
Received June 14, 2017, accepted July 28, 2017, date of publication August 7, 2017, date of current version September 6, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2736525

Evaluating Power and Energy Efficiency of Bitonic
Mergesort on Graphics Processing Unit
MUHAMMAD ABDULHAMID AL-HASHIMI, OSAMA AHMED ABULNAJA,
MOSTAFA ELSAYED SALEH, AND MUHAMMAD JAWAD IKRAM
Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Corresponding author: Muhammad Jawad Ikram (mshahid@stu.kau.edu.sa)

This work was supported by the Deanship of Scientific Research, King Abdulaziz University, under Grant 1-611-1433/HiCi.

ABSTRACT Excessive power consumption is expected to be the major obstacle to achieve exascale
performance within a reasonable power budget in the upcoming years. In addition, graphics processing
units (GPUs) are expected to become a significant ingredient in the pursuit of exascale computing due
to their fine-grained, highly parallel architecture and advancements in performance and power efficiency.
To address the power obstacle of exascale systems, we suggest evaluating power and energy consumption
of the fundamental software building blocks. We experimentally investigate power consumption, energy
consumption, and kernel runtime of Bitonic Mergesort (a promising sort for parallel architectures) under
various workloads on NVIDIA K40 GPU. The results show some insights in terms of power and energy
consumption advantage of Bitonic Mergesort compared with NVIDIA’s Advanced Quicksort (a highly
optimized parallel quicksort).

INDEX TERMS Energy measurement, power measurement, exascale computing, GPU, sorting.

I. INTRODUCTION
Exascale computing means to achieve order 1018 float-
ing point operations per second (FLOPS) and order 1018

bytes of storage, which is 1,000 times the capability of
today’s petascale platforms [1]. Achieving exascale perfor-
mance in a reasonable power budget requires innovations
and advancements in architecture, software and algorithms.
Power consumption, fault tolerance, fault rates, and trans-
forming applications from petascale to exascale systems are
some of the major challenges to achieve exascale com-
puting. The likely environment for exascale computing is
highly parallel many-cored compute nodes, organized in
large systems with higher probability of software and sys-
tem faults [1]–[4]. Simply scaling current technology raises
problems such as communication, power and energy con-
sumption. Observing high-performance computing (HPC)
systems on the Top500 list [5], scaling these machines to
exascale would produce machines that consume Gigawatts
of power. Providing this amount of power would require
a medium size nuclear power plant [6]. A US Defense
Advanced Research Projects Agency (DARPA) report esti-
mates a reasonable peak of electrical power; according to
which maximum power of future HPC systems must be
below 20Megawatts [4]. To overcome these challenges, huge

investment is needed in numerous areas of research and
development.

Current HPC techniques are not suitable for the next
generation of supercomputing (exascale computing) [4].
We need alternatives that can cope with energy consumption
restraints to reach the next scale of HPC systems. We sug-
gest that exploring accurate power and energy consumption
of fundamental algorithms can offer new ways to reduce
the excessive power requirements of the upcoming exas-
cale systems. Fundamental algorithms such as sorting algo-
rithms are the building blocks of numerous scientific and
HPC applications. HPC applications such as N-body simula-
tions [7], high performance sparse matrix-vector multiplica-
tion implementations [8], graphics algorithms like Bounding
Volume Hierarchy (BVH) construction [9], database opera-
tions [10], machine learning algorithms [11] and MapReduce
framework implementations [12] are some examples that
depend exclusively on sorting algorithms. In addition, vis-
ibility sorting is used in computer graphics applications to
properly render transparent objects and efficiently exploit
acceleration features such as early-z test. Furthermore, sort-
ing is also essential in physics simulations to insert the
contributing objects into spatial structures for detecting
collision [13].

VOLUME 5, 2017
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

16429

M. A. Al-Hashimi et al.: Evaluating Power and Energy Efficiency of Bitonic Mergesort on Graphics Processing Unit

In general, sorting algorithms can be categorized into two
classes: data-driven and data-independent. Practically, data-
driven algorithms are faster because they only consider the
current input value but this may lead to unexpected perfor-
mance if the input sequence is already sorted [13]. Quick-
sort is an example of data-driven algorithms. For an input
sequence of n items, quicksort has an average complexity
O(n log(n)) that is provably optimal but in worst case, quick-
sort hasO(n2) complexity that is not acceptable. On the other
hand, the data-independent algorithms are free of this dis-
crepancy because these algorithms always take the same path
for sorting the input sequence. This results in a completely
rigid operation because the points of communication are
known in advance. These features make the data-independent
algorithms a good choice for GPUs as these algorithms will
execute on fragment processors that cannot modify their
output location in memory on the basis of input sequence.
Bitonic Mergesort (BM) is an example of data-independent
sorting algorithms that can also be used as a construction
method to build a sorting network. BM is adequate for generic
parallel architectures as it can operate in-place, needs lower
inter-process communication, and is logically suitable for
single-instruction, multiple-data (SIMD) architectures [13].
Such features of BM led us to investigate it for power and
energy efficiency. We expect BM to be more power and
energy efficient compared to a highly optimized data-driven
algorithm.

This paper highlights the need for finding new techniques
to address the power obstacle of exascale systems and dis-
cusses the critical issues and challenges associated with
power and energy consumption of GPU used to execute HPC
applications. In this research, we experimentally investigated
power and energy consumption of BM [14] and compared
it with NVIDIA’s Advanced Quicksort (AQ) [15]. NVIDIA
Kepler (Tesla K40c) [16] GPUwas used as a test platform due
to its outstanding high-performance capabilities. Apart from
power and energy consumption investigation of BM, we also
evaluated its kernel runtime and compared it with that of AQ.
Kernel runtimemeans the runtime of a kernel that is executing
on GPU and as a result the GPU consumes more power than
its idle state power. It is different from the execution time
of a sorting algorithm. Execution time of a sorting algorithm
means the total time the algorithm takes to sort a dataset in the
source code. Execution time of a sorting algorithm is based
on its time-complexity and space-complexity, and it can be
obtained by calling timestamp functions in the source code.
On the other hand, we obtained kernel runtime by reading the
GPU built-in sensor. It is explained in detail in Section 1V.

Generally, optimized versions of quicksort are good choice
for most applications due to their faster execution times but
our experimental study shows that AQ (a highly optimized
quicksort) have longer kernel runtimes than BM (a simple
in-place bitonic sort) in most cases. The in-place BM has a
memory space advantage and is comparable to AQ in this
regard. Longer kernel runtimes of AQ means that it keeps
the GPU busy for longer time than BM while sorting the

same dataset evenwith comparatively smaller execution times
than BM. Since the next generation of HPC (exascale) is
more concerned about power consumption, the power and
energy consumption advantage of BM over AQ can open new
insights for exascale research. Researchers can start to rethink
fundamental algorithms from power and energy perspective
to provide better recommendations for the upcoming exascale
systems.

The results provide a comprehensive comparison of AQ
and BM based on 3 metrics: peak power, energy and kernel
runtime, described as follows.
Peak Power: is the peak level of GPU power that is reached

when the algorithm (AQ or BM) is executing on the GPU
(GPU active state). It is obtained from the power profile of
the algorithm.
Energy: is the total energy consumed by the algorithm

(AQ or BM). It is indicated by the area under the power curve
of the algorithm. It is calculated by integrating the power
curve over kernel runtime.
Kernel Runtime: is the runtime of a kernel (AQ ker-

nel or BM kernel) that is executing on the GPU. It is the time
in which a kernel keeps GPU busy and as a result the GPU
consumes more power than its idle state power.

In general the contributions of this paper are as follow:
• We present an experimental methodology for measuring
power and energy consumption of kernels running on
Kepler GPUs.

• We provide a comprehensive comparison of power pro-
files of AQ and BM.

• We identify power and energy consumption advantage
of BM by comparing it with AQ.

The rest of this paper is organized as follows.
Section II presents a concise literature review of related
research. Section III presents a brief background of algo-
rithms, test platform, NVDIA System Management Inter-
face, and related CUDA basics. In Section IV, experimental
setup and methodology is presented. Section V provides a
discussion and an evaluation of results. Finally, section VI
concludes the work and suggests some future research
directions.

II. LITERATURE REVIEW
Vila et al. [17] presented research of NVIDIA Corporation
towards designing exascale systems by incorporating features
addressing the scaling obstacles of performance and energy
efficiency. They evaluated several HPC applications on a
number of architectural concepts and demonstrated energy
improvements obtained from: circuit and packaging inno-
vations such as low-voltage SRAM; low-energy signaling,
and on-package memory. They highlighted power and per-
formance predictions for their exascale research architecture
and elaborated the scaling of features regarding future process
technologies. The researchers concluded that advancements
in performance of applications will require more innovations
in algorithms and architecture to improve memory locality,
better scaling, and integer execution efficiency.

16430 VOLUME 5, 2017

M. A. Al-Hashimi et al.: Evaluating Power and Energy Efficiency of Bitonic Mergesort on Graphics Processing Unit

Dally [18] discussed the challenges for exascale com-
puting and recent techniques addressing those challenges.
He argued that obtaining exascale performance in a power
budget of 20 MW will require a 200-fold improvement in
energy per instruction: from 2 nano-joules to 10 pico-joules.
He further discussed that programing exascale machine will
require more productive parallel programming environments.

Subramaniam et al. [19] analyzed current trends in energy
efficiency from the Green500 list [20] of supercomputers
and estimated expectations for the upcoming years. Specif-
ically, they first provided an explanation of energy efficiency
trends in HPC systems from the Green500. They then mod-
eled and forecasted the energy efficiency of next generation
HPC systems. Further, they presented exascalar, i.e. a holistic
metric to measure distance from the exaflop goal.

Rajovic et al. [21] explored an alternative to current super-
computers that builds on low power mobile processors. They
presented the world’s first ARM based cluster for HPC. They
examined energy-efficiency of ARM Cortex-A0 processor,
and finally, explored techniques to improve energy efficiency
by increasing compute density.

Moullec et al. [22] proposed power prediction technique
in embedded systems that use multithreaded processors for
delivering a feasible solution for implementing wireless
embedded applications. Their design objective was to eval-
uate and provide comparison of power consumption of algo-
rithms that are executed on multithreaded Xinc processor.

Analyzing power consumption of applications on GPUs
and other heterogeneous devices has been discussed
in [23] and [24]. Nagasaka et al. [25] developed sta-
tistical models for GPUs based performance counters.
Kasichayanula et al. [26] carried out a study on power con-
sumption of numerousmicrobenchmarks executing onGPUs.

Zecena et al. [27] conducted performance and energy
consumption analysis of three sorting algorithms, which
are odd-even sort, shell sort, and quicksort. They imple-
mented iterative methods for odd-even sort and shell sort
while for quicksort; they used recursive implementation using
OpenMP. They analyzed both serial and parallel versions of
these three algorithms using a shared-memory system that
contained two quad-core AMD 2380 Opteron processors.

Ukidave et al. [28] analyzed power/performance efficiency
of various optimization techniques used on heterogeneous
platforms. They evaluated the tradeoff between power and
performance by evaluating energy consumption of optimiza-
tion techniques. Their work focused on discrete GPUs, shared
memory GPUs, low power system-on-chip (SoC) devices
and includes hardware from NVIDIA, Intel and Qualcomm.
They identified architectural and algorithmic factors that
have effect on power consumption. They demonstrated that
algorithms implementing similar fundamental function can
perform differently depending on target hardware and appli-
cation design.

Burtscher et al. [29] presented a power and energy mea-
surement methodology of kernels running on K20 GPU with
on-board built-in power sensor. They identified a number of

anomalies while using on-board power sensor of K20 GPUs.
They validated their methodology using multiple systems,
GPUs, scenarios and CUDA programs.

Coplin and Burtscher [30] investigated and contrasted
power profiles of irregular and regular programs running on
K20 GPU. They also studied effects on power profile while
changing GPU’s core and memory frequencies, using alter-
nate implementations of the same algorithm and changing
input to the program. It is depicted in their results that a single
average cannot precisely capture the power behavior of irreg-
ular programs. They argued that power must be considered as
a function of time and it may have to be evaluated again for
each input and after each change in the code.

Roy et al. [31] argued on energymanagement, as a building
block for design and implementation of algorithms. They
identified memory parallelism as a factor, which affects
energy consumption for any given algorithm. Their experi-
ments validate the asymptotic energy complexity model [32].
For sorting algorithms, Roy et al. [31] identified that the
energy consumed by energy optimal layout (8-way parallel)
of selection sort performs much better compared to non-
optimal (e.g., 1-way parallel). They identified that quicksort
and mergesort show reasonable savings over changes in par-
allelization due to energy awareness.

Al-Hashimi et al. [33] investigated power consumption for
three control loops, which are for loop, while loop, and the
do while loop. They highlighted that fundamental control
statements can exhibit different power consumption while
performing the same task. They gave predictions for the best
control loop statement in terms of power efficiency.

III. BACKGROUND
In this work, NVIDIA Kepler (Tesla K40c) [16] architec-
ture is used as a test platform. In addition, CUDA 7.5 pro-
gramming standard [34], NVIDIA System Management
Interface (NVSMI) [35], a mathematical package and work-
sheets are used to successfully accomplish experiments on
K40c GPU. In this section, we briefly describe the algo-
rithms, NVIDIA Kepler architecture, NVSMI and CUDA
basics.

A. THE ALGORITHMS
Both quicksort and mergesort are based on divide-and-
conquer principles. Quicksort is honored as one of the
top 10 algorithms of the 20th century [36]. In [36], the work-
ing of quicksort in its simplest form is described as follows.
The pivot is determined in a divide step, which is then used
to partition the input sequence A[x . . . z] into two subse-
quences. After portioning, the pivot is placed in A[y], where
all the elements smaller than or equal to A[y] are placed
in subsequence A[x . . . y−1] and all the elements greater
than A[y] are placed in A[y + 1 . . . z]. In the conquer
step, the same procedure is used for recursively sorting the
subsequences until subsequences of length 1 are obtained.
On the other hand, mergesort in its simplest form works as
follows. Firstly, the list is split into multiple subsequences.

VOLUME 5, 2017 16431

M. A. Al-Hashimi et al.: Evaluating Power and Energy Efficiency of Bitonic Mergesort on Graphics Processing Unit

Secondly, each subsequence is sorted and, finally, all subse-
quences are merged into sorted sequence [36].

In our experiments, we investigated Bitonic
Mergesort [14] and Advanced Quicksort [15] for power and
energy efficiency. These two algorithms are briefly described
next.

1) ADVANCED QUICKSORT (AQ)
Advanced Quicksort (AQ) is the implementation of a
highly optimized version of parallel quicksort developed by
NVIDIACorporation using CUDAdynamic parallelism [37].
It is supported on devices with compute capability 3.5 or
greater. It works as follows:
• It uses a small-set insertion sort for list size less
than or equal to 32 elements.

• It uses a portioning kernel, which separates an input
array based on the given pivot. The input array is divided
into elements less than or equal to pivot and elements
greater than pivot. Two quicksorts are launched to sort
each of these elements.

• A quicksort coordinator is used to launch proper kernels.
• It performs a per-warp quicksort without inter-warp
communication. Selection of data is determined by a
warp, which then writes data greater than pivot to one
buffer and data smaler then pivot to another buffer.
A unique section of the buffer is acquired through
atomics.

• A warp finds its section of the data, and then writes all
data less than pivot to one buffer and all data greater
than pivot to the other. Atomics are used to get a unique
section of the buffer.

• For optimization, multiple chunks are done per warp to
increase in-flight load and reduce the instruction over-
head.

• Elements that are greater or smaller than pivot are
counted by each warp. As the count is known to a warp,
it updates an atomic counter. If all are less than or equal
to pivot then the comparison is adjusted, otherwise it will
move nothing and iterate forever.

2) BITONIC MERGESORT (BM)
Bitonic Mergesort (BM) is a sorting algorithm that is
designed specifically for parallel platforms. This algorithm
was proposed by Ken Batcher [38]. BM is also used as
a construction technique for developing sorting networks,
that consist of O(n log2(n)) comparators and have a delay of
O(n log2(n)), where n is the number of items to be sorted [39].
BM is one of the most studied algorithms in GPU com-
puting community [13], [40]–[43]. It is suitable for generic
parallel architectures as it can work in-place, needs lower
inter-process communication, and is logically suitable for
SIMD architectures. A bitonic sequence is composed of two
subsequences, one monotonically ascending and the other
monotonically descending, for example "V" and ‘‘A-frame’’.
The CUDA version of in-place BM used in this paper is based
on [14], briefly described as:

• It divides the input sequence into two halves.
• It sorts the lower half and upper half into ascending and
descending order respectively, thus, resulting in a bitonic
sequence.

• It executes a bitonic merge on the sequence that results
in a bitonic sequence in each half and all the larger
elements in the upper half.

• Each half is recursively bitonically merged until all the
elements are sorted.

B. NVIDIA Kepler ARCHITECTURE
NVIDIAKepler GK110 is a computational workhorse specif-
ically designed to deliver cutting-edge performance with
power efficiency and to address the most overwhelming
challenges in HPC [44]. GK110 is composed of 7.1 billion
transistors and is capable of performing teraflops of integer,
single precision, and double precision performance and high
memory bandwidth [44]. Table 1 highlights some key features
of Tesla K40.

Numerous scientific applications [45] use Kepler GK110
due to its innovative computing technology. SMX, Dynamic
Parallelism and Hyper-Q are three distinguished innova-
tions in Kepler GK110 [44]. SMX unit lies at the heart of
GK110 GPU, which is the next generation streaming mul-
tiprocessor. Its new innovative design allows more space to
processing cores than control logic [44]. Through dynamic
parallelism [37], GPU threads can create new threads, with-
out CPU involvement, and adapt to its data, which results
in eliminating effectively the superfluous back-and-forth
communication between the GPU and CPU through nested
kernel computations. Hyper-Q allows several CPU cores to
accomplish work on a single GPU concurrently, which sig-
nificantly increases GPU utilization and reduces CPU idle
times [44].

Popular Kepler architecture includes K20, K40 and K80.
Due to outstanding high-performance capabilities we used
the NVIDIA K40c [16] Kepler-based architecture as a plat-
form in our experiments. K40 can be found in a number of
top500 [5] and green500 [20] supercomputers.

C. CUDA BASICS
We used CUDA programming standards to leverage the
inherent parallel programming capabilities offered by GPUs.
Following is a concise description of terminology used in
GPU programming based on CUDA to explain key features
of Tesla K40 in Table 1.
Host:means the CPU and its memory. In our case, it is the

Intel(R) Xeon(R) CPU E5-2640 2.50GHz and its memory.
Device: means the GPU and its memory. In our case, it is

the NVIDIA Kepler K40c GPU and its memory.
Kernel: is a function that executes on the GPU. Applica-

tions are executed in parallel on GPU as kernels. One kernel
is launched at a time by a number of threads. In our case,
we have AQ and BM kernels that contain the underlying
sorting algorithm source codes and they are launched on
K40 GPU.

16432 VOLUME 5, 2017

M. A. Al-Hashimi et al.: Evaluating Power and Energy Efficiency of Bitonic Mergesort on Graphics Processing Unit

TABLE 1. Key features of tesla K40 [16].

Warp: is a group of 32 threads that are consecutively
numbered within a thread block.
Barrier: in the source code, barrier for a group of

threads or process is a point at which threads or process
must stop execution and cannot proceed until all other
threads or processes are reached at this point [34].

D. NVIDIA SYSTEM MANAGEMENT INTERFACE
NVIDIA System Management Interface (NVDIA-SMI or
NVSMI) is a cross-platform utility that is used to monitor and
manage activities on NVIDIA GPUs. It is based on NVIDIA
Management Library (NVML) [46] C-based library. NVSMI
supports devices from NVIDIA Fermi and higher architec-
tures. Users can generate queries to get information about
GPU. GPU power, temperature, performance state and infor-
mation about many other metrics can be obtained through
NVSMI. The information can be displayed to stdout or can be
written to log files for scripting purposes.More detailed infor-
mation on NVSMI can be found in [35]. We used NVSMI
in our experiments to query the on-board sensor for power
measurements of kernels executing onK40cGPU. Our exper-
imental setup and methodology is discussed in detail the next
section.

IV. EXPERIMENTAL SETUP AND METHODOLOGY
We used Fujitsu HPC workstation with a dedicated NVIDIA
K40c GPU for experiments. The system specifications are
given in Table 2. NVIDIA System Management Inter-
face (NVSMI) was used to read GPU built-in sensor and
record data to a log file. NVIDIA Kepler GPU come with
built-in sensors that can be queried instantaneously using
NVIDIAManagement Library (NVML) API calls to monitor
the current state of the GPU and record values for ECC
status information, GPU load, temperature and fan speed,

TABLE 2. System specifications.

active computational processes, GPU clock rates, and power
management [46]. The built-in sensor provides an adequate
basis for elaborating on GPU power management as depicted
in [27], [29], and [30]. In [29], the power profiles of vari-
ous kernels, obtained using Kepler K20 built-in sensor, are
validated using a power meter. Thus, we did not bother to
use a power meter to validate the data obtained through the
K40 built-in sensor.

TABLE 3. Datasets of unsigned integer random numbers.

We tested Advanced Quicksort (AQ) and Bitonic Merge-
sort (BM) on 8 different datasets of unsigned integer random
numbers. The 8 datasets include 2 elements, 1 Mega (M)
elements, 2M elements, 64M elements, 128M elements,
256M elements, 512M elements and 1 Giga (G) elements,
as described in Table 3. It is important to mention that we
also tested AQ and BM on some datasets between 2 elements
and 1M elements but there was no significant difference in the
results. For the dataset of 2M elements, a small difference was
observed in the results. In order to observe a clear difference
in power and energy consumption of AQ and BM,we selected
the next dataset of 64M elements, and after that we doubled
the step size until we reached 1G. For generation of unsigned
integer random numbers, we used C built-in function
rand() and constant RAND_MAX, where rand() generates
pseudorandom numbers and RAND_MAX is the maximum
value returned by the rand() function.

Figure 1 summarizes the whole experimental procedure.
Following is a step-by-step description of the procedure for
executing AQ or BM on the above described datasets (2 ele-
ments, 1M, 2M, 64M, 128M, 256M, 512M, and 1G elements)
one after another.

VOLUME 5, 2017 16433

M. A. Al-Hashimi et al.: Evaluating Power and Energy Efficiency of Bitonic Mergesort on Graphics Processing Unit

FIGURE 1. Experimental Procedure for Executing AQ and BM on Each
Dataset for Measuring Power and Energy Consumption.

1. Invoke NVIDIA System Management Inter-
face (NVSMI) from command prompt to read on-
board GPU sensor; create a log file and gen-
erate a query to record power readings, perfor-
mance states and timestamps at a sampling rate
of 66.6Hz.

2. A dataset of unsigned integer random numbers to be
sorted is generated at runtime in the source code using
rand() % RAND_MAX.

3. Kernel (AQ or BM) is launched on the dataset in the
source code.

4. As the source code gets executed, stop NVSMI execu-
tion in the command prompt.

5. Extract data from log files to MS Excel Worksheet
and filter data for power draw, performance states and
timestamps.

6. Extract power and timestamps values only for
P0 performance state (GPU active state) from
MS Excel Worksheet to a mathematical package,
i.e. Origin 6.0 [47].

7. Obtain power profile of the dataset over kernel runtime
and record the peak power.

8. Using Origin 6.0, integrate power curve to obtain
energy consumption of the dataset.

9. Repeat step 1 to step 9 for 10 times to compute average
values for peak power, energy and kernel runtime.

We executed AQ and BM separately on each dataset.
In order to compute average values (of peak power, energy
and kernel runtime) and increase accuracy in results,
AQ and BM were executed on 10 distinct sets of each dataset
that were generated randomly at runtime in the source code.
This means that the experiment was not limited to only one
specific set of each dataset.

Since AQ and BM were executed separately on all 10 sets
of the 8 datasets (2 elements, 1M elements, 2M elements,
64M elements, 128M elements, 256M elements, 512M ele-
ments and 1G elements), thus, 80 log files were created for
AQ and 80 log files for BM using NVSMI. The log files
recorded information about power measurements and per-
formance states from GPU on-board sensor. Power measure-
ments include the current power draw and power limits of the
GPU board. Performance states vary from P0 (maximum per-
formance) to P12 (minimum performance). Kernel runtime
was calculated based on timestamps and performance states.
We readGPUbuilt-in sensor at a sampling rate of 66.6Hz or in
other words, we read the sensor every 15ms and recorded data
into a log file. This sampling rate (66.6Hz) results in accu-
rate power measurements as recommended in [29]. Finally,
we compared AQ and BM based on average energy, average
peak power and average kernel runtime.

Figure 2 to Figure 4 provide further explanation to the
experimental procedure. Figure 2 and Figure 3 show full
(idle + active) power profiles of GPU while executing BM
and AQ on one set of dataset 1G elements, respectively.
The power profiles show all power values that are recorded
from the on-board GPU sensor over the kernel runtime at
sampling rate of 66.6Hz. GPU idle and active states are
properly highlighted in the figures. The shaded regions under
power curves show GPU state (active state) during kernel
execution. It should be noted that idle power of the K40 GPU
is 20.57W [16], which means the power consumption when
there is no kernel running on the GPU. As a kernel starts

16434 VOLUME 5, 2017

M. A. Al-Hashimi et al.: Evaluating Power and Energy Efficiency of Bitonic Mergesort on Graphics Processing Unit

FIGURE 2. GPU Full Power Profile (Idle + Active) for BM: Dataset = 1G
Elements.

FIGURE 3. GPU Full Power Profile (Idle + Active) for AQ: Dataset = 1G
Elements.

execution on the GPU, power consumption of GPU is raised
from idle power level. Figure 4 shows a screenshot of a
portion of NVSMI log file which shows switching of GPU
from idle to active state (means the kernel starts execution).
We can see difference in both the logs, i.e. performance state

FIGURE 4. Information from NVSMI Log File.

is changed from P8 to P0, power draw is changed from
22.88W to 49.04W and idle flag is changed to not active than
active. Once the kernel starts execution, GPU power starts
increasing based on the dataset and the algorithm running on
it. When kernel gets executed, the GPU again comes to idle
state and power draw is changed to idle state power again.

Visual Studio 2013 compiler was used to execute the
source code, which was configured in release mode and x64
active solution platform. In order to compare AQ and BM
under identical configuration, we used same kernel size for
both AQ and BM kernels. In CUDA, kernel size is defined
by block size (threadsPerBlock) andgrid size (blocksPerGrid).
In case of AQ, optimum kernel size is selected dynami-
cally at runtime that chose 512 block size almost in all
cases. On the other hand for BM, we used CUDA vari-
ables threadsPerBlock and blocksPerGrid while generating a
dataset at runtime. For all datasets greater than 2 elements,
we kept 512 block size while altered grid size based on
number of elements in the dataset in case of BM. The number
of elements in a dataset were calculated by multiplying block
size with grid size at runtime in the source code. Due to

VOLUME 5, 2017 16435

M. A. Al-Hashimi et al.: Evaluating Power and Energy Efficiency of Bitonic Mergesort on Graphics Processing Unit

FIGURE 5. AQ and BM Power Profiles while Executing on 1 Set of all 8 Datasets at GPU Active State.

such configuration, we got higher Achieved Occupancy and
StreamingMultiprocessor(SM) Activity of the GPU.Achieved
occupancymeans the ratio of active warps per multiprocessor

to the maximum possible active warps [46]. SM Activity
represents the percentage how long each multiprocessor was
active during kernel execution [46]. If a multiprocessor is

16436 VOLUME 5, 2017

M. A. Al-Hashimi et al.: Evaluating Power and Energy Efficiency of Bitonic Mergesort on Graphics Processing Unit

executing at least one active warp, it is considered to be
active.

Our experimental approach can be used for evaluating
the accurate power and energy consumption of any kernels
running on Kepler GPUs. It eliminates the use of external
power meters and statistical models for power and energy
measurements on Kepler GPUs.

A. MEASUREMENT ACCURACY
We took every possible action in order to achieve accuracy in
power and energy measurements as given below:
• In order to ensure correct power profiling of AQ and BM
kernels while executing on each set of the 8 datasets,
we invoked NVSMI to query on-board sensor for the
current power draw of the GPU and performance state
prior to execution of the source code in Visual Studio.

• The sampling rate for reading the GPU sensor was kept
at 66.6Hz as it is recommended in [29] that this sampling
rate results in accurate power profiling.

• Kernel runtime was obtained based on the timestamps
and performance states that were recorded to the log
files.

• For measuring accurate energy consumption of a GPU
kernel (AQ kernel or BM kernel), we did not use the
simple approach of averaging power and multiplying it
with kernel runtime because this may lead to inaccu-
rate measurements as shown in [29]. Instead, we used
integration of power curve over kernel runtime to obtain
accurate energy consumption of the AQ and BMkernels.

V. RESULTS EVALUATION
Figure 5 shows power profiles of Advanced Quicksort (AQ)
and BitonicMergesort (BM) during kernel execution on GPU
for one set of each of the 8 datasets (2 elements, 1M, 2M,
64M, 128M, 256M, 512M, and 1G elements). Due to space
limitations, we only show power profiles for one set of each
of the 8 datasets but such power curves (as in Figure 5)
were obtained for all 10 sets of the 8 datasets during kernel
execution. The figure only shows power profile during GPU
active state because it represents the actual power consump-
tion of the kernel and it is used for energy calculations. The
power profiles show the current power draw of theGPUboard
during execution of AQ and BM kernels. There is no signif-
icant difference in power profiles of both AQ and BM while
executing on datasets of 2 to 1M elements and thus having
the same areas under the power curves. Integration of these
curves (2 to 1M elements) over the kernel runtime results
in almost identical energy consumption. Difference in power
profiles is observed very clearly in case of larger datasets,
particularly, for dataset of elements greater than 64M, the
difference in power profiles is very clear. The power profiles
illustrate that in most cases; BM consumes lower power
and keeps the GPU less busy than AQ while executing the
same workload. Using the power profiles of all 10 sets of
the 8 datasets, we obtained average peak power and aver-
age energy consumption of the algorithms. Average kernel

FIGURE 6. AQ and BM Average Peak Power Comparison of all 8 Datasets.

FIGURE 7. AQ and BM Average Energy Comparison of all 8 Datasets.

runtimewas calculated based on timestamps and performance
states in the log files.

A comprehensive comparison of AQ and BM average peak
power, average energy and average kernel runtime for all
8 datasets (2 elements, 1M, 2M, 64M, 128M, 256M, 512M,
and 1G elements) is presented in Figure 6 to Figure 8. It is
clear that in most cases, AQ consumes more power and
energy than BM because of its higher kernel runtime. Higher
kernel runtime of AQ means that it keeps the GPU busy for
longer time than BM while sorting the same dataset. The
results reveal that energy consumption of AQ and BM is
associated with kernel runtime and the area under the power
curve of the dataset. It is interesting to notice that in some
cases, both AQ and BM have similar average peak power

VOLUME 5, 2017 16437

M. A. Al-Hashimi et al.: Evaluating Power and Energy Efficiency of Bitonic Mergesort on Graphics Processing Unit

TABLE 4. AQ and BM average peak power, average energy, and average kernel runtime comparison of all 8 datasets.

FIGURE 8. AQ and BM Average Kernel Runtime Comparison of all
8 Datasets.

consumption but there is significant difference in average
energy consumption between both the algorithms. BM seems
to provide increasingly better energy efficiency as the work-
ing set of the workload increases. More importantly, results
illustrate that in most cases, BM has a very clear advantage
over AQ in terms of peak power, energy and kernel run-
time. For instance, for a dataset of 512M elements, average
energy consumption of AQ and BM is 2311.13J and 1670.28J
respectively. This means that on average, BM has 640.85J
lower energy consumption than AQ while sorting a dataset
of 512M elements. Similarly, for a dataset of 1G elements,
average energy consumption of AQ and BM is 4402.31J
and 3172.99J respectively that means BM has an energy
advantage of 1229.32J over AQ on average while sorting a
dataset of 1G elements.

Table 4 shows all results that are presented in Figure 6 to
Figure 8. The shaded regions in Table 4 show BM advantage
over AQ in terms of average peak power, average energy, and
average kernel runtime.

VI. CONCLUSIONS AND FUTURE WORK
The major obstacle to achieve exascale performance under
a reasonable power budget is excessive power requirements.
There is a need to explore new ways to address that power
obstacle. We suggest that exploring power and energy con-
sumption of fundamental algorithms can open new ways to
reduce the high power requirements of exascale computing.

In this research, we carried out an experimental study
to explore the power and energy efficiency of Bitonic
Mergesort (BM) and compared it with NVIDIA’s Advanced
Quicksort (AQ). We tested both the algorithms on 8 different
datasets of unsigned integer random numbers on K40 GPU
and obtained average values for peak power, energy and
kernel runtime. We found that in most cases, BM outperforms
AQ in all three metrics. Results suggest that a simple in-place
BM has tremendous energy and kernel runtime advantage,
and a reasonable peak power advantage over a highly opti-
mized Advanced Quicksort.

The results reveal that there is no significant difference in
peak power, energy and kernel runtime of both AQ and BM
while sorting lists of 2 to 1M elements. BM has significantly
lower energy consumption and kernel runtime than AQ in
case of larger datasets (greater than 2M elements) while
for smaller datasets (less than 2M elements) the difference
between both algorithms is not significant. The results also
reveal that algorithms having almost similar peak power can
have significantly different energy consumptions due to vary-
ing kernel runtimes.

Since the major obstacle to achieve exascale performance
is excessive power requirements, the power consumption
advantage of BM over AQ in particular can open new insights
for exascale research. Researchers can start rethinking funda-
mental algorithms from both power and energy perspective to
provide better recommendations for the upcoming exascale
systems.

The study also indicates that a huge power and energy
advantage can be achieved by properly investigating power
and energy consumption of fundamental algorithms.

16438 VOLUME 5, 2017

M. A. Al-Hashimi et al.: Evaluating Power and Energy Efficiency of Bitonic Mergesort on Graphics Processing Unit

For future work, we plan to conduct more experiments
on BM and compare it with some data-independent sorting
algorithms using multiple architectures and programming
platforms. This will lead us to identify the underlying algo-
rithmic power and energy advantage of BM. It would also be
interesting to investigate other fundamental algorithms such
as binary search and minimal spanning tree algorithms for
power and energy efficiency. We also plan to develop some
analytical methodology for expressing power and energy
complexities of fundamental algorithms for generalization.

ACKNOWLEDGMENT
The authors are thankful to NVIDIA Corporation for equip-
ment donation for their research.

REFERENCES
[1] D. A. Reed and J. Dongarra, ‘‘Exascale computing and big data,’’Commun.

ACM, vol. 58, no. 7, pp. 56–68, 2015.
[2] P. Kogge et al., ‘‘Exascale computing study: Technology challenges in

achieving exascale systems,’’ Univ. Notre Dame, Tech. Rep. TR-2008-13,
Sep. 2008.

[3] R. Springmeyer et al., ‘‘From petascale to exascale: Eight focus areas
of R&D challenges for HPC simulation environments,’’ Lawrence Liv-
ermore Nat. Lab., Livermore, CA, USA, Tech. Rep. LLNL-TR-474731,
2011.

[4] P. Beckman, ‘‘On the road to exascale,’’ Sci. Comput. World, vol. 116,
pp. 26–28, Feb. 2011.

[5] (Nov. 2016). Top500 Supercomputers. [Online]. Available:
http://www.top500.org/lists/2016/11/

[6] M.Wehner, L. Oliker, and J. Shalf, ‘‘A real cloud computer,’’ IEEE Spectr.,
vol. 46, no. 10, pp. 24–29, Oct. 2009.

[7] P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and T. Quinn,
‘‘Massively parallel cosmological simulations with ChaNGa,’’
in Proc. IEEE Int. Symp. Parallel Distrib. Process., Apr. 2008,
pp. 1–12.

[8] N. Bell and M. Garland, ‘‘Implementing sparse matrix -vector multipli-
cation on throughput-oriented processors,’’ in Proc. Conf. High Perform.
Comput. Netw., Storage Anal. (SC), 2009, pp. 1–11.

[9] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha,
‘‘Fast BVH construction on GPUs,’’Comput. Graph. Forum, vol. 28, no. 2,
pp. 375–384, 2009.

[10] G. Graefe, ‘‘Implementing sorting in database systems,’’ ACM Comput.
Surv. (CSUR), vol. 38, no. 3, pp. 69–106, 2006.

[11] R. Wu, B. Zhang, and M. Hsu, ‘‘Clustering billions of data points
using GPUs,’’ in Proc. Combined Workshops UnConv. High
Perform. Comput. Workshop Plus Memory Access Workshop, 2009,
pp. 1–6.

[12] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, ‘‘Mars:
A MapReduce framework on graphics processors,’’ in Proc.
17th Int. Conf. Parallel Archit. Compilation Techn., 2008,
pp. 260–269.

[13] P. Kipfer and R. Westermann, ‘‘Improved GPU Sorting,’’ in GPU Gems 2.
Reading, MA, USA: Addison-Wesley, 2005, pp. 733–746.

[14] Parallel Bitonic Mergesort. Accessed on Feb. 10, 2016. [Online]. Avail-
able: http://www.tools-of-computing.com/tc/CS/Sorts/bitonic_sort.htm

[15] NVIDIA. CUDA Samples-CUDA Toolkit Documentation. Accessed on
Jan. 3, 2016. [Online]. Available: http://docs.nvidia.com/cuda/cuda-
samples/index.html#advanced-quicksort-cuda-dynamic-parallelism

[16] NVIDIA. NVIDIA Kepler Architecture. Accessed on Jan. 3, 2016.
[Online]. Available: https://www.nvidia.com/content/PDF/kepler/Tesla-
K40-Active-Board-Spec-BD-06949-001_v03.pdf

[17] O. Villa et al., ‘‘Scaling the power wall: A path to exascale,’’ in Proc. Int.
Conf. High Perform. Comput., Netw., Storage Anal., 2014, pp. 830–841.

[18] B. Dally, ‘‘Power, programmability, and granularity: The challenges
of exascale computing,’’ in Proc. IEEE Int. Test Conf., May 2011,
p. 878.

[19] B. Subramaniam, W. Saanders, T. Scogland, and W. Feng, ‘‘Trends in
energy,’’ in Proc. Int. Green Comput. Conf. (IGCC), 2013, pp. 1–8.

[20] Green500 Supercomputers. Accessed on Nov. 1, 2016. [Online]. Available:
https://www.green500.org

[21] N. Rajovic, L. Vilanova, C. Villavieja, N. Puzovic, and A. Ramirez, ‘‘The
low power architecture approach towards exascale computing,’’ J. Comput.
Sci., vol. 4, no. 6, pp. 439–443, 2013.

[22] Y. L. Moullec, C. Leroux, E. Baud, and P. Koch, ‘‘Power consumption
estimation of the multi-threaded xinc processor,’’ in Proc. Norchip Conf.,
2004, pp. 210–213.

[23] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, ‘‘The design and
use of simplepower: A cycle-accurate energy estimation tool,’’ in Proc.
37th Annu. Des. Autom. Conf., 2000, pp. 340–345.

[24] R. Suda, ‘‘Accurate measurements and precise modeling of power dissipa-
tion of CUDA kernels toward power optimized high performance CPU-
GPU computing,’’ in Proc. Int. Conf. Parallel Distrib. Comput., Appl.
Technol., 2009, pp. 432–438.

[25] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and
S. Matsuoka, ‘‘Statistical power modeling of GPU kernels using
performance counters,’’ in Proc. Int. Green Comput. Conf., 2010,
pp. 115–122.

[26] K. Kasichayanula, D. Terpstra, P. Luszczek, S. Tomov, S. Moore,
and G. D. Peterson, ‘‘Power aware computing on GPUs,’’ in Proc.
Symp. Appl. Accel. High Perform. Comput. (SAAHPC), 2012,
pp. 64–73.

[27] I. Zecena, Z. Zong, R. Ge, T. Jin, Z. Chen, and M. Qiu, ‘‘Energy
consumption analysis of parallel sorting algorithms running on mul-
ticore systems,’’ in Proc. Int. Green Comput. Conf. (IGCC), 2012,
pp. 1–6.

[28] Y. Ukidave, A. K. Ziabari, P. Mistry, G. Schirner, and D. Kaeli, ‘‘Analyzing
power efficiency of optimization techniques and algorithm design methods
for applications on heterogeneous platforms,’’ Int. J. High Perform. Com-
put. Appl., vol. 28, no. 3, pp. 319–334, 2014.

[29] M. Burtscher, I. Zecena, and Z. Zong, ‘‘Measuring GPU power with
the K20 built-in sensor,’’ in Proc. Workshop Gen. Purpose Process.
Using GPUs, 2014, pp. 28–36.

[30] J. Coplin and M. Burtscher, ‘‘Power characteristics of irregular GPGPU
programs,’’ in Proc. Int. Workshop Green Programm., Comput., Data
Process. (GPCDP), Dallas, TX, USA, 2014.

[31] S. Roy, A. Rudra, and A. Verma, ‘‘Energy aware algorithmic engineering,’’
in Proc. IEEE 22nd Int. Symp. Modelling Anal., Simul. Comput. Telecom-
mun. Syst., Sep. 2014, pp. 321–330.

[32] S. Roy, A. Rudra, and A. Verma, ‘‘An energy complexity model for
algorithms,’’ in Proc. 4th Conf. Innov. Theor. Comput. Sci., 2013,
pp. 283–304.

[33] M. Al-Hashimi, M. Saleh, O. Abulnaja, and N. Aljabri, ‘‘Evaluation of
control loop statements power efficiency: An experimental study,’’ in Proc.
9th IEEE Int. Conf. Informat. Syst. (INFOS), Dec. 2014, pp. 45–48.

[34] NVIDIA. CUDA Programming Guide. Accessed on Oct. 9, 2016.
[Online]. Available: https://docs.nvidia.com/cuda/pdf/CUDA_C_
Programming_Guide.pdf

[35] NVIDIA. NVIDIA System Management Interface. Accessed on
Jun. 1, 2016. [Online]. Available: https://developer.nvidia.com/nvidia-
system-management-interface

[36] R. Sedgewick and K. Wayne, Algorithms, 4th ed. Reading, MA, USA:
Addison-Wesley, 2011.

[37] NVIDIA. CUDA Dynamic Parallelism Programming Guide. Accessed
on Jun. 1, 2016. [Online]. Available: http://docs.nvidia.com/cuda/pdf/
CUDA_Dynamic_Parallelism_Programming_Guide.pdf

[38] K. E. Batcher, ‘‘Sorting networks and their applications,’’ in Proc. AFIP
Spring Joint Summer Comput. Conf., vol. 32. 1968, pp. 307–314.

[39] Sorting Networks. Accessed on Feb. 1, 2016. [Online]. Available:
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/oddn.htm

[40] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips, ‘‘GPU computing,’’ Proc. IEEE, vol. 96, no. 5, pp. 879–899,
May 2008.

[41] H. Peters, O. Schulz-Hildebrandt, and N. Luttenberger, ‘‘Fast in-place,
comparison-based sorting with CUDA: A study with bitonic sort,’’
Concurrency Comput., Pract. Exper., vol. 23, no. 7, pp. 681–693,
2011.

[42] H. Peters, O. Schulz-Hildebrandt, and N. Luttenberger, ‘‘A novel sorting
algorithm for many-core architectures based on adaptive bitonic sort,’’ in
Proc. 26th IEEE Int. Parallel, Distrib. Process. Symp. (IPDPS), May 2012,
pp. 227–237.

VOLUME 5, 2017 16439

M. A. Al-Hashimi et al.: Evaluating Power and Energy Efficiency of Bitonic Mergesort on Graphics Processing Unit

[43] R. Baraglia, G. Capannini, F. M. Nardini, and F. Silvestri, ‘‘Sorting using
bitonic network with CUDA,’’ in Proc. 7th Workshop Large-Scale Distrib.
Syst. Inf. Retr. (LSDS-IR), 2009, pp. 33–40.

[44] NVIDIA. Kepler Architecture. Accessed on Jun. 1, 2016. [Online]. Avail-
able: http://www.nvidia.com/object/nvidia-kepler.html

[45] NVIDIA. GPU Applications. Accessed on Jun. 1, 2016. [Online]. Avail-
able: http://www.nvidia.com/object/gpu-applications.html

[46] NVIDIA. NVIDIA Management Library. Accessed on Jun. 1, 2016.
[Online]. Available: https://developer.nvidia.com/nvidia-management-
library-nvml

[47] OriginLab. Accessed on May 1, 2016. [Online]. Available:
http://www.originlab.com/

MUHAMMAD ABDULHAMID AL-HASHIMI
received the B.S. degree in electrical engineer-
ing (electronics and communication) from King
Abdulaziz University in 1987, and the M.S. and
Ph.D. degrees in computer science from Texas
A&M University in 1993 and 2000, respectively.
He is currently an Assistant Professor with the
Department of Computer Science, King Abdulaziz
University. He has been a Vice Dean of Develop-
ment in charge of putting in place quality manage-

ment systems for bachelor programs. His research interests include processor
design and high-performance architectures.

OSAMA AHMED ABULNAJA received the B.S.
degree in computer science from King Abdulaziz
University, Jeddah, Saudi Arabia, in 1986, the
M.S. degree in computer science, and the Ph.D.
degree in engineering (computer science) from the
University of Wisconsin–Milwaukee, Milwaukee,
WI, USA, in 1990 and 1996, respectively. He is
currently a Professor of computer science with
King Abdulaziz University. His research interests
include fault tolerance, high-performance comput-

ing, systems performance, and systems programming.

MOSTAFA ELSAYED SALEH received the B.S.,
M.S., and Ph.D. degrees in computer engineering
from Mansoura University, Egypt, in 1992, 1995,
and 2000, respectively. He is currently an Asso-
ciate Professor with King Abdulaziz University.
His research interests are data engineering, seman-
tic web, and high-performance computing.

MUHAMMAD JAWAD IKRAM received the B.S.
degree in computer systems engineering from
the University of Engineering and Technology,
Peshawar, Pakistan, in 2010, and the M.Sc. degree
in networks and performance engineeringwith dis-
tinction from the University of Bradford, U.K., in
2012. He is currently pursuing the Ph.D. degree
with the Department of Computer Science, King
Abdulaziz University, Jeddah, Saudi Arabia. His
current research interests include GPU computing,

high-performance computing, and performance modeling.

16440 VOLUME 5, 2017

