered off for the current processing.
For other scenarios in which the processing demand is higher
the cluster manager makes new nodes active in a manner that
is as fast as necessary to effectively serve the requests. This
also demonstrates that the methodology used for measuring
overloading and sub-utilization of the cluster nodes is able to
detect when these situations happen.

Besides the advantages above presented, the proposed sys-
tem also generates less heating. This reduces or even elimi-
nates the needs of cooling systems. The use of physical space
is also considerably reduced since in a cluster about 7 nodes
can be embedded in a space that is smaller than a standard
desktop computer, or simply mounted on the wall, as the sys-
tem is built on a frame. Furthermore, it is not necessary much
more space and cooling to provide the cluster scalability. And,
for its operation it would be enough to exchange the set of
nodes and addresses that are in the algorithm parameters.

Besides these promising results we can conjecture that in
futures versions of hardware the Raspberry Pi could have a
better result than the ones obtained here with these current
experiments. We could notice that a small however not com-
promising degradation in performance occurs mainly due to
the treatment of network interrupts. They, more recurrent in
the case of the using the cluster nodes as web server, are
treated by the main processor thus occupying almost all of its
capacity. This problem makes the network use the bottleneck
in order for this proposal to work properly. However, this
problem gets attenuated in the RPi2 model, since it has a
multicore processor. That is, when using the RPi2, we could
notice that, while one of the cores gets responsible for pro-
viding the network connections, the other ones could perform
other tasks.

On 2016, the Raspberry Pi Foundation launched the 3rd
generation of their boards, bringing improvements in proces-
sor (64-bit), built-in wireless network (Wifi) and Bluetooth
connectivity [67]. Some experimental tests were performed
with this new Raspberry PI model (3), with the hope that
the interrupt problem could have been solved, but the same
interrupt treatment issue observed on Raspberry PI 1 and 2,
persists on Raspberry PI 3. Keeping almost the same energy
consumption, RPI 3 managed to improve the performance of
RPi2 by about 17 %, primarily due the processor upgrade.
But likewise, one of the cores is still occupied with network
device interrupts and continues to be a bottleneck for its oper-
ation. For this reason we do not repeat the tests with a cluster
RPi3 because the results would show the same behavior.

Furthermore, an interesting aspect of NPi-Cluster archi-
tecture is that it can be applied without changes for several
different types of services and machines, since the form of
cluster overload determination is generic. Besides the low
cost, the proposed architecture also provides flexibility on its
parameters, scalability for future expansion and proportional-

VOLUME 5, 2017 16311



S. E. Alves Filho et al.: NPi-Cluster: A Low Power Energy-Proportional Computing Cluster Architecture

ity between computing and energy use, and does not represent
bottleneck for cluster management.

Despite all advantages, the proposed architecture has some
limitations. The dynamic provisioning algorithm needs a con-
sistent detection method to determine when a node is over-
loaded or underutilized. This work proposes a static approach
based on the size of webserver requests queue and the average
file size. Other techniques could be applied by using statistics,
estimates, software agents, prediction algorithms, or artificial
intelligence. There are also issues related to the hardware
itself that may not meet applications constraints. The energy
efficiency of these boards is achieved through limitations
regarding the amount of memory and bus speed, for example,
in addition to software availability for ARM architecture the
bottleneck resulting from the network interruptions discussed
here. In future works we will apply NPi-Cluster to more
dynamic scenarios, such as dynamic web applications and
variable demand, in addition to other types of applications.

Finally, to this end, the system prototype is not only fully
finished but up and running at SÃčo Carlos Federal Univer-
sity, where it is physically set. This is some 3 thousand kilo-
meters from Natal, where almost all the software architecture
has been developed at the Natalnet Laboratory. As a final
remark, and just to close, we all agree that this collaboration
has allowed a great team job.

REFERENCES
[1] O. Svanfeldt-Winter, S. Lafond, and J. Lilius, ‘‘Cost and energy reduction

evaluation for ARM based web servers,’’ in Proc. IEEE 9th Int. Conf.
Dependable, Auton. Secure Comput. (DASC), Dec. 2011, pp. 480–487.

[2] J. Fitzpatrick, ‘‘An interview with Steve Furber,’’ Commun. ACM, vol. 54,
no. 5, pp. 34–39, May 2011.

[3] M. H. Paek, ‘‘An analytical framework and promotion for Green IT strat-
egy,’’ in Proc. Int. Conf. Inf. Commun. Technol. Convergence (ICTC),
Oct. 2014, pp. 585–592.

[4] S. Agarwal and A. Nath, ‘‘Green computing—A new horizon of energy
efficiency and electronic waste minimization: A global perspective,’’
in Proc. Int. Conf. Commun. Syst. Netw. Technol. (CSNT), Jun. 2011,
pp. 688–693.

[5] S. K. Srivastava, ‘‘Green supply-chain management: A state-of-the-art
literature review,’’ Int. J. Manage. Rev., vol. 9, no. 1, pp. 53–80, 2007.

[6] R. Harmon and H. Demirkan, ‘‘The next wave of sustainable IT,’’ IT Prof.,
vol. 13, no. 1, pp. 19–25, Jan. 2011.

[7] Key World Energy Statistics, International Energy Agency, Paris, France,
2016.

[8] STAMFORD. (2007). Gartner Estimates ICT Industry Accounts
for 2 Percent of Global CO2 Emissions. [Online]. Available:
http://www.gartner.com/newsroom/id/503867

[9] G. Blake, R. G. Dreslinski, and T. Mudge, ‘‘A survey of multicore proces-
sors,’’ IEEE Signal Process. Mag., vol. 26, no. 6, pp. 26–37, Nov. 2009.

[10] L. A. Barroso and U. Holzle, ‘‘The case for energy-proportional comput-
ing,’’ Computer, vol. 40, no. 12, pp. 33–37, Dec. 2007.

[11] S. Mittal, ‘‘A survey of techniques for improving energy efficiency in
embedded computing systems,’’ Int. J. Comput. Aided Eng. Technol.,
vol. 6, no. 4, pp. 440–459, 2014.

[12] A. Bianzino, C. Chaudet, D. Rossi, and J. Rougier, ‘‘A survey of green
networking research,’’ IEEE Commun. Surveys Tuts., vol. 14, no. 1,
pp. 3–20, 1st Quart., 2012.

[13] T. Kaur and I. Chana, ‘‘Energy efficiency techniques in cloud comput-
ing: A survey and taxonomy,’’ ACM Comput. Surveys, vol. 48, no. 2,
pp. 22:1–22:46, Oct. 2015.

[14] G. Chen et al., ‘‘Energy-aware server provisioning and load dispatching
for connection-intensive Internet services,’’ in Proc. 5th USENIX Symp.
Netw. Syst. Design Implement., 2008, pp. 337–350. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=76111

[15] R. V. Aroca and L. M. G. Gonçalves, ‘‘Towards green data centers: A
comparison of x86 and ARM architectures power efficiency,’’ J. Parallel
Distrib. Comput., vol. 72, no. 12, pp. 1770–1780, Dec. 2012.

[16] E. Brown. (2011). Sandia’s Mini Supercomputer Runs Linux on
196 Gumstix Arm Modules, Accessed on May 2017. [Online]. Available:
http://linuxdevices.linuxgizmos.com/sandias-mini-supercomputer-runs-
linux-on-196-gumstix-arm-modules/

[17] K. Fürlinger, C. Klausecker, and D. Kranzlmüller, ‘‘Towards energy effi-
cient parallel computing on consumer electronic devices,’’ in Information
and Communication on Technology for the Fight against Global Warm-
ing: First International Conference, ICT-GLOW, D. Kranzlmüller and
A. M. Toja, Eds. Berlin, Germany: Springer, 2011, pp. 1–9.

[18] Mont Blanc. (2011).Mont Blanc Project, accessed onMay 2017. [Online].
Available: http://www.montblanc-project.eu/arm-based-platforms/

[19] K. L. Keville, R. Garg, D. J. Yates, K. Arya, and G. Cooperman, ‘‘Towards
fault-tolerant energy-efficient high performance computing in the cloud,’’
in Proc. IEEE Int. Conf. Cluster Comput., Sep. 2012, pp. 622–626.

[20] N. Balakrishnan, ‘‘Building and benchmarking a low power ARM cluster,’’
M.S. thesis, Dept. Edinburgh Parallel Comput. Centre (EPCC), Univ.
Edinburgh, Edinburgh, Scotland, 2012.

[21] N. Rajovic, L. Vilanova, C. Villavieja, N. Puzovic, and A. Ramirez, ‘‘The
low power architecture approach towards exascale computing,’’ J. Comput.
Sci., vol. 4, no. 6, pp. 439–443, 2013.

[22] A. M. Pfalzgraf and J. A. Driscoll, ‘‘A low-cost computer cluster for high-
performance computing education,’’ in Proc. IEEE Int. Conf. Electro/Inf.
Technol., Jun. 2014, pp. 362–366.

[23] S. J. Cox, J. T. Cox, R. P. Boardman, S. J. Johnston, M. Scott, and N. S.
O’Brien, ‘‘Iridis-pi: A low-cost, compact demonstration cluster,’’ Cluster
Comput., vol. 17, no. 2, pp. 349–358, 2014.

[24] Z. Krpić, G. Horvat, D. Zagar, and G. Martinović, ‘‘Towards an
energy efficient SoC computing cluster,’’ in Proc. 37th Int. Conv. Inf.
Commun. Technol., Electron. Microelectronincs (MIPRO), May 2014,
pp. 178–182.

[25] J. J. Dongarra, P. Luszczek, and A. Petitet, ‘‘The LINPACK benchmark:
Past, present and future,’’ Concurrency Comput., Pract. Exper., vol. 15,
no. 9, pp. 803–820, 2003.

[26] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. (2017). HPL—A
Portable Implementation of the High-Performance Linpack Benchmark
for Distributed-Memory Computers, accessed on May 2017. [Online].
Available: http://www.netlib.org/benchmark/hpl/

[27] M. Humphries. (2011). Canonical Builds a 42-Core Arm Cluster
Server Box for Ubuntu, accessed on Sep. 2016. [Online]. Avail-
able: http://www.geek.com/chips/canonical-builds-a-42-core-arm-cluster-
server-box-for-ubuntu-1390095/

[28] Y. Zhao et al., ‘‘An experimental evaluation of datacenter workloads on
low-power embedded micro servers,’’ in Proc. VLDB Endowment, vol. 9,
no. 9, pp. 696–707, May 2016.

[29] G. D. Costa, ‘‘Heterogeneity: The key to achieve power-proportional
computing,’’ in Proc. 13th IEEE/ACM Int. Symp. Cluster, Cloud Grid
Comput. (CCGrid), May 2013, pp. 656–662.

[30] D. Loghin, B. M. Tudor, H. Zhang, B. C. Ooi, and Y. M. Teo, ‘‘A perfor-
mance study of big data on small nodes,’’ Proc. VLDB Endowment, vol. 8,
no. 7, pp. 762–773, Feb. 2015.

[31] P. Abrahamsson et al., ‘‘Affordable and energy-efficient cloud computing
clusters: The Bolzano Raspberry Pi cloud cluster experiment,’’ in Proc.
IEEE 5th Int. Conf. Cloud Comput. Technol. Sci. (CloudCom), vol. 2.
Dec. 2013, pp. 170–175.

[32] F. P. Tso, D. R.White, S. Jouet, J. Singer, and D. P. Pezaros, ‘‘The Glasgow
Raspberry Pi cloud: A scale model for cloud computing infrastructures,’’
in Proc. IEEE 33rd Int. Conf. Distrib. Comput. Syst. Workshops, Jul. 2013,
pp. 108–112.

[33] K. Fox, W. M.Mongan, and J. Popyack, ‘‘Raspberry HadooPI: A low-cost,
hands-on laboratory in big data and analytics,’’ in Proc. SIGCSE, 2015,
p. 687.

[34] C. Kaewkasi and W. Srisuruk, ‘‘A study of big data processing con-
straints on a low-power Hadoop cluster,’’ in Proc. Int. Comput. Sci. Eng.
Conf. (ICSEC), Jul. 2014, pp. 267–272.

[35] N. Schot, ‘‘Feasibility of raspberry Pi 2 based micro data centers in big
data applications,’’ in Proc. 23th Univ. Twente Student Conf. IT, Enschede,
The Netherlands, 2015, p. 22.

[36] S. S. D. Xu and T. C. Chang, ‘‘A feasible architecture for ARM-based
microserver systems considering energy efficiency,’’ IEEE Access, vol. 5,
pp. 4611–4620, 2017.

16312 VOLUME 5, 2017



S. E. Alves Filho et al.: NPi-Cluster: A Low Power Energy-Proportional Computing Cluster Architecture

[37] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, ‘‘The Hadoop dis-
tributed file system,’’ in Proc. IEEE 26th Symp. Mass Storage Syst.
Technol. (MSST), May 2010, pp. 1–10.

[38] P. Velthuis, ‘‘Small data center using raspberry Pi 2 for video streaming,’’
in Proc. 23th Twente Student Conf. IT, 2015. [Online]. Available:
http://referaat.cs.utwente.nl/conference/23/paper/7515/small-data-center-
using-raspberry-pi-2-for-video-streaming.pdf

[39] Z. Ou, B. Pang, Y. Deng, J. K. Nurminen, A. YläJääski, and P. Hui,
‘‘Energy- and cost-efficiency analysis of ARM-Based clusters,’’ in Proc.
12th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGrid),
May 2012, pp. 115–123.

[40] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan, ‘‘FAWN: A fast array of wimpy nodes,’’ in Proc. ACM
SIGOPS 22nd Symp. Oper. Syst. Principles, 2009, pp. 1–14.

[41] D. Schall and V. Hudlet, ‘‘WattDB: An energy-proportional cluster of
wimpy nodes,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2011,
pp. 1229–1232.

[42] J. Xie, P. Jin, S. Wan, and L. Yue, Energy-Proportional Query Processing
on Database Clusters. Cham, Switzerland: Springer, 2015, pp. 324–336.

[43] B. Heller et al., ‘‘ElasticTree: Saving energy in data center networks,’’ in
Proc. NSDI, vol. 10, 2010, pp. 249–264.

[44] M. F. Cloutier, C. Paradis, and V. M. Weaver, ‘‘Design and analysis of
a 32-bit embedded high-performance cluster optimized for energy and
performance,’’ in Proc. 1st Int. Workshop Hardware-Softw. Co-Design
High Perform. Comput., 2014, pp. 1–8.

[45] M. F. Cloutier, C. Paradis, andV.M.Weaver, ‘‘A raspberry Pi cluster instru-
mented for fine-grained power measurement,’’ Electronics, vol. 5, no. 4,
p. 61, 2016. [Online]. Available: http://www.mdpi.com/2079-9292/5/4/61

[46] (2017).Raspberry Pi Project Home Page, accessed onMay 2017. [Online].
Available: https://www.raspberrypi.org/

[47] F. Kaup, P. Gottschling, and D. Hausheer, ‘‘PowerPi: Measuring and
modeling the power consumption of the raspberry Pi,’’ in Proc. 39th Annu.
IEEE Conf. Local Comput. Netw., Sep. 2014, pp. 236–243.

[48] E. C. Joseph and S. Conway. (2011). Heterogeneous Computing: A
New Paradigm for the Exascale Era (Adapted From IDC HPC End-
User Study of Processor and Accelerator Trends in Technical Computing,
accessed on May 2017. [Online]. Available: http://blogs.nvidia.com/wp-
content/uploads/2011/11/IDC-Exascale-Executive-Brief_Nov2011.pdf

[49] Y. Jiang, ‘‘A survey of task allocation and load balancing in distributed
systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2, pp. 585–599,
Feb. 2016.

[50] V. Cardellini, M. Colajanni, and P. S. Yu, ‘‘Dynamic load balancing on
Web-server systems,’’ IEEE Internet Comput., vol. 3, no. 3, pp. 28–39,
May 1999.

[51] (2016). Apache Module Mod_Proxy_Balancer, accessed on
May 2017. [Online]. Available: https://httpd.apache.org/docs/2.4/mod/
mod_proxy_balancer.html

[52] (2016). HAProxy the Reliable, High Performance TCP/HTTP Load Bal-
ancer, accessed on May 2017. [Online]. Available: http://www.haproxy.
org/

[53] (2016). Pacemaker: A Scalable High Availability Cluster Resource Man-
ager, accessed on May 2017. [Online]. Available: http://clusterlabs.org/

[54] T. P. Brisco, ‘‘DNS support for load balancing,’’ in Proc. RFC, Mar. 2013,
p. 1794. [Online]. Available: https://rfc-editor.org/rfc/rfc1794.txt

[55] (2017). Cisco IOS IP Configuration Guide: Configuring Server
Load Balancing. accessed on May 2017. [Online]. Available:
http://www.cisco.com/c/en/us/td/docs/ios/12_2/ip/configuration/
guide/fipr_c/1cfsflb.html

[56] X. Zheng and Y. Cai, ‘‘Achieving energy proportionality in server clus-
ters,’’ Int. J. Comput. Netw., vol. 1, no. 1, pp. 21–35, 2009.

[57] J. Strawson and N. Ayres. (Nov. 2012) Adventures in Retail: The Other
Line’s Moving Faster. Accessed May 2017. http://img01.thedrum.
com/s3fs-public/drum_basic_article/99200/additional_media/online-
retail-research-report-november-2012.pdf

[58] J. Dilley, R. Friedrich, T. Jin, and J. Rolia, ‘‘Web server performance
measurement and modeling techniques,’’ Perform. Eval., vol. 33, no. 1,
pp. 5–26, Jun. 1998.

[59] (2017). Nginx—High Performance Load Balancer, Web Server
& Reverse Proxy, accessed on May 2017. [Online]. Available:
https://www.nginx.com/

[60] (2017). Raspbian—Raspberry Pi Foundation’s Official Supported
Operating System, accessed on May 2017. [Online]. Available:
https://www.raspberrypi.org/downloads/raspbian/

[61] Ab—Apache HTTP Server Benchmarking Tool, accessed on May 2017.
https://httpd.apache.org/docs/2.4/programs/ab.html

[62] J. L. Gustafson, ‘‘Reevaluating Amdahl’s Law,’’ Commun. ACM, vol. 31,
no. 5, pp. 532–533, May 1988.

[63] R. Love, ‘‘Introducing the 2.6 kernel,’’ Linux J., vol. 23, no. 109,
p. 2, May 2003. [Online]. Available: http://dl.acm.org/citation.
cfm?id=770650.770652

[64] (2017). HTTP Archive, accessed on May 2017. [Online]. Available:
http://httparchive.org

[65] G. Urdaneta, G. Pierre, and M. van Steen, ‘‘Wikipedia workload
analysis for decentralized hosting,’’ Elsevier Comput. Netw., vol. 53,
no. 11, pp. 1830–1845, Jul. 2009. [Online]. Available: http://www.globule.
org/publi/WWADH_comnet2009.html

[66] (2017). Siege HTTP Load Testing and Benchmarking Utility, accessed on
May 2017. http://www.joedog.org/siege-home/

[67] Raspberry Pi 3 Model b, accessed on May 2017. [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

SEBASTIÃO EMIDIO ALVES FILHO received the
degree in computer sciences from Federal Uni-
versity of Rio Grande do Norte (UFRN), Brazil,
and the M.Sc. degree in computer science from
State University of Rio Grande do Norte (UERN),
Brazil. He is currently pursuing the Ph.D. degree
with the Electrical and Computing Engineering
Graduate Program at UFRN. Since 2004, he has
had experience in IT systems, combinatorial opti-
mization, free software, server administration, and

cluster/grid/cloud computing. He is also an Adjunct Professor with the Infor-
matics Department, UERN. His main research interests are in distributed
computing and green IT.

AQUILES MEDEIROS FILGUEIRA
BURLAMAQUI received the degree in computer
sciences and the M.Sc. degree in systems and
computing from Federal University of Rio Grande
do Norte (UFRN) and the Ph.D. degree in electri-
cal and computing engineering. He is currently a
Professor with UFRN and also a Researcher with
NatalNet Laboratories, with interest in several
fields, including multimedia, software engineer-
ing, digital TV, and educational robotics.

RAFAEL VIDAL AROCA (M’05) received the
degree in informatics and the M.Sc. degree in
mechatronics engineering from University of Sao
Paulo, and the Ph.D. degree in electrical and
computing engineering. He has over ten years
of industry experience in embedded systems, IT
systems, and servers administration. He is cur-
rently an Adjunct Professor with Federal Univer-
sity of Sao Carlos. His main research interests
are in embedded systems, operating systems, and
robotics.

LUIZ MARCOS GARCIA GONÇALVES received
the Ph.D. degree in systems and computing engi-
neering from Federal University of Rio de Janeiro
in 1999. He is currently an Associate Professor
with the Computing Engineering and Automation
Department, Federal University of Rio Grande do
Norte, Brazil. His research interests are in com-
puter vision, robotics, and all aspects of graphics
processing. He has been a member of the IEEE
Latin American Robotics Council since 2002. He

was the Chair of the Brazilian Committee on Robotics and on Computer
Graphics and Image Processing, both under the Brazilian Computer Society.

VOLUME 5, 2017 16313


