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ABSTRACT This paper studies the distributed blocking flow shop scheduling problem (DBFSP) using meta-
heuristics. A mixed integer programming model for solving the problem is proposed, and then three versions
of the hybrid iterated greedy algorithm (HIGy, HIG;, and HIG3) are developed, combining the advantages
of an iterated greedy algorithm with the operators of the variable Tabu list, the constant Tabu list, and the
cooling schedule. A benchmark problem set is used to assess empirically the performance of the HIG1, HIG,,
and HIGj; algorithms. Computational results show that all the three versions of the proposed algorithm can
efficiently and effectively minimize the maximum completion time among all factories of the DBFSP, and

HIG; is the most effective.

INDEX TERMS Flowshop scheduling, hybrid meta-heuristic, distributed blocking flowshop.

I. INTRODUCTION

In today’s globalized economy, many companies have turned
from traditional single-factory production to multi-factory
production to reduce the production risk and the cost of
transportation. Consequently, distributed scheduling prob-
lems that concern the assignment of jobs to various facto-
ries and their subsequent sequence have been increasingly
attracting the attention of researchers during the last decade.
With respect to the various distributed scheduling problems,
Ruiz and Naderi [1] were the first to present a distributed
permutation flowshop scheduling problem (DPFSP), which
was a novel generalization of the most popular permutation
flowshop scheduling problem (PFSP). Ruiz and Naderi [1]
also extended the well-known NEH heuristic [2] and two
variable neighborhood descent search algorithms, referred to
as VND, and VNDy, to minimize the global makespan, which
is the maximal completion time of the last job to be processed
in any factory. These methods provided much better computa-
tional results than typical heuristic approaches, and the VND,
heuristic yielded the best solutions, on average, among the
above methods.

Following the presentation of their pioneering conference
paper in 2009, Naderi and Ruiz [3] subsequently presented
a full journal paper that provided several MIP models and
heuristics for solving the same problem. Thereafter, some
effective and efficient improvement heuristics were presented
to solve the DPFSP. Among these, the NEH-based heuristic
algorithm [4], the genetic algorithm (GA) [5], [6], the Tabu
search algorithm (TS) [7], the estimation of distribution
algorithm (EDA) [8], the modified iterated greedy algo-
rithm (MIG) [9], and the bounded-search iterated greedy
algorithm (BSIG) [10] were increasingly better approximate
methods for solving the DPFSP. In particular, the BSIG algo-
rithm of Fernandez-Viagas and Framinan [10] stands out as
the state-of-the-art heuristic for solving the DPFSP.

This work studies the distributed blocking flowshop
scheduling problem (DBFSP) using meta-heuristics. Dis-
tributed blocking permutation flowshops are common in
manufacturing, especially in the chemical, metal, pharmaceu-
tical, electronic, plastic, food-processing, and service indus-
tries, for example [11]. In a blocking flowshop, a finite
number or possibly zero intermediate buffers exist between
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each successive pair of machines. Consequently, a process-
ing job that is completed on a machine will be blocked on
that instrument until the next machine downstream becomes
available. Reddi and Ramamoorthy [12] were the first to
study the two-machine blocking flowshop scheduling prob-
lem (BFSP). Having reduced the problem to a special case
of the travelling salesman problem, they applied the well-
known Gilmore-Gomory algorithm [13] to solve it in poly-
nomial time. Since the BFSP is NP-hard in the strong sense
for a shop that has more than two machines [14], finding
the optimal solution within an acceptable computation time
using exact methods (such as those of Suhami and Mah [15],
Ronconi and Armentano [16], and Ronconi [17] is very diffi-
cult even for problems of moderate size. Most studies of this
highly complex problem have concentrated on developing
constructive heuristics and improvement heuristics that can
find high-quality — but not necessarily optimal — solutions in
a short computation time.

The most famous constructive heuristics for tackling the
BFSP include the profile fitting (PF) heuristic [18], the min-
max heuristic (MM) [19], the combined MM and NEH
heuristic (MME) [19], and the combined PF and NEH heuris-
tic (PFE) [19]. Recently, Companys and Ribas [20] proposed
some constructive heuristics to minimize the maximum com-
pletion time among all factories on a distributed blocking
flowshop. The experimental results in the aforementioned
works reveal that these constructive heuristics can rapidly
find feasible solutions, and they are more useful than exact
methods for solving complex BFSPs. Noteworthy improve-
ment heuristics for solving the BFSP include the GA [21],
Ronconi’s algorithm (RON) [16], the fast TS algorithm [22],
the improved TS algorithm (TS+4-M) [22], the hybrid dis-
crete differential evolution algorithm (HDDE) [23], the iter-
ated greedy algorithm (IG) [24], and the revised artificial
immune system algorithm (RAIS) [25]. Researchers have
confirmed that, among these heuristic algorithms, TS+M,
RON, HDDE, IG, and RAIS are the best for solving the
BFSP. A more detailed discussion of related methods and
their applications to various BFSPs can be found in the
comprehensive investigation of Hall and Sriskandarajah [14].
Although some studies have investigated different DPFSPs
and BFSPs, to the best of the authors’ knowledge, there is
only one research [20] has been done on the DPFSP with
the blocking constraint. Companys and Ribas [20] proposed
some constructive heuristics to minimize the maximum com-
pletion time among the factories for the DPFSP with the
blocking constraint. The computational results showed good
performance of these constructive heuristics, which could be
applied to obtain a fast solution or as the initial solution
procedure in more sophisticated meta-heuristics for solving
the DPFSP.

This work presents three versions of the hybrid iterated
greedy (HIG) algorithm that combine the advantages of the
IG algorithm with the operators of the variable Tabu list,
the constant Tabu list, and the cooling schedule, to solve
the DPFSP with the blocking constraint. Notably, this paper
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is the first study to provide effective and efficient IG-based
algorithms for solving this problem. This paper is organized
as follows. Section 2 defines the DBFSP and formulates it
using a mixed integer linear (MIP) model. Section 3 describes
in detail the three versions of the HIG algorithm. Section 4
presents results of simulations and statistical evaluations of
the proposed algorithm, applied to a benchmark problem set
of instances. Finally, Section 5 draws conclusions and makes
recommendations for future studies.

Il. DESCRIPTION AND FORMULATION OF PROBLEM

The DBFSP that is considered herein is described as fol-
lows. A set of n jobs is to be assigned to, and processed
in, one of f identical factories, each with a flowshop pro-
duction system that comprises the same set of m machines
in series. Every factory can process all jobs, and each job
can be assigned to and processed in any one of these fac-
tories. All jobs must be sequentially processed through the
m machines of the assigned factory in an identical sequence
without preemption. The processing time for each job may
vary among machines, but does not change from factory to
factory. All jobs are ready for processing at the beginning
of the planning horizon, and all machines are available over
the scheduling period. No intermediate buffer, which could
store jobs until the next operation is performed, is assumed
to exist between any pair of consecutive machines in any
factory, so no upstream machine can release a completed job
to the succeeding machine if the latter is busy. In such a case,
the completed job must be blocked on the upstream machine
until the preceding job has been completed on the succeeding
machine.

The objective of scheduling is simultaneously to assign
jobs to various factories and to determine their sequences to
be processed in each factory to minimize the maximum com-
pletion time among the factories (global makespan). Notably,
a schedule that minimizes the global makespan for a DBFSP
also minimizes the sum of the job waiting times and the sum
of the machine idle times. The DBFSP can be designated by
a triplet DF,,|block|Cpax using the well-known notation of
Pinedo [26]. Since the DF,,|block|Cpnax problem with only
one factory reduces to a general BFSP, which is NP-hard in
the strong sense [14] when the number of machines exceeds
two, the DF,,|block|Cpnax problem can be confidently con-
cluded also to be NP-hard in the strong sense.

Based on the MIP model of the DPFSP that presented by
Naderi and Ruiz [3], the DF;,|block|Cmax problem can be
formulated as the following MIP mathematical model. First,
the following notation is defined to simplify the formulation.

Parameters:

n:  Number of jobs
m : Number of machines

f i Number of factories

i: Index of machines, i € {0, 1,2, ..., m}, wherei =0
is a dummy machine

Index of jobs,j € {1,2,...,n}

~.
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k: Index of job position in a given sequence,
kef{l,2,...,n}
l: Index of factories, [ € {1,2,...,f}

pj,i - Processing time of jobjon machine i

Decision variables:

1, if job j occupies position k in factory [

Xikd = 0, otherwise

dri1 = Departure/Completion time of job in position k
on machine i in factory /

Cmax = Maximal completion time (global makespan)

of the last job to be processed in any factory

The objective function of the MIP formulation is

Minimize Cpax
and the constraints are
st.dior=0,1=1,....f; k=1,...,F, €))]

deor=dr1,10, k=2,....m;1=1,...,f, (2

n
diig=dyi-1,+ ZXj,l,l “Pj.is

j=1
i=1,....m—=1;1=1,....f, (3)
n
drig > dii-1,0 + ij,k,l “pii» k=2,....m
j=1
i=1,....m—1;1=1,...,f, @
diig > de—1,i41,0, k=2,...,m
i=1,....m—=1;1=1,....f, (5
n
dim1 = dim—1,1 + ij,k,l “Djms
j=1
k=1,....m;I=1,...,f, (6)

n f
Y3 Xjju=1. j=1....n, @)

k=1 I=1

n
Y Xjpu <1 k=1...nl=1...f )
j=1

dri1 >0, k=1,....n i=1,....m; [=1,....f,
©))
Coax > dikmi, k=1,...,m1=1,...,f, (10)
Xjk1€{0,1}, j=1,...,n; k=1,...,n; I=1,...,f.
(1D

The goal is to minimize the maximal completion time
(global makespan) of the last job to be processed in any
factory. Constraint sets (1) and (2) define the starting time
of the job in position k on the first machine in factory /.
Constraint set (3) defines the departure time of the job
in the first position on machine i in factory /. Constraint
sets (4), (5) and (6) specify the relationship between departure
times of each assigned job on two successive machines in a
factory. Constraint set (7) ensures that each job is dispatched
to exactly one factory and to exactly one job position in

15696

the assigned factory. Constraint set (8) ensures that only
one job can be allocated to each job position at a factory.
Constraint set (9) specifies the departure time of each job on
each machine as non-negative. Constraint set (10) computes
the maximum completion time among all factories. Finally,
constraint set (11) defines all relevant binary variables.

Procedure lterated_Greedy

Input: o
Output: &,
1 begin
2 &, < Create_Initial _Solution
$=85 Ghen =%
while termination conditions not meet do

&, < Destruction (a,¢ )

&, < Construction (&, )

& < Acceptance_Criterion (&, &)

3
4
5
6
7 & < Acceptance_Criterion (&, &,,,,)
8
9 return &,

10

end

FIGURE 1. An outline of the generic IG algorithm.

Ill. PROPOSED SELF-TUNING ITERATED

GREEDY ALGORITHM

This work proposes three versions of the HIG algorithm,
which combine the IG algorithm with the operators of the
Tabu list and the cooling schedule. The IG algorithm (Fig. 1)
is a simple but robust stochastic search algorithm that was
developed by Jacobs and Brusco [27]. As can be seen
in Fig. 1, after an initial solution &j is obtained, a generic
IG algorithm improves the incumbent solution £ and the best
solution &p.s; through the iterative execution of two main
phases, destruction and construction, until a specified termi-
nation condition (e.g., a maximum number of iterations, or a
maximum computation time) is satisfied. In the destruction
phase, a fixed number («) of elements of £ is eliminated,
yielding a partial solution &,. In the following construction
phase, the eliminated elements are individually and sequen-
tially reinserted into all possible positions of the current par-
tial solution to yield a new solution &,,,,. After &,.,, has been
yielded, some acceptance criteria are applied to determine
whether it will replace & and &p.s,. Owing to their simplicity,
flexibility, and high efficiency, 1G-based algorithms have
been successfully utilized to solve some classic schedul-
ing problems, such as the single-machine [28], the parallel-
machine [29]-[31], the permutation flowshop [32]-[34], the
non-permutation flowshop [35], the multistage hybrid flow-
shop [36], and the distributed permutation flowshop [9]
scheduling problems.

The three versions of the HIG algorithm that are proposed
in this work (HIG, HIG,, HIG3) combine the Tabu list and
the cooling schedule with the IG algorithm, respectively.
The main difference between the HIG;, HIG;, and HIG;
algorithms is they use the variable Tabu list, the constant Tabu
list, and without Tabu list, respectively.
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A highly effective speed-up method is used in the construc-
tion phase of all three versions of the HIG algorithm to reduce
the computational burden. The following subsections further
describe the coding scheme of the solutions, the detailed
procedures of the three versions of the HIG algorithm and
the speed-up method.

A. CODING SCHEME OF SOLUTIONS

To signify the assignment of jobs to different factories and
their production sequences in each factory, a solution is coded
using a numerical sequence of n integers, separated into
segments by f — 1 asterisks, where each segment corresponds
to the sequences of the jobs in an assigned factory. Here,
integers represent jobs and asterisks specify the partitioning
of jobs in the factories. For instance, a solution that is encoded
as {6,5,1,9,12,7,%,13,10, 8, 11, 15, %, 3, 14,2, 4, 16} is
a solution with 16 jobs in three factories, with produc-
tion sequences in the first, second and third factories
of {6,5,1,9,12,7}, {13, 10, 8, 11, 15}, and {3, 14, 2, 4, 16},
respectively.

B. PROCEDURES OF PROPOSED HIG ALGORITHM

The main procedures of the three versions of the HIG algo-

rithm for solving the DF',)|block|Cnax problem are as follows.
Step 1: Generation of initial solution

Step 1.1 Apply the PW heuristic ([37], see Section 3.3)
to yield a job list J = (Jp11, J121, - - - » J[n))-

Step 1.2 Apply the NEH; heuristic [3] to insert a job,
in order from the first job in the job list J, into
the current partial solution until all jobs have
been inserted and an initial solution IT has thus
been obtained. That is, each job is inserted into
all possible positions in the current partial solu-
tion, and the one with the lowest partial global
makespan, is subsequently utilized to replace
the current partial solution before the insertion
of the next job.

Step 1.3 Set IT as both the incumbent solution (IT*) and
the best solution (I ), and set the accessible
Tabu list TL := ¢.

Step 2: Destruction phase

Step 2.1 Determine the accessible Tabu list (7L) for the
removal of jobs based on the Tabu list tenure
(TLT), which is obtained using the following
formula;

TLT = TLT"" + w(TLT"8" — TLT"")

where TLT"8" and TLT'"" are the maximal
and the minimal Tabu list tenure, respectively
u is set as a random number between 0 and
1 (meaning that a variable Tabu list is used)
for the HIG; algorithm, u is set as O (meaning
that a constant Tabu list is used) for the HIG;
algorithm; TLT'" and TLT"¢" are set as 0
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Step 2.2

Step 2.3

Step 2.4

(meaning that no Tabu list is used) for the HIG3
algorithm.

Select one job that is not in 7L from each
factory that with the largest completion time.
Move the «; selected jobs (which are assumed
to be all of the selected jobs) from IT* to ITg
and put them into 7L, where Il is a list of
the removed jobs, arranged in order of their
selection. Concurrently, set as l'I;f,1 the current
partial sequence of IT* with the o) removed
jobs eliminated.

Select one job that is not in 7L from each
factory that has the smallest completion time.
Move the «; selected jobs (which are assumed
to be all of the selected jobs) from ITj, to ITg in
the order in which they were selected, and add
them to TL. Concurrently, set as H}iz the current
partial sequence of ITj, with the ay removed
jobs eliminated.

Randomly select (o — | — o) distinct jobs that
are notin TL from all of the factories, where o €
[0mins ®max]. Move the (¢ — a; — arp) selected
jobs from I}, to Ik in the order in which they
were selected and add them to TL.

Step 3: Construction phase

Sequentially reinsert the jobs in I1g, from the
first position to the last position, into H;‘,2, until
a new solution (IT?,,) has been constructed.
When reinserting a job, all possible positions
in the current partial solution should be con-
sidered and the best one, and the best position,
which is the one with the lowest partial global
makespan, is subsequently utilized to replace
the current partial solution before the insertion
of the next job. To accelerate the insertion oper-
ation, the speed-up method that is described in
Section 3.4 is used.

Step 4: Acceptance criterion

To improve the ability of the incumbent solu-
tion to escape from local minima, the following
acceptance criterion and the cooling sched-
ule are used in all three versions of the HIG
algorithm to determine whether IT* and I,y
will be updated by the newly obtained
solution IT} .
IF Cinax(IT,) < Cinax(Tpesr) THEN

set Mpegs == I, and IT* := 117, ;
ELSE_IF Cpax(IT},,,) < Cmax(IT*) THEN set
" := H:ew;

ELSE_IF Cpax(IT%,..) > Crnax(IT*) TEHN

new
Generate r ~ U (0,1);
IF r < e([cmax<n*)*cmax(nZgw)]/T) set
Im* .= I1*

new

Otherwise, discard IT},,,..
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Here, Cpax(-) represents the global
makespan of solution (-); r € [0,1] is a
pseudo-random number that is sampled from
the standard uniform distribution U (0,1); and T
denotes the current temperature with an initial

m n
> > pji and will
i=1j=1
be decreased from its precedi1J1g temperature,
ie., T <« AT (A € [0, 1]), after running a
preset number of iterations (/) at a particular
temperature.

temperature 7o = Tvaiue -

Step 5: Stopping criterion
To test fairly the three versions of the HIG
algorithm, iterate Steps 2—4 for each algorithm
until the computation time reaches a specified
threshold (Tiax).

The PW heuristic was proposed by Pan and Wang [37]
for the single blocking flowshop problem, and The NEH;
heuristic was proposed by Naderi and Ruiz [3] for the dis-
tributed permutation flowshop scheduling problem. In this
study, we combined the PW heuristic and the NEH; heuris-
tic to generate an initial solution for the DFj,|block|Cmax
problem. To compare the solution quality on the same basis,
the procedures for implementing the three versions of the HIG
algorithm are the same, except for the use of different Tabu
lists in Step 2.1: the HIG;, HIG,, and HIG3 algorithms use
a variable Tabu list, a constant Tabu list, and no Tabu list,
respectively. Additionally, in Step 4, all the three versions
of the HIG algorithm employ the decreasing temperature
mechanism instead of the constant temperature mechanism to
avoid searching processes that would be prone to stagnation.
The process used is executed by generating a pseudo-random
number r € [0, 1] and updating the incumbent solution IT*
by IT*

*  whenever r < e(Cnax(T)~Cran (T3 )JI/T)

C. PW HEURISTIC

The PW heuristic is a simple construction heuristic that was
proposed by Pan and Wang [37] for solving the blocking
flowshop scheduling problem. The PW heuristic is applied
as follows.

Step 1: Use the following equations to calculate the depar-
ture time, d[x),;, of job j on machine i if it is at
position k in the schedule.

dio =0, (12)

dik,0 = dik-11,1.k =2...,n, (13)

dix,i = max{dx),i—1 + P1,is dik—11,i+1}»
k=2....mi=1....m—1, (14
d[k],m = d[k],mq + prk1,m» k=1...,n. (15)

Step 2: Use the following equations to calculate the slope
index fj x (Vj, k) of job j at position k.

Jike = (n—k = 2)8jx + Xk (16)
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Where

m

m
8j,0 = Z m(d[l],i = Dj.i)s
n—2

i=1

m
m
Sk = Z -
’ . k(m—i)
i1 LT T
X (dik+11,i — dkyi — pji),»  and

m

m
Xjk = Z W(d[k+2],i_d[k+l],i

i=1 T2
_ Z Pq,i )
(n—k—-1)"
qgelU
qF#Jj

Step 3: Set the job with the smallest fjo value as the
first job in current partial job list Jp = (J[1)).
In case of a tie, make the job has the smallest ;o
value as the first job. Let the unscheduled job set
U=J—-{m}t

Step 4: Repeat the following procedure to select a job for
adding to the next position in the current partial
job listuntil U = ¢.

Step 4.1 For each machine, use Eqs. 12-16 to calculate
the departure time, djx},; (i = 1, ..., m), of the
job at the last position, say position k, in the
current partial job list.

Step 4.2 Use Eq. 17 to calculate the slope index fj«
of each job j € U. Remove the job with the
smallest f; ; value from the unscheduled job
set, and add it at the next position in the current
partial job list. In case of a tie, make the job has
the smallest ;o as the first job.

D. SPEED-UP METHOD

In the construction phase (Step 3) of the three versions of
HIG algorithm, the jobs in ITg are successively inserted at
all possible positions in 1'[}*,2, and the best one, which is
the one with the lowest partial global makespan, is chosen.
In such a construction phase, substantial time is taken to
calculate the makespan of each possible (partial) solution of
the insertion. To accelerate the evaluation of the best insertion
position, a speed-up method that is revised the scheme of
Wang et al. [23] for solving the blocking flowshop problem
is proposed. Based on the assumption that, in the current
partial solution, np jobs have been assigned to a factory,
the following speed-up method is applied to evaluate np + 1
sequences that are generated by inserting a job, Jy, at all
possible positions in this current partial solution.

Step 1: Use Egs. 11-15 to calculate the departure times
dii k= 1,...,np; i = 1,...,m) of the
np jobs at the assigned factory in the current partial
solution.

Step 2: Use the following equations to calculate the tails
fini G = 1,...,m) of the

1,...,np; i =

VOLUME 5, 2017
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np jobs in the assigned factory in the current partial

solution.
Jinplm+1 =0, (I7)
\f[nP];i zﬁnP],i+] +p[nP],i7 i= m,..., 15 (18)
Sitme1 = fiirnmj=np—1,...,1, (19)

Sini = max{fjyiv1 + ppis Sjni-1h
j=np—1,..  lii=m...,2, (20)

S =fine +rpji=np—1,..., 1. (21

Step 3: Use Egs. 12-16 to calculate the departure times
dig,i i =1,...,m) of job J;y when it were to be
inserted at position ¢ in the assigned factory in the
current partial solution.

Step 4: Use the following equation to calculate the global
makespan of the partial sequence IT; when job
Jy were to be inserted at position g in the assigned
factory in the current partial solution.

.....

g=1,....,np+1. (22)

Step 5: Choose the optimal insertion position, among the
best ones across all factories, which minimizes the
global makespan.

IV. COMPUTATIONAL RESULTS AND DISCUSSION
A. TEST PROBLEMS
To verify the effectiveness of the three versions of the HIG
algorithm, the benchmark problem set that was presented by
Naderi and Ruiz [3] for testing the DPFSP was used. The
benchmark problem set was augmented using the 120 bench-
mark instances of Taillard [38], where the processing time
pii=1,...,n;i=1,...,m)is an integer that is generated
from the uniform distribution [1, 99]. Naderi and Ruiz [3]
expanded these 120 test instances to 420 and 720 test
instances in the small and large problem sets, respectively.
The instances in the small problem set featured the number
of jobs n = {4, 6, §, 10, 12, 14, 16}, the number of machines
m = {2, 3, 4,5}, and the number of factories f = {2, 3,4}.
The total number of combinations of distinct numbers of
jobs, machines, and factories was 84, which was therefore the
number of sub-problem sets. Five instances were generated
for each sub-problem set, yielding a total of 420 (84 x 5)
instances in the small problem set. The instances in the large
problem set were those in 72 sub-problem sets, featuring the
number of jobs n = {20, 50, 100, 200, 500} , the number
of machines m = {5, 10, 20}, and the number of factories
f =1{2,3,4,5,6,7}. Ten instances were generated for each
sub-problem set, yielding a total of 720 (72 x 10) problem
instances. The files of these test instances can be downloaded
from http://soa.iti.es.

B. PARAMETER CALIBRATION

The proposed three versions of the HIG algorithm hhav}? seven
ig

parameters, which are Type, Liter, A, TLT,éUW, TLT;®", otmin,
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TABLE 1. Parameter values used in the two-parameter calibration
experiments.

Parameter First calibration

0.02: 0.03*: 0.04
Ttie
I 2000: 3000: 4000
iter
A 0.875: 0.900: 0.925

(TLT”" TLT,"") (5%:10%): (5%.15%): (10%.15%)

(2,5):(2,6):(3,6):(3,7):(4,7):(4.8)

(s Aina)
Parameter Second calibration
0.025: 0.03: 0.035
Bt
I 2500: 3000: 3500
iter
A 0.885: 0.900: 0.915

(LT, TLT,"")  (2:5%10.0%): (5.0%,7.5%): (5.0%,10.0%): (5%,12.5%): (7.5%,10.0%)

(Cis X)) (2,6): (3:6): (3.7

*: The best combination is bold face

TABLE 2. Performance comparisions on taillard’s benchmark problems
(Ave. RPDgys) for t = 15.

Problem size HIG, HIG, HIG; RAIS HDDE 1G
20[5 0.000 0.000 0.000 0.000 0.000 0.000
20[10 0.000 0.000 0.000 0.000 0.000 0.000
20[20 0.000 0.000 0.000 0.000 0.000 0.000
505 0.059 0.016 0.211 0.027 1.000 0.219
50[10 0.035 -0.040 0.123 0.072 0.805 0.272
50120 -0.145 -0.075 -0.053 0.084 0.439 0.088
100|5 -0.093 0.010 -0.079 0.000 2.618 0.826

100[10 -0.215 -0.099 -0.163 0.000 1912 0.890
10020 -0.300 -0.171 -0.142 0.021 1.602 0.740
200[10 -0.419 -0.273 -0.315 0.000 2.833 0.331
200120 -0.661 -0.463 -0.571 0.000 1.880 0.633
500120 -1.161 -1.017 -1.038 0.076 1.631 0.091
Total average -0.242 -0.176 -0.169 0.023 1.227 0.341

TABLE 3. Paried T-tests on AVE. RPDBKS for t = 15.

HIG; vs. HIG, HIG; RAIS HDDE 1G
Difference -0.0657 -0.0727 -0.2648 -1.4682 -0.5824

dof 119 119 119 119 119
t-Value -3.3981 -3.8810 -7.1686 -13.4746 -11.1155
One-tail significance 0.0005 0.0001 0.0000 0.0000 0.0000

and amax, Where Tye i% usned to determine the initial tem-
perature (To = Tvuiue - ) D Pj.i); lier denotes the number
i=1j=1

of iterations in the search jat a particular temperature; A is
the coefficient that directs the cooling schedule; TLTIIQOW and
T LTlé”gh determine the minimal and maximal Tabu list tenures
(TLT'" = n . TLT!" and TLT"&" = n . TLT)"), respec-
tively; omin and omax are minimal and maximal number of
jobs to be eliminated in the destruction phase.

Since the parameter values affect the computational results
of the three versions of HIG algorithm, two sets of test
instances are used to calibrate the parameters. In the two cal-
ibration experiments, the maximum computation time (7max)
to solve each selected instance was set to 10 - n - m (ms).
The three versions of the HIG algorithm were executed in
C language on a personal computer that had an Intel Core
Quad CPU Q9400 @2.66 GHz processor and 20 GB of RAM.
Each calibration experiment was conducted on 30 instances
that are randomly produced using the same data generation
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TABLE 4. Ave. RPD, g values obtained using the milp mathematical model, HIG,, HIG,, and HIG5 algorithms (small problem set).

nlm MIP CPU Time HIG, HIG, HIG;
412 0.0000 0.07 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000
43 0.0000 0.09 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000
414 0.0000 0.11 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000
4|5 0.0000 0.13 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000
6]2 0.0000 0.20 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000
6|3 0.0000 0.30 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000
64 0.0000 0.44 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000
6|5 0.0000 0.97 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000
812 0.0000 4.55 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000
83 0.0000 2.90 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000
814 0.0000 2.46 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000
8|5 0.0000 6.17 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000
1012 0.0000 61.90 0.000/0.000/0.000 0.000/0.000/0.019 0.000/0.000/0.000
103 0.0000 88.97 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000
104 0.0000 154.35 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000
105 0.0000 83.17 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000
122 0.4632 1192.45 0.463/0.463/0.463 0.463/0.463/0.463 0.463/0.463/0.463
123 0.0000 789.79 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000
1214 0.7487 1372.73 0.749/0.749/0.749 0.749/0.749/0.749 0.749/0.749/0.749
125 0.9822 1087.41 0.982/0.982/0.982 0.982/0.982/0.982 0.982/0.982/0.982
142 4.1460 2880.46 4.146/4.146/4.146 4.146/4.146/4.146 4.146/4.146/4.146
14(3 7.3083 2843.24 7.308/7.308/7.308 7.308/7.308/7.308 7.308/7.308/7.308
14(4 59173 2897.78 5.917/5.917/5.917 5.917/5.917/5.917 5.917/5.917/5.917
14/5 8.9057 2876.78 8.891/8.891/8.891 8.891/8.891/8.891 8.891/8.891/8.891
16[2 4.1152 3540.68 3.980/3.920/3.920 3.998/3.998/4.156 3.980/3.920/3.920
16|3 14.0446 3600.29 13.810/13.810/13.810 13.810/13.810/13.866 13.810/13.810/13.810
164 14.0071 3600.28 13.906/13.906/13.906 13.906/13.906/13.906 13.906/13.906/13.906
16|5 18.6180 3600.28 18.129/18.129/18.129 18.129/18.129/18.129 18.129/18.129/18.129
Total average 2.8306 1096.03 2.796/2.794/2.794 2.796/2.796/2.805 2.796/2.794/2.794

procedures as that of Naderi and Ruiz [3]. The test instances
in the two sets featured the number of jobs n = {20, 50, 100},
the number of machines m = {5, 10, 20}, and the number
of factories f = {2, 3,4, 5, 6, 7}. For each combination p of
parameter values, each test instance was solved five times,
and the best known solution (Cf:lin ;) among the five repli-
cations was recorded for each test instance i. Then, the best
known solution for each test instance i(Cfl{flS ;) was obtained
among all Cﬁin ;» For choosing the best “value for each
parameter, the combination with the smallest average relative
percentage rate RPD);, = (Cg1 — Cfl{fls D/ Cfl{fls ; X 100% was
chosen.

In the first calibration experiment, several values of the
parameters Tyuues lirers A TLT, TLTHE", aimin and atmay
(see Table 1) were tested for the calibration and tuning of
parameter combinations. In the second calibration experi-
ment, the results of the first experiment were refined by
adding additional values, which are presented in Table 1.
As shown in Table 1, the following values were obtained
using the optimal parameter combinations; in the first cali-
bration experiment, Tyyue = 0.03, I, = 3000, A = 0.9,
TLT/ = 5%, TLT" = 10%, amin = 3 and amay = 6,
while in the second calibration experiment (after refinement),
Tvaiwe = 0.03, Ijzer = 3500, 2 = 0.915, TLT,é"W = 5%,
TLT;”gh = 10.0%, omin = 3 and @max = 6. Three values
of TLTII{’W, 5.0%, 7.5%, and 10.0%, are tested for use in HIG,
algorithm. Because setting TLTIle"W to 7.5% yielded the best

in
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TABLE 5. Ave. RPD, g values obtained using HIG;, HIG,, and HIG3
algorithms grouped according to n and m for t = 5, 10, and 15 (large
problem set).

nlm HIG, HIG, HIG,

2015 0.020/0.004/0.000 0.014/0.014/0.007 0.010/0.007/0.007
2010 0.012/0.009/0.009 0.016/0.016/0.013 0.000/0.000/0.000
20120 0.000/0.000/0.000 0.005/0.005/0.000 0.006/0.000/0.000
5015 0.560/0.328/0.257 0.598/0.598/0.309 0.606/0.390/0.329
50/10 0.565/0.281/0.219 0.577/0.577/0.237 0.596/0.343/0.264
50120 0.595/0.198/0.159 0.588/0.588/0.185 0.666/0.248/0.186
1005 0.850/0.399/0.267 0.824/0.824/0.258 0.873/0.453/0.308
100[10 0.969/0.385/0.213 0.920/0.920/0.216 1.001/0.398/0.233
100120 1.228/0.382/0.206 1.282/1.282/0.219 1.277/0.375/0.169
20010 1.347/0.497/0.181 1.381/1.381/0.255 1.406/0.523/0.195
200120 1.598/0.480/0.177 1.651/1.651/0.164 1.606/0.477/0.156
500/10 1.626/0.388/0.065 1.806/1.806/0.209 1.688/0.417/0.103

Total average 0.781/0.279/0.146 0.805/0.805/0.173 0.811/0.303/0.163

result, TLTI,IQOw was fixed at this value in the HIG, herein.
Using the above parameter settings, the maximal computa-
tional time was set to 7 - n - m (ms) for various problem sets,
where 7 is a scale factor that was set to (5, 10, 15, 20, 25, 30)
and (5, 10, 15) for the single-factory and multi-factory prob-
lem, respectively. Each problem was executed five runs, and
the best solution from the five replications was recorded. The
following subsections present and discuss the computational
results.

C. RESULTS OBTAINED USING PROBLEM SET
OF SINGLE-FACTORY

To confirm the effectiveness of the three versions of
the HIG algorithm, their performance was compared with
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TABLE 6. Ave. RPD, g values obtained using HIG;, HIG,, and HIG3
algorithms grouped according to n and m for t = 5, 10, and 15 (large
problem set).

HIG, HIG, HIG;

1.102/0.280/0.118 1.244/1.244/0.224 1.163/0.279/0.117
0.941/0.293/0.143 0.974/0.974/0.179 0.934/0.314/0.150
0.714/0.256/0.137 0.808/0.808/0.177 0.800/0.302/0.162
0.656/0.260/0.140 0.687/0.687/0.172 0.646/0.276/0.155
0.611/0.265/0.141 0.619/0.619/0.182 0.636/0.282/0.151
0.660/0.320/0.196 0.499/0.499/0.102 0.688/0.363/0.241
0.781/0.279/0.146 0.805/0.805/0.173 0.811/0.303/0.163

RO RV N N IY

Total Average

TABLE 7. Paired t-tests on Min. RPDgys, Mean RPDgys, and Max. RPDgs.

HIG, vs. HIG, HIG;

Test on Min. RPDHKS

Paired difference -0.024/-0.027/-0.027 -0.031/-0.023/-0.017

t-value -2.102/-2.580/-2.638 -2.898/-2.592/-1.844
Degree of freedom 719 719
P-value 0.018/0.005/0.004 0.002/0.005/0.033

Test on Mean RPDEKS

that of leading algorithms using the 120 single-factory
benchmark instances of Taillard [38]. These leading algo-
rithms are HDDE [23], IG [24], and RAIS [25], all of
which were developed to solve the single-factory BFSP.
Notably, the HIG3 algorithm proposed in this study is an
improved version of the IG algorithm, which is a state-of-
the-art algorithm, proposed by Lin et al. [9] for the distributed
permutation flowshop scheduling problem. In the literature,
HDDE is performed with ten replications, while IG and RAIS
are performed with five replications. Therefore, the pro-
posed HIG;, HIG,, and HIG3 algorithms were conducted
with five replications, and the relative percentage deviation
(RPDpks) of makespan from the best solution that was cal-
culated using the following formula was used to compare
the performance of these algorithms with that of HDDE, IG,
and RAIS.
RPDgxs = (C8 — CBKS)/CBKS » 100%

where Cﬂfx is the makespan value in the best solution that
was obtained using the algorithm of interest, and CZXS is the
makespan value in the best solution that was obtained using
HDDE, IG, and RAIS.
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FIGURE 2. The average RPDgys values under different t vaules.

To reveal how the computational time affects quality of
the solutions obtained using HIG{, HIG, and HIGs3, various
t values for these algorithms were tested. Figure 2 plots
the total average RPDpks values for the solutions that were
obtained using the HIG, HIG;, and HIG3 algorithms with
various ¢ values. Evidently, as can be seen in Fig. 2, solution
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Paired difference -0.020/-0.021/-0.024 -0.025/-0.018/-0.019

t-value -2.627/-2.976/-2.875 -3.528/-2.833/-3.015
Degree of freedom 719 719
P-value 0.004/0.002/0.002 0.000/0.002/0.001

Test on Max. RPDBKS

Paired difference -0.017/-0.010/-0.017 -0.022/-0.012/-0.015

t-value -1.618/-0.879/-1.618 -2.098/-1.292/-1.620
Degree of freedom 719 719
P-value 0.053/0.190/0.053 0.018/0.098/0.053

quality increases with computation time. When ¢ is equal
to or larger than 15, the total average RPDpgs values of
the solutions that were obtained using of HIG, HIG,, and
HIG3 algorithms are negative. Accordingly, HIG, HIG3,
and HIG3 outperform HDDE, IG, and RAIS if ¢ is equal
to or greater than 15. Therefore, considering both of solu-
tion quality and computational efficiency, + = 15 is used
in subsequent analysis of the 120 single-factory benchmark
instances.

Table 2 lists the average RPDpgs (Ave. RPDpks) value for
the solutions of each problem size that are obtained using
HIG;, HIG;, HIG3, RAIS, HDDE, and IG. Each average
RPDggs value was taken over the 10 test instances for each
problem size. Tables 8 and 9 present the best solutions that
were obtained using these algorithms for each benchmark
instance. As shown in Table 2, the total average RPDpgs
value of the solutions that were obtained using the HIG;
algorithm was —0.242%. For the HIG,, HIG3, RAIS, HDDE,
and IG algorithms, the corresponding values were —0.176%,
—0.169%, 0.023%, 1.227%, and 0.341%, respectively. Evi-
dently, the three versions of the HIG algorithm outperform
the three leading algorithms in solving the traditional BFSP,
while HIG; is the best of them. Notably, as reported by Lin
and Ying [25], RAIS is better than HDDE and IG, with its
maximal computational time set to 100 - n - m (ms), while
the maximal computational times for the HIG;, HIG;, and
HIG3; algorithms are set to 15 - n-m (ms). Therefore, the three
versions of the HIG algorithm take significantly less time to
compute better solutions to the traditional BFSP than taken
by the RAIS algorithm.

To confirm further the effectiveness of the proposed HIG
algorithm, paired z-tests were performed on the average
RPDpgs values obtained using HIG; and those obtained
using HIG,, HIG3, RAIS, HDDE, and IG. The results
in Table 3 that the proposed HIG algorithm significantly out-
performs the HIG,, HIG3, RAIS, HDDE, and IG algorithms
at a confidence level o = 0.05.
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TABLE 8. Results for the instances with n = 20, 50 and 100 for £ = 15.

njm HIG, HIG, HIG; RAIS HDDE IG nlm HIG, HIG, HIG; RAIS HDDE 1G
2015 1374 1374 1374 1374 1374 1374 50[5 2993 2989 3001 2995 3033 3002
1408 1408 1408 1408 1408 1408 3199 3182 3200 3191 3226 3201
1280 1280 1285 1280 1280 1280 3001 3011 3013 3007 3039 3011
1448 1448 1448 1448 1448 1448 3126 3118 3128 3125 3147 3128
1341 1341 1341 1341 1341 1341 3150 3154 3165 3143 3192 3166
1363 1363 1363 1363 1363 1363 3173 3173 3179 3169 3183 3169
1381 1381 1381 1381 1381 1381 3028 3024 3028 3021 3054 3013
1379 1379 1379 1379 1379 1379 3059 3053 3054 3058 3081 3073
1373 1373 1373 1373 1373 1373 2900 2906 2913 2908 2929 2908
1283 1283 1283 1283 1283 1283 3113 3118 3107 3114 3146 3120
20110 1698 1698 1698 1698 1698 1698 50[10 3622 3641 3629 3633 3667 3638
1833 1833 1833 1833 1833 1833 3489 3484 3497 3487 3523 3507
1659 1659 1659 1659 1659 1659 3481 3475 3485 3482 3515 3488
1535 1535 1535 1535 1535 1535 3662 3651 3660 3666 3685 3656
1617 1617 1617 1617 1617 1617 3630 3627 3638 3634 3650 3629
1590 1590 1590 1590 1590 1590 3590 3591 3593 3576 3622 3621
1622 1622 1622 1622 1622 1622 3694 3674 3686 3683 3704 3696
1731 1731 1731 1731 1731 1731 3562 3567 3567 3574 3590 3572
1747 1747 1747 1747 1747 1747 3530 3517 3534 3541 3556 3532
1782 1782 1782 1782 1782 1782 3619 3625 3621 3616 3642 3624
20120 2436 2436 2436 2436 2436 2436 5020 4502 4492 4499 4504 4516 4500
2234 2234 2234 2234 2234 2234 4275 4283 4271 4291 4296 4276
2479 2479 2479 2479 2479 2479 4261 4271 4269 4279 4290 4289
2348 2348 2348 2348 2348 2348 4349 4354 4353 4368 4393 4377
2435 2435 2435 2435 2435 2435 4262 4277 4263 4275 4284 4268
2383 2383 2383 2383 2383 2383 4289 4276 4297 4283 4308 4280
2390 2390 2390 2390 2390 2390 4302 4313 4310 4315 4325 4308
2328 2328 2328 2328 2328 2328 4313 4314 4318 4319 4337 4326
2363 2363 2363 2363 2363 2363 4313 4307 4312 4313 4332 4316
2333 2333 2333 2333 2333 2333 4401 4410 4415 4419 4439 4428

"Bold font means the best solution among various algorithms.

D. RESULTS OBTAINED USING SMALL PROBLEM SET OF
MULTI-FACTORY

For the small problem set, the relative percentage deviation
(RPDpks) of makespan from the lower bound that is cal-
culated using the following formula, was used to compare
HIG, HIG; and HIGs; algorithms with the proposed MIP
mathematical model, in terms of solution quality.

RPDg = (CY8 — CLB y/CLB 5 100%

max

where Cgllfx is the makespan value of the best solution that
is get using a given version of the HIG algorithm or by
solving the proposed MIP mathematical model, and CLB is
the lower bound on the makespan value that is get by solving
the proposed MIP mathematical model.

The MIP mathematical model was solved using a famous
mathematical programming solver, Gurobi (Version 7.0), on a
personal computer with an Intel Core Quad CPU Q9400 @
2.66 GHz processor and 20 GB of RAM. The maximal com-
putational time for each test instance was set to an elapsed
CPU time of 3600 seconds. The final incumbent solution
that was obtained by the Gurobi MIP solver was recorded
as the feasible solution. The difference between the feasible
solution and the lower bound is known as the gap; a gap of
zero reveals that the solution is optimal.

Table 4 lists the statistical results concerning the average
RPD;p (Ave. RPDyp) values that were obtained using the
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small problem set using the MIP mathematical model, and
the HIG;, HIG,, and HIG3 algorithms. The three ¢ values
are separated by a slash (r = 5/10/15), except in the result
obtained using the MIP mathematical model, which includes
only one Ave. RPDjp value. It should be noted that, because
the number of jobs is smaller in these problems, the maximal
number of jobs to be removed is set to n/2. As revealed
in Table 4, the total average RPDyp values of the solutions
that were obtained using HIG1, HIG;, and HIG3 algorithms
are smaller than those obtained using the MIP mathematical
model. The MIP mathematical model found optimal solu-
tions for all benchmark instances when the number of jobs
did not exceed 10. When the number of jobs in benchmark
instances was 12, 14, or 16, the MIP mathematical model
obtained optimal solutions in 51, 18, and one out of 60 test
instances, respectively. In total, the MIP mathematical model
obtained optimal solutions in 310 out of 420 benchmark
instances in the small problem set. Notably, all except one
of the optimal solutions that were obtained using the MIP
mathematical model were also obtained using HIG1, HIG»,
and HIG3; algorithms. Furthermore, the computational times
required for HIG;, HIG;, and HIG3 algorithms are much
less than that of the MIP mathematical model. These ana-
Iytical results confirm that the proposed HIG;, HIG,, and
HIG3 algorithms exhibit excellent convergence to optimal
solutions.
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TABLE 9. Results for the instances with n = 100, 200 and 500 for t = 15.

nlm HIG, HIG, HIG; RAIS HDDE IG nlm HIG, HIG, HIG; RAIS HDDE IG
100[5 6098 6111 6100 6102 6291 6151 200[10 13325 13341 13340 13363 13756 13406
5969 5976 5968 5979 6136 6022 13238 13285 13234 13285 13621 13313
5858 5885 5891 5883 6063 5927 13370 13399 13335 13391 13741 13416
5714 5711 5691 5702 5839 5772 13267 13286 13256 13330 13718 13344
5918 5934 5922 5939 6065 5960 13265 13243 13265 13325 13721 13360
5791 5805 5819 5806 5971 5852 13043 13037 13054 13064 13474 13192
5945 5950 5955 5936 6095 6004 13501 13542 13525 13577 13925 13598
5843 5860 5825 5835 5985 5915 13392 13423 13433 13493 13863 13504
6098 6083 6069 6090 6234 6123 13207 13204 13238 13270 13659 13310
6107 6086 6109 6125 6273 6159 13274 13318 13341 13345 13744 13439
10010 6969 6982 6993 7004 7131 7042 20020 14658 14714 14733 14766 15057 14912
6708 6690 6720 6704 6816 6791 14884 14923 14886 14954 15284 15002
6827 6856 6841 6847 6956 6936 14970 15041 14984 15109 15360 15186
7099 7116 7116 7112 7261 7187 14957 14939 14924 14995 15276 15082
6789 6767 6751 6771 6913 6810 14777 14814 14801 14889 15183 14970
6582 6598 6581 6614 6739 6666 14894 14934 14958 14988 15223 15101
6734 6729 6756 6733 6874 6801 14928 14914 14912 15038 15296 15099
6787 6802 6804 6815 6940 6874 14928 14937 14898 15025 15310 15141
7003 7018 6986 7022 7133 7055 14860 14864 14836 14942 15243 15034
6872 6893 6858 6896 7065 6965 14857 14928 14914 14996 15284 15122
100[20 7752 7769 7756 7765 7891 7844 500120 36100 36197 36142 36593 37172 36609
7801 7796 7790 7834 7931 7894 36441 36513 36463 36915 37485 36927
7759 7788 7800 7810 7935 7794 36103 36221 36209 36577 37209 36646
7760 7796 7793 7836 7930 7899 36465 36358 36463 36880 37291 36641
7789 7792 7793 7798 7944 7901 36219 36281 36264 36593 37232 36583
7837 7835 7858 7871 7971 7888 36451 36521 36516 36946 37513 36917
7914 7907 7931 7900 8051 7930 36072 36143 36110 36506 37121 36518
7965 7948 7937 7950 8102 8022 36293 36368 36368 36804 37202 36837
7842 7869 7848 7883 8007 7969 36141 36109 36103 36495 37116 36641
7899 7919 7936 7922 8050 7993 36307 36410 36404 36820 37492 36866

*Bold font means the best solution among various algorithms.

E. RESULTS OBTAINED USING LARGE PROBLEM SET

OF MULTI-FACTORY

Because of the complexity of the DF,,|block|Cpax problem,
a high-quality feasible solution to a large problem cannot be
obtained using the proposed MIP mathematical model in a
reasonable computation time. Therefore, for the test instances
in the large problem set, the relative percentage deviation
(RPDpks) of makespan from the best solution obtained using
the HIG;, HIG,, and HIG3 algorithms was used to compare
the solutions obtained using the HIG1, HIG,, and HIG3 algo-
rithms in terms of quality.

Tables 5 and 6 present the statistical results concern-
ing the average RPDpgs values of 60 and 120 solutions,
respectively, in the large problem set obtained using the
three versions of the HIG algorithm; the results that were
obtained using the three ¢ values are separated by a slash
(t = 5/10/15). The statistical results reveal that more jobs
yield a larger average RPDpgs (Table 5) and more factories
are associated with a smaller average RPDpgs (Table 6).
Thus, the number of jobs and the number of factories in the
benchmark instances affected the performance of the HIG,
HIG,, and HIGj3 algorithms, whereas the number of machines
did not.

The best, mean, and worst makespan values of the solutions
to each test problem, based on five trials, obtained using each
version of the HIG algorithm, were used to compute RPDpgs
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values, which were denoted as Min. RPDpggs, Mean RPDpgks,
and Max. RPDpgs. To determine whether the HIG algorithm
was better than the HIG, and HIG3 algorithms, one-sided
paired z-tests in terms of Min. RPDpgs, Mean RPDpks,
and Max. RPDpgs were performed for the various ¢ values
(t = 5/10/15). The statistical results listed in Table 7 revealed
that, at a confidence level of @« = 0.05, the proposed HIG;
algorithm significantly outperformed the HIG, and HIG3
algorithms in terms of Min. RPDpks, MeanRPDpgks, and
Max. RPDggs, for most of the ¢ values. These statistical
results confirm that adopting the variable Tabu list oper-
ator of TS and the cooling schedule operator of SA sig-
nificantly improves the performance of IG in solving the
DF,,|block|Cax problem.

V. CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE RESEARCH

The DF,,|block|Cmax problem is a variant of the DPFSP.
Owing to the broad applications of distributed blocking
flowshop systems, this work developed three versions of
the HIG algorithm (HIG1, HIG,, and HIG3) for solving the
DF,,|block|Cmax problem to bridge the gap between the-
oretical progress in DBFSP and the industrial implication
of distributed blocking flowshop systems. A comprehen-
sive benchmark problem set is used to test the effectiveness
and efficiency of the HIGj, HIG,, and HIG3 algorithms.
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In summary, the computational results that are presented in
this work are very encouraging for the application of the
HIG1 algorithm to the DF),|block|Cpnax problem. The pro-
posed HIG; algorithm exploits the PW and NEH2 heuristics
to develop an initial schedule and combines the IG algorithm
with the operators of the variable Tabu list and the cooling
schedule. A highly effective speed-up method for evaluating
of the best insertion position is used to reduce the computa-
tional burden. In view of the current lack of meta-heuristics
to solve the DF,,|block|Cpax problem, this work provides an
important basis to exploring this significant topic.

Many issues are worthy of further study in the area of
this pioneering study. First, additional exact methods and
meta-heuristic algorithms should be developed to solve effec-
tively and efficiently the DF,|block|Cpnax problem. Sec-
ond, the proposed HIG algorithms could be modified to
solve the distributed no-idle flowshop scheduling problem.
Third, the distributed blocking flowshop scheduling prob-
lem that involves other sophisticated objectives is worthy
of research. Fourth, the extension of the present considera-
tion of the DF,,|block|Cpax problem to consider the multi-
objective distributed blocking flowshop scheduling problem
would increase the application of scheduling theory in indus-
try. Finally, the novel theoretical research should be expanded
from the deterministic DF,,|block|Cpax problem to stochastic
problems.

APPENDIX
See Tables 8 and 9.
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