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ABSTRACT This paper studies the distributed blocking flow shop scheduling problem (DBFSP) usingmeta-
heuristics. A mixed integer programming model for solving the problem is proposed, and then three versions
of the hybrid iterated greedy algorithm (HIG1, HIG2, and HIG3) are developed, combining the advantages
of an iterated greedy algorithm with the operators of the variable Tabu list, the constant Tabu list, and the
cooling schedule. A benchmark problem set is used to assess empirically the performance of the HIG1, HIG2,
and HIG3 algorithms. Computational results show that all the three versions of the proposed algorithm can
efficiently and effectively minimize the maximum completion time among all factories of the DBFSP, and
HIG1 is the most effective.

INDEX TERMS Flowshop scheduling, hybrid meta-heuristic, distributed blocking flowshop.

I. INTRODUCTION
In today’s globalized economy, many companies have turned
from traditional single-factory production to multi-factory
production to reduce the production risk and the cost of
transportation. Consequently, distributed scheduling prob-
lems that concern the assignment of jobs to various facto-
ries and their subsequent sequence have been increasingly
attracting the attention of researchers during the last decade.
With respect to the various distributed scheduling problems,
Ruiz and Naderi [1] were the first to present a distributed
permutation flowshop scheduling problem (DPFSP), which
was a novel generalization of the most popular permutation
flowshop scheduling problem (PFSP). Ruiz and Naderi [1]
also extended the well-known NEH heuristic [2] and two
variable neighborhood descent search algorithms, referred to
as VNDa andVNDb, to minimize the global makespan, which
is the maximal completion time of the last job to be processed
in any factory. Thesemethods providedmuch better computa-
tional results than typical heuristic approaches, and the VNDa
heuristic yielded the best solutions, on average, among the
above methods.

Following the presentation of their pioneering conference
paper in 2009, Naderi and Ruiz [3] subsequently presented
a full journal paper that provided several MIP models and
heuristics for solving the same problem. Thereafter, some
effective and efficient improvement heuristics were presented
to solve the DPFSP. Among these, the NEH-based heuristic
algorithm [4], the genetic algorithm (GA) [5], [6], the Tabu
search algorithm (TS) [7], the estimation of distribution
algorithm (EDA) [8], the modified iterated greedy algo-
rithm (MIG) [9], and the bounded-search iterated greedy
algorithm (BSIG) [10] were increasingly better approximate
methods for solving the DPFSP. In particular, the BSIG algo-
rithm of Fernandez-Viagas and Framinan [10] stands out as
the state-of-the-art heuristic for solving the DPFSP.

This work studies the distributed blocking flowshop
scheduling problem (DBFSP) using meta-heuristics. Dis-
tributed blocking permutation flowshops are common in
manufacturing, especially in the chemical, metal, pharmaceu-
tical, electronic, plastic, food-processing, and service indus-
tries, for example [11]. In a blocking flowshop, a finite
number or possibly zero intermediate buffers exist between
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each successive pair of machines. Consequently, a process-
ing job that is completed on a machine will be blocked on
that instrument until the next machine downstream becomes
available. Reddi and Ramamoorthy [12] were the first to
study the two-machine blocking flowshop scheduling prob-
lem (BFSP). Having reduced the problem to a special case
of the travelling salesman problem, they applied the well-
known Gilmore-Gomory algorithm [13] to solve it in poly-
nomial time. Since the BFSP is NP-hard in the strong sense
for a shop that has more than two machines [14], finding
the optimal solution within an acceptable computation time
using exact methods (such as those of Suhami and Mah [15],
Ronconi and Armentano [16], and Ronconi [17] is very diffi-
cult even for problems of moderate size. Most studies of this
highly complex problem have concentrated on developing
constructive heuristics and improvement heuristics that can
find high-quality – but not necessarily optimal – solutions in
a short computation time.

The most famous constructive heuristics for tackling the
BFSP include the profile fitting (PF) heuristic [18], the min-
max heuristic (MM) [19], the combined MM and NEH
heuristic (MME) [19], and the combined PF and NEH heuris-
tic (PFE) [19]. Recently, Companys and Ribas [20] proposed
some constructive heuristics to minimize the maximum com-
pletion time among all factories on a distributed blocking
flowshop. The experimental results in the aforementioned
works reveal that these constructive heuristics can rapidly
find feasible solutions, and they are more useful than exact
methods for solving complex BFSPs. Noteworthy improve-
ment heuristics for solving the BFSP include the GA [21],
Ronconi’s algorithm (RON) [16], the fast TS algorithm [22],
the improved TS algorithm (TS+M) [22], the hybrid dis-
crete differential evolution algorithm (HDDE) [23], the iter-
ated greedy algorithm (IG) [24], and the revised artificial
immune system algorithm (RAIS) [25]. Researchers have
confirmed that, among these heuristic algorithms, TS+M,
RON, HDDE, IG, and RAIS are the best for solving the
BFSP. A more detailed discussion of related methods and
their applications to various BFSPs can be found in the
comprehensive investigation of Hall and Sriskandarajah [14].
Although some studies have investigated different DPFSPs
and BFSPs, to the best of the authors’ knowledge, there is
only one research [20] has been done on the DPFSP with
the blocking constraint. Companys and Ribas [20] proposed
some constructive heuristics to minimize the maximum com-
pletion time among the factories for the DPFSP with the
blocking constraint. The computational results showed good
performance of these constructive heuristics, which could be
applied to obtain a fast solution or as the initial solution
procedure in more sophisticated meta-heuristics for solving
the DPFSP.

This work presents three versions of the hybrid iterated
greedy (HIG) algorithm that combine the advantages of the
IG algorithm with the operators of the variable Tabu list,
the constant Tabu list, and the cooling schedule, to solve
the DPFSP with the blocking constraint. Notably, this paper

is the first study to provide effective and efficient IG-based
algorithms for solving this problem. This paper is organized
as follows. Section 2 defines the DBFSP and formulates it
using amixed integer linear (MIP) model. Section 3 describes
in detail the three versions of the HIG algorithm. Section 4
presents results of simulations and statistical evaluations of
the proposed algorithm, applied to a benchmark problem set
of instances. Finally, Section 5 draws conclusions and makes
recommendations for future studies.

II. DESCRIPTION AND FORMULATION OF PROBLEM
The DBFSP that is considered herein is described as fol-
lows. A set of n jobs is to be assigned to, and processed
in, one of f identical factories, each with a flowshop pro-
duction system that comprises the same set of m machines
in series. Every factory can process all jobs, and each job
can be assigned to and processed in any one of these fac-
tories. All jobs must be sequentially processed through the
m machines of the assigned factory in an identical sequence
without preemption. The processing time for each job may
vary among machines, but does not change from factory to
factory. All jobs are ready for processing at the beginning
of the planning horizon, and all machines are available over
the scheduling period. No intermediate buffer, which could
store jobs until the next operation is performed, is assumed
to exist between any pair of consecutive machines in any
factory, so no upstream machine can release a completed job
to the succeeding machine if the latter is busy. In such a case,
the completed job must be blocked on the upstream machine
until the preceding job has been completed on the succeeding
machine.

The objective of scheduling is simultaneously to assign
jobs to various factories and to determine their sequences to
be processed in each factory to minimize the maximum com-
pletion time among the factories (global makespan). Notably,
a schedule that minimizes the global makespan for a DBFSP
also minimizes the sum of the job waiting times and the sum
of the machine idle times. The DBFSP can be designated by
a triplet DFm|block|Cmax using the well-known notation of
Pinedo [26]. Since the DFm|block|Cmax problem with only
one factory reduces to a general BFSP, which is NP-hard in
the strong sense [14] when the number of machines exceeds
two, the DFm|block|Cmax problem can be confidently con-
cluded also to be NP-hard in the strong sense.

Based on the MIP model of the DPFSP that presented by
Naderi and Ruiz [3], the DFm|block|Cmax problem can be
formulated as the following MIP mathematical model. First,
the following notation is defined to simplify the formulation.
Parameters:

n : Number of jobs
m : Number of machines
f : Number of factories
i : Index of machines, i ∈ {0, 1, 2, . . . ,m}, where i = 0

is a dummy machine
j : Index of jobs, j ∈ {1, 2, . . . , n}
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k : Index of job position in a given sequence,
k ∈ {1, 2, . . . , n}

l : Index of factories, l ∈ {1, 2, . . . , f }
pj,i : Processing time of jobjon machine i

Decision variables:

Xj,k,l =

{
1, if job j occupies position k in factory l
0, otherwise

dk,i,l = Departure/Completion time of job in position k
on machine i in factory l

Cmax =Maximal completion time (global makespan)
of the last job to be processed in any factory

The objective function of the MIP formulation is

Minimize Cmax

and the constraints are

s.t. d1,0,l = 0, l = 1, . . . , f ; k = 1, . . . ,F, (1)

dk,0,l = dk−1,1,l, k = 2, . . . , n; l = 1, . . . , f , (2)

d1,i,l = d1,i−1,l +
n∑
j=1

Xj,1,l · pj,i,

i = 1, . . . ,m− 1; l = 1, . . . , f , (3)

dk,i,l ≥ dk,i−1,l +
n∑
j=1

Xj,k,l · pj,i, k = 2, . . . , n;

i = 1, . . . ,m− 1; l = 1, . . . , f , (4)

dk,i,l ≥ dk−1,i+1,l, k = 2, . . . , n;

i = 1, . . . ,m− 1; l = 1, . . . , f , (5)

dk,m,l = dk,m−1,l +
n∑
j=1

Xj,k,l · pj,m,

k = 1, . . . , n; l = 1, . . . , f , (6)
n∑

k=1

f∑
l=1

Xj,k,l = 1, j = 1, . . . , n, (7)

n∑
j=1

Xj,k,l ≤ 1, k = 1, . . . , n, l = 1, . . . , f , (8)

dk,i,l ≥ 0, k=1, . . . , n; i=1, . . . ,m; l=1, . . . , f ,

(9)

Cmax ≥ dk,m,l, k = 1, . . . , n; l = 1, . . . , f , (10)

Xj,k,l ∈{0, 1}, j=1, . . . , n; k=1, . . . , n; l=1, . . . , f .

(11)

The goal is to minimize the maximal completion time
(global makespan) of the last job to be processed in any
factory. Constraint sets (1) and (2) define the starting time
of the job in position k on the first machine in factory l.
Constraint set (3) defines the departure time of the job
in the first position on machine i in factory l. Constraint
sets (4), (5) and (6) specify the relationship between departure
times of each assigned job on two successive machines in a
factory. Constraint set (7) ensures that each job is dispatched
to exactly one factory and to exactly one job position in

the assigned factory. Constraint set (8) ensures that only
one job can be allocated to each job position at a factory.
Constraint set (9) specifies the departure time of each job on
each machine as non-negative. Constraint set (10) computes
the maximum completion time among all factories. Finally,
constraint set (11) defines all relevant binary variables.

FIGURE 1. An outline of the generic IG algorithm.

III. PROPOSED SELF-TUNING ITERATED
GREEDY ALGORITHM
This work proposes three versions of the HIG algorithm,
which combine the IG algorithm with the operators of the
Tabu list and the cooling schedule. The IG algorithm (Fig. 1)
is a simple but robust stochastic search algorithm that was
developed by Jacobs and Brusco [27]. As can be seen
in Fig. 1, after an initial solution ξ0 is obtained, a generic
IG algorithm improves the incumbent solution ξ and the best
solution ξbest through the iterative execution of two main
phases, destruction and construction, until a specified termi-
nation condition (e.g., a maximum number of iterations, or a
maximum computation time) is satisfied. In the destruction
phase, a fixed number (α) of elements of ξ is eliminated,
yielding a partial solution ξp. In the following construction
phase, the eliminated elements are individually and sequen-
tially reinserted into all possible positions of the current par-
tial solution to yield a new solution ξnew. After ξnew has been
yielded, some acceptance criteria are applied to determine
whether it will replace ξ and ξbest . Owing to their simplicity,
flexibility, and high efficiency, IG-based algorithms have
been successfully utilized to solve some classic schedul-
ing problems, such as the single-machine [28], the parallel-
machine [29]–[31], the permutation flowshop [32]–[34], the
non-permutation flowshop [35], the multistage hybrid flow-
shop [36], and the distributed permutation flowshop [9]
scheduling problems.

The three versions of the HIG algorithm that are proposed
in this work (HIG1, HIG2, HIG3) combine the Tabu list and
the cooling schedule with the IG algorithm, respectively.
The main difference between the HIG1, HIG2, and HIG3
algorithms is they use the variable Tabu list, the constant Tabu
list, and without Tabu list, respectively.
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A highly effective speed-upmethod is used in the construc-
tion phase of all three versions of the HIG algorithm to reduce
the computational burden. The following subsections further
describe the coding scheme of the solutions, the detailed
procedures of the three versions of the HIG algorithm and
the speed-up method.

A. CODING SCHEME OF SOLUTIONS
To signify the assignment of jobs to different factories and
their production sequences in each factory, a solution is coded
using a numerical sequence of n integers, separated into
segments by f −1 asterisks, where each segment corresponds
to the sequences of the jobs in an assigned factory. Here,
integers represent jobs and asterisks specify the partitioning
of jobs in the factories. For instance, a solution that is encoded
as {6, 5, 1, 9, 12, 7, ∗, 13, 10, 8, 11, 15, ∗, 3, 14, 2, 4, 16} is
a solution with 16 jobs in three factories, with produc-
tion sequences in the first, second and third factories
of {6, 5, 1, 9, 12, 7}, {13, 10, 8, 11, 15}, and {3, 14, 2, 4, 16},
respectively.

B. PROCEDURES OF PROPOSED HIG ALGORITHM
The main procedures of the three versions of the HIG algo-
rithm for solving theDFm|block|Cmax problem are as follows.
Step 1: Generation of initial solution

Step 1.1 Apply the PW heuristic ([37], see Section 3.3)
to yield a job list J = (J[1], J[2], . . . , J[n]).

Step 1.2 Apply the NEH2 heuristic [3] to insert a job,
in order from the first job in the job list J , into
the current partial solution until all jobs have
been inserted and an initial solution5 has thus
been obtained. That is, each job is inserted into
all possible positions in the current partial solu-
tion, and the one with the lowest partial global
makespan, is subsequently utilized to replace
the current partial solution before the insertion
of the next job.

Step 1.3 Set 5 as both the incumbent solution (5∗) and
the best solution (5best ), and set the accessible
Tabu list TL := φ.

Step 2: Destruction phase

Step 2.1 Determine the accessible Tabu list (TL) for the
removal of jobs based on the Tabu list tenure
(TLT ), which is obtained using the following
formula;

TLT = TLT low + u(TLT high − TLT low)

where TLT high and TLT low are the maximal
and the minimal Tabu list tenure, respectively
u is set as a random number between 0 and
1 (meaning that a variable Tabu list is used)
for the HIG1 algorithm, u is set as 0 (meaning
that a constant Tabu list is used) for the HIG2
algorithm; TLT low and TLT high are set as 0

(meaning that no Tabu list is used) for the HIG3
algorithm.

Step 2.2 Select one job that is not in TL from each
factory that with the largest completion time.
Move the α1 selected jobs (which are assumed
to be all of the selected jobs) from 5∗ to 5R
and put them into TL, where 5R is a list of
the removed jobs, arranged in order of their
selection. Concurrently, set as 5∗P1 the current
partial sequence of 5∗ with the α1 removed
jobs eliminated.

Step 2.3 Select one job that is not in TL from each
factory that has the smallest completion time.
Move the α2 selected jobs (which are assumed
to be all of the selected jobs) from5∗P1 to5R in
the order in which they were selected, and add
them to TL. Concurrently, set as5∗P2 the current
partial sequence of 5∗P1 with the α2 removed
jobs eliminated.

Step 2.4 Randomly select (α−α1−α2) distinct jobs that
are not in TL from all of the factories, whereα ∈
[αmin, αmax]. Move the (α − α1 − α2) selected
jobs from5∗P2 to5R in the order in which they
were selected and add them to TL.

Step 3: Construction phase

Sequentially reinsert the jobs in 5R, from the
first position to the last position, into5∗P2, until
a new solution (5∗new) has been constructed.
When reinserting a job, all possible positions
in the current partial solution should be con-
sidered and the best one, and the best position,
which is the one with the lowest partial global
makespan, is subsequently utilized to replace
the current partial solution before the insertion
of the next job. To accelerate the insertion oper-
ation, the speed-up method that is described in
Section 3.4 is used.

Step 4: Acceptance criterion

To improve the ability of the incumbent solu-
tion to escape from local minima, the following
acceptance criterion and the cooling sched-
ule are used in all three versions of the HIG
algorithm to determine whether 5∗ and 5best
will be updated by the newly obtained
solution 5∗new.
IF Cmax(5∗new) ≤ Cmax(5best ) THEN

set 5best := 5
∗
new and 5∗ := 5∗new;

ELSE_IF Cmax(5∗new) ≤ Cmax(5∗) THEN set
5∗ := 5∗new;
ELSE_IF Cmax(5∗new) > Cmax(5∗) TEHN
Generate r ∼ U (0,1);
IF r < e([Cmax(5∗)−Cmax(5∗new)]/T ) set

5∗ := 5∗new
Otherwise, discard 5∗new.
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Here, Cmax(·) represents the global
makespan of solution (·); r ∈ [0, 1] is a
pseudo-random number that is sampled from
the standard uniform distribution U (0,1); and T
denotes the current temperature with an initial

temperature T0 = TValue ·
m∑
i=1

n∑
j=1

pj,i and will

be decreased from its preceding temperature,
i.e., T ← λT (λ ∈ [0, 1]), after running a
preset number of iterations (Iiter ) at a particular
temperature.

Step 5: Stopping criterion

To test fairly the three versions of the HIG
algorithm, iterate Steps 2–4 for each algorithm
until the computation time reaches a specified
threshold (Tmax).

The PW heuristic was proposed by Pan and Wang [37]
for the single blocking flowshop problem, and The NEH2
heuristic was proposed by Naderi and Ruiz [3] for the dis-
tributed permutation flowshop scheduling problem. In this
study, we combined the PW heuristic and the NEH2 heuris-
tic to generate an initial solution for the DFm|block|Cmax
problem. To compare the solution quality on the same basis,
the procedures for implementing the three versions of theHIG
algorithm are the same, except for the use of different Tabu
lists in Step 2.1: the HIG1, HIG2, and HIG3 algorithms use
a variable Tabu list, a constant Tabu list, and no Tabu list,
respectively. Additionally, in Step 4, all the three versions
of the HIG algorithm employ the decreasing temperature
mechanism instead of the constant temperature mechanism to
avoid searching processes that would be prone to stagnation.
The process used is executed by generating a pseudo-random
number r ∈ [0, 1] and updating the incumbent solution 5∗

by 5∗new whenever r < e([Cmax(5∗)−Cmax(5∗new)]/T ).

C. PW HEURISTIC
The PW heuristic is a simple construction heuristic that was
proposed by Pan and Wang [37] for solving the blocking
flowshop scheduling problem. The PW heuristic is applied
as follows.

Step 1: Use the following equations to calculate the depar-
ture time, d[k],i, of job j on machine i if it is at
position k in the schedule.

d[1],0 = 0, (12)

d[k],0 = d[k−1],1, k = 2 . . . , n, (13)

d[k],i = max{d[k],i−1 + p[k],i, d[k−1],i+1},

k = 2 . . . , n; i = 1 . . . ,m− 1, (14)

d[k],m = d[k],m−1 + p[k],m, k = 1 . . . , n. (15)

Step 2: Use the following equations to calculate the slope
index fj,k (∀j, k) of job j at position k .

fj,k = (n− k − 2)δj,k + χj,k , (16)

Where

δj,0 =

m∑
i=1

m

i+ k(m−i)
n−2

(d[1],i − pj,i),

δj,k =

m∑
i=1

m

i+ k(m−i)
n−2

× (d[k+1],i − d[k],i − pj,i), and

χj,k =

m∑
i=1

m

i+ k(m−i)
n−2

(d[k+2],i−d[k+1],i

−

∑
q∈U
q 6= j

pq,i
(n−k−1)

).

Step 3: Set the job with the smallest fj,0 value as the
first job in current partial job list JP = (J[1]).
In case of a tie, make the job has the smallest χj,0
value as the first job. Let the unscheduled job set
U = J − {J[1]}.

Step 4: Repeat the following procedure to select a job for
adding to the next position in the current partial
job list until U = φ.

Step 4.1 For each machine, use Eqs. 12-16 to calculate
the departure time, d[k],i (i = 1, . . . ,m), of the
job at the last position, say position k , in the
current partial job list.

Step 4.2 Use Eq. 17 to calculate the slope index fj,k
of each job j ∈ U . Remove the job with the
smallest fj,k value from the unscheduled job
set, and add it at the next position in the current
partial job list. In case of a tie, make the job has
the smallest χj,0 as the first job.

D. SPEED-UP METHOD
In the construction phase (Step 3) of the three versions of
HIG algorithm, the jobs in 5R are successively inserted at
all possible positions in 5∗P2, and the best one, which is
the one with the lowest partial global makespan, is chosen.
In such a construction phase, substantial time is taken to
calculate the makespan of each possible (partial) solution of
the insertion. To accelerate the evaluation of the best insertion
position, a speed-up method that is revised the scheme of
Wang et al. [23] for solving the blocking flowshop problem
is proposed. Based on the assumption that, in the current
partial solution, nP jobs have been assigned to a factory,
the following speed-up method is applied to evaluate nP + 1
sequences that are generated by inserting a job, Jj′ , at all
possible positions in this current partial solution.

Step 1: Use Eqs. 11-15 to calculate the departure times
d[k],i (k = 1, . . . , nP; i = 1, . . . ,m) of the
nP jobs at the assigned factory in the current partial
solution.

Step 2: Use the following equations to calculate the tails
f[j],i (j = 1, . . . , nP; i = 1, . . . ,m) of the
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nP jobs in the assigned factory in the current partial
solution.

f[nP],m+1 = 0, (17)

f[nP],i = f[nP],i+1 + p[nP],i, i = m, . . . , 1, (18)

f[j],m+1 = f[j+1],m, j = nP − 1, . . . , 1, (19)

f[j],i = max{f[j],i+1 + p[j],i, f[j+1],i−1},

j = nP − 1, . . . , 1; i = m, . . . , 2, (20)

f[j],1 = f[j],2 + p[j],1, j = nP − 1, . . . , 1. (21)

Step 3: Use Eqs. 12-16 to calculate the departure times
d[q],i (i = 1, . . . ,m) of job Jj′ when it were to be
inserted at position q in the assigned factory in the
current partial solution.

Step 4: Use the following equation to calculate the global
makespan of the partial sequence 5∗Pq when job
Jj′ were to be inserted at position q in the assigned
factory in the current partial solution.

Cmax(5∗Pq ) = max
i=1,...,m

(d[q],i + f[q],i),

q = 1, . . . , nP + 1. (22)

Step 5: Choose the optimal insertion position, among the
best ones across all factories, which minimizes the
global makespan.

IV. COMPUTATIONAL RESULTS AND DISCUSSION
A. TEST PROBLEMS
To verify the effectiveness of the three versions of the HIG
algorithm, the benchmark problem set that was presented by
Naderi and Ruiz [3] for testing the DPFSP was used. The
benchmark problem set was augmented using the 120 bench-
mark instances of Taillard [38], where the processing time
pj,i(j = 1, . . . , n; i = 1, . . . ,m) is an integer that is generated
from the uniform distribution [1, 99]. Naderi and Ruiz [3]
expanded these 120 test instances to 420 and 720 test
instances in the small and large problem sets, respectively.

The instances in the small problem set featured the number
of jobs n = {4, 6, 8, 10, 12, 14, 16}, the number of machines
m = {2, 3, 4, 5}, and the number of factories f = {2, 3, 4} .
The total number of combinations of distinct numbers of
jobs, machines, and factories was 84, which was therefore the
number of sub-problem sets. Five instances were generated
for each sub-problem set, yielding a total of 420 (84 × 5)
instances in the small problem set. The instances in the large
problem set were those in 72 sub-problem sets, featuring the
number of jobs n = {20, 50, 100, 200, 500} , the number
of machines m = {5, 10, 20} , and the number of factories
f = {2, 3, 4, 5, 6, 7} . Ten instances were generated for each
sub-problem set, yielding a total of 720 (72 × 10) problem
instances. The files of these test instances can be downloaded
from http://soa.iti.es.

B. PARAMETER CALIBRATION
The proposed three versions of the HIG algorithm have seven
parameters, which are TValue, Iiter , λ,TLT lowR ,TLT highR , αmin,

TABLE 1. Parameter values used in the two-parameter calibration
experiments.

TABLE 2. Performance comparisions on taillard’s benchmark problems
(Ave. RPDBKS) for t = 15.

TABLE 3. Paried T-tests on AVE. RPDBKS for t = 15.

and αmax, where TValue is used to determine the initial tem-

perature (T0 = TValue ·
m∑
i=1

n∑
j=1

pj,i); Iiter denotes the number

of iterations in the search at a particular temperature; λ is
the coefficient that directs the cooling schedule; TLT lowR and
TLT highR determine theminimal andmaximal Tabu list tenures
(TLT low = n · TLT lowR and TLT high = n · TLT highR ), respec-
tively; αmin and αmax are minimal and maximal number of
jobs to be eliminated in the destruction phase.

Since the parameter values affect the computational results
of the three versions of HIG algorithm, two sets of test
instances are used to calibrate the parameters. In the two cal-
ibration experiments, the maximum computation time (Tmax)
to solve each selected instance was set to 10 · n · m (ms).
The three versions of the HIG algorithm were executed in
C language on a personal computer that had an Intel Core
Quad CPUQ9400@2.66GHz processor and 20GB of RAM.
Each calibration experiment was conducted on 30 instances
that are randomly produced using the same data generation
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TABLE 4. Ave. RPDLB values obtained using the milp mathematical model, HIG1, HIG2, and HIG3 algorithms (small problem set).

procedures as that of Naderi and Ruiz [3]. The test instances
in the two sets featured the number of jobs n = {20, 50, 100} ,
the number of machines m = {5, 10, 20} , and the number
of factories f = {2, 3, 4, 5, 6, 7}. For each combination p of
parameter values, each test instance was solved five times,
and the best known solution (Cp

min _i) among the five repli-
cations was recorded for each test instance i. Then, the best
known solution for each test instance i(CBKS

min _i) was obtained
among all Cp

min _i. For choosing the best value for each
parameter, the combination with the smallest average relative
percentage rate RPDp = (Cp

min−C
BKS
min _i)/C

BKS
min _i×100%was

chosen.
In the first calibration experiment, several values of the

parameters TValue, Iiter , λ, TLT lowR , TLT highR , αmin and αmax
(see Table 1) were tested for the calibration and tuning of
parameter combinations. In the second calibration experi-
ment, the results of the first experiment were refined by
adding additional values, which are presented in Table 1.
As shown in Table 1, the following values were obtained
using the optimal parameter combinations; in the first cali-
bration experiment, TValue = 0.03, Iiter = 3000, λ = 0.9,
TLT lowR = 5%, TLT highR = 10%, αmin = 3 and αmax = 6,
while in the second calibration experiment (after refinement),
TValue = 0.03, Iiter = 3500, λ = 0.915, TLT lowR = 5%,
TLT highR = 10.0%, αmin = 3 and αmax = 6. Three values
of TLT lowR , 5.0%, 7.5%, and 10.0%, are tested for use in HIG2
algorithm. Because setting TLT lowR to 7.5% yielded the best

TABLE 5. Ave. RPDLB values obtained using HIG1, HIG2, and HIG3
algorithms grouped according to n and m for t = 5, 10, and 15 (large
problem set).

result, TLT lowR was fixed at this value in the HIG2 herein.
Using the above parameter settings, the maximal computa-
tional time was set to t · n · m (ms) for various problem sets,
where t is a scale factor that was set to (5, 10, 15, 20, 25, 30)
and (5, 10, 15) for the single-factory and multi-factory prob-
lem, respectively. Each problem was executed five runs, and
the best solution from the five replications was recorded. The
following subsections present and discuss the computational
results.

C. RESULTS OBTAINED USING PROBLEM SET
OF SINGLE-FACTORY
To confirm the effectiveness of the three versions of
the HIG algorithm, their performance was compared with

15700 VOLUME 5, 2017



K.-C. Ying, S.-W. Lin: Minimizing Makespan in Distributed Blocking Flowshops

TABLE 6. Ave. RPDLB values obtained using HIG1, HIG2, and HIG3
algorithms grouped according to n and m for t = 5, 10, and 15 (large
problem set).

that of leading algorithms using the 120 single-factory
benchmark instances of Taillard [38]. These leading algo-
rithms are HDDE [23], IG [24], and RAIS [25], all of
which were developed to solve the single-factory BFSP.
Notably, the HIG3 algorithm proposed in this study is an
improved version of the IG algorithm, which is a state-of-
the-art algorithm, proposed by Lin et al. [9] for the distributed
permutation flowshop scheduling problem. In the literature,
HDDE is performed with ten replications, while IG and RAIS
are performed with five replications. Therefore, the pro-
posed HIG1, HIG2, and HIG3 algorithms were conducted
with five replications, and the relative percentage deviation
(RPDBKS ) of makespan from the best solution that was cal-
culated using the following formula was used to compare
the performance of these algorithms with that of HDDE, IG,
and RAIS.

RPDBKS = (Calg
max − C

BKS
max )/C

BKS
max × 100%

where Calg
max is the makespan value in the best solution that

was obtained using the algorithm of interest, and CBKS
max is the

makespan value in the best solution that was obtained using
HDDE, IG, and RAIS.

FIGURE 2. The average RPDBKS values under different t vaules.

To reveal how the computational time affects quality of
the solutions obtained using HIG1, HIG2, and HIG3, various
t values for these algorithms were tested. Figure 2 plots
the total average RPDBKS values for the solutions that were
obtained using the HIG1, HIG2, and HIG3 algorithms with
various t values. Evidently, as can be seen in Fig. 2, solution

TABLE 7. Paired t-tests on Min. RPDBKS, Mean RPDBKS, and Max. RPDBKS.

quality increases with computation time. When t is equal
to or larger than 15, the total average RPDBKS values of
the solutions that were obtained using of HIG1, HIG2, and
HIG3 algorithms are negative. Accordingly, HIG1, HIG2,
and HIG3 outperform HDDE, IG, and RAIS if t is equal
to or greater than 15. Therefore, considering both of solu-
tion quality and computational efficiency, t = 15 is used
in subsequent analysis of the 120 single-factory benchmark
instances.

Table 2 lists the average RPDBKS (Ave. RPDBKS ) value for
the solutions of each problem size that are obtained using
HIG1, HIG2, HIG3, RAIS, HDDE, and IG. Each average
RPDBKS value was taken over the 10 test instances for each
problem size. Tables 8 and 9 present the best solutions that
were obtained using these algorithms for each benchmark
instance. As shown in Table 2, the total average RPDBKS
value of the solutions that were obtained using the HIG1
algorithm was –0.242%. For the HIG2, HIG3, RAIS, HDDE,
and IG algorithms, the corresponding values were –0.176%,
–0.169%, 0.023%, 1.227%, and 0.341%, respectively. Evi-
dently, the three versions of the HIG algorithm outperform
the three leading algorithms in solving the traditional BFSP,
while HIG1 is the best of them. Notably, as reported by Lin
and Ying [25], RAIS is better than HDDE and IG, with its
maximal computational time set to 100 · n · m (ms), while
the maximal computational times for the HIG1, HIG2, and
HIG3 algorithms are set to 15 ·n ·m (ms). Therefore, the three
versions of the HIG algorithm take significantly less time to
compute better solutions to the traditional BFSP than taken
by the RAIS algorithm.

To confirm further the effectiveness of the proposed HIG1
algorithm, paired t-tests were performed on the average
RPDBKS values obtained using HIG1 and those obtained
using HIG2, HIG3, RAIS, HDDE, and IG. The results
in Table 3 that the proposed HIG1 algorithm significantly out-
performs the HIG2, HIG3, RAIS, HDDE, and IG algorithms
at a confidence level α = 0.05.
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TABLE 8. Results for the instances with n = 20, 50 and 100 for t = 15.

D. RESULTS OBTAINED USING SMALL PROBLEM SET OF
MULTI-FACTORY
For the small problem set, the relative percentage deviation
(RPDBKS ) of makespan from the lower bound that is cal-
culated using the following formula, was used to compare
HIG1, HIG2 and HIG3 algorithms with the proposed MIP
mathematical model, in terms of solution quality.

RPDLB = (Calg
max − C

LB
max)/C

LB
max × 100%

where Calg
max is the makespan value of the best solution that

is get using a given version of the HIG algorithm or by
solving the proposed MIP mathematical model, and CLB

max is
the lower bound on the makespan value that is get by solving
the proposed MIP mathematical model.

The MIP mathematical model was solved using a famous
mathematical programming solver, Gurobi (Version 7.0), on a
personal computer with an Intel Core Quad CPU Q9400 @
2.66 GHz processor and 20 GB of RAM. The maximal com-
putational time for each test instance was set to an elapsed
CPU time of 3600 seconds. The final incumbent solution
that was obtained by the Gurobi MIP solver was recorded
as the feasible solution. The difference between the feasible
solution and the lower bound is known as the gap; a gap of
zero reveals that the solution is optimal.

Table 4 lists the statistical results concerning the average
RPDLB (Ave. RPDLB) values that were obtained using the

small problem set using the MIP mathematical model, and
the HIG1, HIG2, and HIG3 algorithms. The three t values
are separated by a slash (t = 5/10/15), except in the result
obtained using the MIP mathematical model, which includes
only one Ave. RPDLB value. It should be noted that, because
the number of jobs is smaller in these problems, the maximal
number of jobs to be removed is set to n/2. As revealed
in Table 4, the total average RPDLB values of the solutions
that were obtained using HIG1, HIG2, and HIG3 algorithms
are smaller than those obtained using the MIP mathematical
model. The MIP mathematical model found optimal solu-
tions for all benchmark instances when the number of jobs
did not exceed 10. When the number of jobs in benchmark
instances was 12, 14, or 16, the MIP mathematical model
obtained optimal solutions in 51, 18, and one out of 60 test
instances, respectively. In total, the MIP mathematical model
obtained optimal solutions in 310 out of 420 benchmark
instances in the small problem set. Notably, all except one
of the optimal solutions that were obtained using the MIP
mathematical model were also obtained using HIG1, HIG2,
and HIG3 algorithms. Furthermore, the computational times
required for HIG1, HIG2, and HIG3 algorithms are much
less than that of the MIP mathematical model. These ana-
lytical results confirm that the proposed HIG1, HIG2, and
HIG3 algorithms exhibit excellent convergence to optimal
solutions.
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TABLE 9. Results for the instances with n = 100, 200 and 500 for t = 15.

E. RESULTS OBTAINED USING LARGE PROBLEM SET
OF MULTI-FACTORY
Because of the complexity of the DFm|block|Cmax problem,
a high-quality feasible solution to a large problem cannot be
obtained using the proposed MIP mathematical model in a
reasonable computation time. Therefore, for the test instances
in the large problem set, the relative percentage deviation
(RPDBKS ) of makespan from the best solution obtained using
the HIG1, HIG2, and HIG3 algorithms was used to compare
the solutions obtained using the HIG1, HIG2, and HIG3 algo-
rithms in terms of quality.

Tables 5 and 6 present the statistical results concern-
ing the average RPDBKS values of 60 and 120 solutions,
respectively, in the large problem set obtained using the
three versions of the HIG algorithm; the results that were
obtained using the three t values are separated by a slash
(t = 5/10/15). The statistical results reveal that more jobs
yield a larger average RPDBKS (Table 5) and more factories
are associated with a smaller average RPDBKS (Table 6).
Thus, the number of jobs and the number of factories in the
benchmark instances affected the performance of the HIG1,
HIG2, andHIG3 algorithms, whereas the number of machines
did not.

The best, mean, andworst makespan values of the solutions
to each test problem, based on five trials, obtained using each
version of the HIG algorithm, were used to compute RPDBKS

values, which were denoted asMin. RPDBKS , Mean RPDBKS ,
andMax. RPDBKS . To determine whether the HIG1 algorithm
was better than the HIG2 and HIG3 algorithms, one-sided
paired t-tests in terms of Min. RPDBKS , Mean RPDBKS ,
and Max. RPDBKS were performed for the various t values
(t = 5/10/15). The statistical results listed in Table 7 revealed
that, at a confidence level of α = 0.05, the proposed HIG1
algorithm significantly outperformed the HIG2 and HIG3
algorithms in terms of Min. RPDBKS , MeanRPDBKS , and
Max. RPDBKS , for most of the t values. These statistical
results confirm that adopting the variable Tabu list oper-
ator of TS and the cooling schedule operator of SA sig-
nificantly improves the performance of IG in solving the
DFm|block|Cmax problem.

V. CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE RESEARCH
The DFm|block|Cmax problem is a variant of the DPFSP.
Owing to the broad applications of distributed blocking
flowshop systems, this work developed three versions of
the HIG algorithm (HIG1, HIG2, and HIG3) for solving the
DFm|block|Cmax problem to bridge the gap between the-
oretical progress in DBFSP and the industrial implication
of distributed blocking flowshop systems. A comprehen-
sive benchmark problem set is used to test the effectiveness
and efficiency of the HIG1, HIG2, and HIG3 algorithms.
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In summary, the computational results that are presented in
this work are very encouraging for the application of the
HIG1 algorithm to the DFm|block|Cmax problem. The pro-
posed HIG1 algorithm exploits the PW and NEH2 heuristics
to develop an initial schedule and combines the IG algorithm
with the operators of the variable Tabu list and the cooling
schedule. A highly effective speed-up method for evaluating
of the best insertion position is used to reduce the computa-
tional burden. In view of the current lack of meta-heuristics
to solve the DFm|block|Cmax problem, this work provides an
important basis to exploring this significant topic.

Many issues are worthy of further study in the area of
this pioneering study. First, additional exact methods and
meta-heuristic algorithms should be developed to solve effec-
tively and efficiently the DFm|block|Cmax problem. Sec-
ond, the proposed HIG algorithms could be modified to
solve the distributed no-idle flowshop scheduling problem.
Third, the distributed blocking flowshop scheduling prob-
lem that involves other sophisticated objectives is worthy
of research. Fourth, the extension of the present considera-
tion of the DFm|block|Cmax problem to consider the multi-
objective distributed blocking flowshop scheduling problem
would increase the application of scheduling theory in indus-
try. Finally, the novel theoretical research should be expanded
from the deterministicDFm|block|Cmax problem to stochastic
problems.

APPENDIX
See Tables 8 and 9.
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