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ABSTRACT A sizable amount of current literature on online drift detection tools thrive on unrealistic para-
metric strictures such as normality or on non-parametric methods whose power performance is questionable.
Using minimal realistic assumptions such as unimodality, we have strived to proffer an alternative, through
a novel application of Bernstein’s inequality. Simulations from such parametric densities as Beta and Logit-
normal as well as real-data analyses demonstrate this new method’s superiority over similar techniques
relying on bounds, such asHoeffding’s. Improvements are apparent in terms of higher power, efficient sample
sizes, and sensitivity to parameter values.

INDEX TERMS Change point detection, non-parametric methods, Hoeffding’s inequality, Bernstein’s
inequality, big data, anomaly detection.

I. INTRODUCTION
The nature of temporal progression of a continuous process
often comes under scrutiny and changes in the pattern of
evolution are frequently indicative of a shift in the possibly
deterministic mechanisms that govern the process. Examples
originate from a spectrum as rich as quality control (where the
production manager might be interested in bounding the pro-
portion of defective items generated), oceanography (where
scientists might speculate an increase in sea surface temper-
atures), drug testing (where physicians could be interested in
the pattern of recovery time due to a newly launched drug)
and several others. Or one could also consider whether some
in an incoming stream of emails could be categorized as
spam. The quest that unifies these applications is the search
for efficient algorithms that will warn one of a change in
one or more of the fundamental properties of the system:
properties such as the average level (representation of the
most common value) or the amount of fluctuation involved.
Assuming such a change point exists, the method that detects
it sooner without being unnecessarily taxing on the sample
size is favorable.

Irrespective of the actual learning method emplo-
yed [2], [5], [14], it is prudent to restrict investigation to some
data functional detectors such as the mean or the median [33]
since these functions are often adequate reflectors of the
drift in underlying probability distributions. Using one such
functional, the present work will offer a technology that
will sound an alarm if the mean level of a process changes

significantly so that remedial measures can be promptly
undertaken to bring the process back on track. The method
relies on realistic assumptions, is easily implementable and
is efficient with respect to some of its competitors.

The plan of the current work is simple: section 2 takes a
tour of the established results in this area and leads up to a
section on probabilistic notions. Section 4 details the working
of the probability bound that is pivotal in this endeavor along
with a necessary modification. The sections to follow will
describe a new statistical test and algorithmwhile implement-
ing those on real and simulated data sets. We shall conclude
with a summary and an exploration of future avenues.

II. RELATED WORK
The problem of detecting drifts has been tackled by several
authors and various methods of data storage and analyses
have been proposed. A notable one among these methods
being the time window approach, where a time stamp, defin-
ing age is associated with incoming examples. Different sub-
categories have been introduced, for instance by Gama and
Rodrigues [15]. Reliable algorithms to preserve monitoring
statistics across windows have also been studied [12]. For the
specific purpose of detecting changes in population mean,
methods such as ADWIN [5] or ADWIN2 [5] have been
constructed, extending the above idea. Tools [2], [14] guar-
anteeing theoretical limits on the the maximum processing
time of incoming instances are prevalent and these thrive
on classical principles of online change point detection [30].
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Baena-García et al. [2] used the discrepancy between two
classification errors to detect gradual changes in an online
stream.

The drawbacks of the window based approaches (such
as the scarcity of a fixed or uniformly adjustable window
size) are established by Lazarescu and Venkatesh [25]. For
instance, works such as [17] or [6] take the window size
as 100 while conducting real data analyses. So one strat-
egy weighs the data or parts of the hypothesis according
to their age or current utility [21], [22], [35]. Thus, first
order integrated moving average model [8] dependent meth-
ods such as EWMA mean monitoring statistic are often
useful, for instance when the mean changes in steps [10].
CUSUM [26] procedure is another method along similar
lines. Most of these methods assume that the random variable
under consideration is governed by some known paramet-
ric density [30] such as the normal. Chandola et al. [9]
observes that such parametric statistical techniques estimate
the model parameters under assumptions and that the quality
of detection results depend hugely on the actual estimator
used. Oomen and Rueda [32] discusses methods utilizing
sliding windows to tackle non-stationary environments such
as the ones where the underlying distribution changes with
the number of incoming observations.

Decision tree based methods under the assumption of a
persistent descent [31] and the ECDD [34] method where one
uses an EWMA chart to monitor the misclassification rate
have both recently been proposed. Klinkenberg [22] intro-
duces ideas on global and local weighing through exponential
weighing functions such aswη(xt ) = e−ηt to quantify gradual
changes in the interest in a specific example while Cohen
and Strauss [11] considers a sufficiently rich class of decay
functions under exponential, polynomial and sliding window
frameworks. Noting however that most of the parametric
methods suffer from the drawback of unrealistic distribu-
tional assumptions, Zhan et al. [37], [38] proposed a method
based on weak estimators. This is extremely useful when
the stationarity assumption comes into question for instance,
in connection to spam filtering. Most of the statistical tech-
niques in this regard have been detailed in McGregor [28]
and Kong et al. [23] and compared by Zhang et al. [39].
Other authors such as Metsis et al. [29] compares the per-
formance of some naive Bayesian filters while researchers
such as Wang et al. [36] explored the possibility of online
linear classifiers. Performance of filters that minimize false
positives (i.e. sounding an alarm in the absence of a shift)
have been examined by Guzella and Caminhas [18] and
Androutsopoulos et al. [1] designed cost effective measures
that quantify the impact of false positives. Blanco et al.
[7] introduced a more reasonable non-parametric method
based on Hoeffding’s inequality. While remaining within this
liberating framework , in the sections to follow, we shall
endeavor to improve this newmethod even further. The meth-
ods outlined here can be generalized to cases where the data
arrive online but the labels are not straightforward to obtain
[41] . We are aware that several authors would prefer to

differentiate between notions of abrupt and gradual shifts in
trend and that several such as [3], [16], and [19] have pre-
viously identified various types of gradual change. However,
given our confidence that the proposed bound will efficiently
pick up the wide array of changes with considerable ease,
we shall not investigate too deeply into the issue of speed of
change in this research.

III. PRELIMINARIES
A. NOTATIONS
A solid grounding in the rudiments of probability theory will
be imperative for the discussions to follow. This section is
designed as a brief refresher of the related ideas.

1) RANDOM VARIABLES
An abstract set S that nests all possible outcomes can almost
always be attached to a random experiment. This set, termed
the sample space, in turn generates a sigma algebra F of
subsets that houses collections that are closed under comple-
mentation and countable unions. Members of F qualify as
measurable sets or events and a set function P(.) on F can
then be defined which should attach numbers between
0 and 1 termed probabilities to members ofF . This collection
(S,F ,P), termed the probability space, serves as the founda-
tion stone for any probabilistic exercise.

Meaningful mathematics often results from the addition
of another layer of complexity: a mapping that connects S
to a space enjoying topological niceties such as Polishness,
a space such as the real line R. A random variable X is
precisely that sort of a measurable mapping when the target
space is R. To be formal, if an image space (Q,BQ) can
be conceived where BQ is some σ -algebra on Q, then X :
S ⇒ R is a measurable map from (S,F ,P) to (Q,BQ,PX ).
Put differently, X satisfies the following property:

X−1(B) := {ω ∈ S : X (ω) ∈ B} ∈ F ∀B ∈ BQ (1)

which states that the inverse images of target Borel sets should
be legitimate events. For the present exercise, (R,BR) will
serve as the target space, with BR being the Borel sigma
algebra on R. Uncertainty is inherited from the parent space
to the target space through B = (−∞, x] in (1):

P(X−1(−∞, x]) = PX (−∞, x] = FX (x)

where FX is traditionally termed as the distribution or the law
of X . At times when FX is differentiable, we can equivalently
talk about the probability density function (p.d.f) of X , nota-
tionally, fX (x), with the following understanding:

PX (X ∈ B) =
∫
B
fX (x)dx ∀B ∈ BR

The modeling problem at hand dictates the parametric form
of fX (x). An indiscriminately overused choice is:

fX (x) =
1

σ
√
2π

e−
1
2 (

x−θ
σ

)2 , x > 0. (2)
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which describes the normal (µ, σ 2) distribution. Our sim-
ulation purposes will call for Beta(m, n) and Logit −
normal(µ, σ ) choices of fX (x).
If fX (x) exists, then describing the behavior of X becomes

relatively simple. For instance, one could talk about the aver-
age or the expected value E(X ) of the variable X , through:

E(X ) =
∫
∞

−∞

xfX (x)dx

which quantifies the center of gravity of the probability dis-
tribution and is of pivotal importance to the idea of drift
detection. The variable of variability around the mean is
captured for instance by:

Var(X ) =
∫
∞

−∞

(x − E(X ))2fX (x)dx

an idea largely ignored by some of the methods to follow.
Established techniques often capture a drift in the online
process through the sample average X̄ and properties such
as E(X̄ ) = 1

n

∑n
i=1 E(Xi) and Var(X̄ ) =

1
n2

∑n
i=1 Var(xi) (for

independently and identically distributed variables) will be
useful. Finally, it is intuitively acceptable and mathematically
simple to prove that:

Var(X + a) = Var(X )

the addition of a deterministic constant does not affect the
variance structure of a random variable.

2) TESTING HYPOTHESES AND POWER ANALYSIS
In stark contrast to the more widely used field of statistical
estimation, where coming up with a reasonable guess of
the parameter of interest is of primary importance, modelers
are often confronted with the dilemma of choosing one of
two competing statements, both typically framed in terms of
the target parameter. The one which we would not want to
reject unless there is some compelling evidence against it,
is termed the nullH0, while the other one is the alternativeH1.
Two types of errors naturally abound: falsely rejecting the
null, which is usually of severe consequence, and is termed
Type-I error. Then there is also falsely accepting H0, termed
as Type-II error. Due to the uncertainty inherent in the value
of the parameter, it is not possible to determine whether
one of those two errors actually happened. One can only
attach probabilities to them. Owing to an inverse relationship
between the two types of errors, one usually fixes on the upper
limit on the probability of Type-I error and tries to minimize
the probability of Type-II error.

One of the most prevalent methods to quantify the quality
of a testing procedure is through its power function. This
curve records the probability of making a correct decision
(i.e rejecting the null when it is false) as a function of
changing parameter values. A better test usually manifests
itself through a higher power curve compared to the one con-
structed from an inferior competitor. Such a crucial indicator
is usually available in closed, tractable forms for parametric

densities such as the normal, but in the dearth of such struc-
ture, one has to observe recourse to approximations through
simulations.

The following exercise will offer a case in point: let us
imagine that under the traditional normal sampling where
observations are governed by p.d.f (2), we are interested in
the following testing for large values of the mean when the
population standard deviation σ is known:

H0 : θ = θ0 vs H1 : θ > θ0, (3)

Statistical methods prove that the optimum test will be the
one that rejects H0 in favor of H1 if X̄ > θ0 +

σ
√
nτα

where τα is the upper α point of a N (0, 1) distribution, and
n is the sample size. The probability of rejecting H0 under
θ -sampling, captured by the power function π (θ ) is:

π (θ ) = Pθ (X̄ > θ0 +
σ
√
n
τα) = 1−8(

θ0 − θ

σ/
√
n
+ τα) (4)

where 8(.) represents the ’law’ of the standard normal
deviate. This is shown in Fig. 1 below.

FIGURE 1. Comparison between theoretical and estimated power for a
greater than type alternative under Normal sampling.

The sampling distribution result: X̄ ∼ N (θ, σ
2

n ) under
random draws from (2) is crucial in the derivation and in case
this happens to be unknown to a user, an empirical power
function can be generated through simulations as follows:
With θ0 = 1, σ = 2 and n = 25 for instance, one can simulate
25 vectors, each of a sufficiently large size (say 10000)
from a N (1, 4) density, calculate the average and extract the
95th percentile from this approximate null distribution. This
point should serve as the cutoff θ0 + σ

√
nτα in the formula

above. To empirically estimate the power at some arbitrary θ ,
one can repeat the process with sampling from a N (θ, 4) den-
sity and calculate the proportion of times the means exceed
the cutoff. This follows due to the long term relative fre-
quency interpretation of probability and Fig. 1 assures one of
the closeness to the exact curve. This exercise shouldmotivate
one in certain situations (such as the ones to follow) when the
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closed form power expressions are incalculable or when we
have a realistic, distribution free assumption on the random
draws.

B. HOEFFDING’S BOUND
One of the most celebrated concentration inequalities in the
one due to Hoeffding [20] and several forms of the upper
bound are prevalent in literature. The one that will be most
apt for our purpose can be stated as:
Theorem 1 (Hoeffding’s Inequality): Let X1,X2, . . . ,Xn be

independent random variables such that Xi ∈ [0, 1] almost
surely ∀i = 1, 2, .., n. With X̄ = 1

n

∑n
i=1 Xi and any ε > 0:

P(X̄ − E(X̄ ) ≥ ε) ≤ e−2nε
2

(5)

Authors such as Blanco et al. [7] have exploited this bound
to propose tests on online drift detection. Though its simple
form appeals to many, one can observe that the dispersion
structure containing crucial information about the spread
of the variable has been ignored. This observation, in part,
motivates our proposal.

IV. OUR APPROACH
At the outset, we would like to recall an inequality due to
Bernstein and see how it improves the Hoeffding’s bound.
This improved inequality will eventually pave the way for an
efficient test to be described later. Thus, the present section
will be devoted to a survey of the Bernstein’s bound and of
the problems it may present.

A. INTRODUCTION TO BERNSTEIN’S INEQUALITY
In a way similar to Hoeffding’s several variants of Bernstein’s
inequality can be formulated. The version most pertinent to
our case is:
Theorem 2 (Bernstein’s Inequality): Let Y1,Y2, . . . ,Yn be

mean zero independent random variables with Yi ≤ 1 almost
surely ∀i = 1, 2, .., n. Let σ 2

=
1
n

∑n
i=1 Var(Yi). Then for

any ε > 0:

P(Ȳ ≥ ε) ≤ e
−

nε2

2(σ2+ ε3 ) (6)

Using Yi = Xi−E(Xi), we note that E(Yi) = 0 and Yi ≤ 1 a.s.
Thus the assumptions are satisfied and we additionally have:

Var(Yi) = Var(Xi) (7)

and thus,

σ 2
=

1
n

n∑
i=1

Var(Yi) =
1
n

n∑
i=1

Var(Xi) (8)

In terms of the original variables, we have:

P(X̄ − E(X̄ ) ≥ ε) ≤ e
−

nε2

2(σ2+ ε3 ) (9)

We shall use this form in the analyses to follow.

B. A COMPARISON OF TWO COMPETING INEQUALITIES
In inference, the parameters that we are not interested in
are termed nuisance parameters and their presence often
pose problems for creating confidence intervals or rejection
regions. (6) and (9) above depict such a situation with σ .
Popoviciu’s inequality detailed below, offers an avenue to get
around this issue.
Theorem 3 (Popoviciu’s Inequality): If X is a random vari-

able such that its p.d.f. is supported on [a,b], i.e. if the variable
takes on values in this interval almost surely, then:

Var(X ) ≤
1
4
(b− a)2 (10)

We shall assume that the interval of interest is [0,1]. No gen-
erality is lost this way since an arbitrary compact support can
be converted to [0,1] through adequate rescaling. Bernstein’s
inequality modified through Popoviciu’s is a seemingly logi-
cal competitor to Hoeffding’s bound. The following theorem
creates this modified bound:
Theorem 4 (Popoviciu-Modified Bernstein’s Bound): Let

X1,X2, . . . ,Xn be independent random variables such that
Xi ∈ [0, 1] almost surely ∀i = 1, 2, . . . , n. With X̄ =
1
n

∑n
i=1 Xi and any ε > 0:

P(X̄ − E(X̄ ) ≥ ε) ≤ e
−

nε2

2( 14+
ε
3 ) (11)

Proof:Using (9), we know that under similar conditions,

P(X̄ − E(X̄ ) ≥ ε) ≤ e
−

nε2

2(σ2+ ε3 )

Now using (10) with a = 0, b = 1, we have Var(Xi) ≤ 1
4

whereupon (7) and (8) ensure:

σ 2
≤

1
4

⇒ e
−

nε2

2(σ2+ ε3 ) ≤ e
−

nε2

2( 14+
ε
3 )

as required.
Although this provides for a way to make the bound imple-

mentable, it unfortunately is not sharper than the Hoeffding’s
bound proposed above in (5) as is evidenced by the following
graph (Fig. 2):

The red curves indicate the modified Bernstein’s bounds
remain consistently higher than the black curves representing
the corresponding Hoeffding’s bounds. Hence, in our quest
for non-trivial sharper bounds, we impose the following two
mild assumptions on the distribution generating the X values:
Assumption 1: The p.d.f. is unimodal.
Assumption 2: The p.d.f. is unimodal with mode M .
Usually knowledge about the mechanism being studied

will be enough to check whether these assumptions will go
through in a particular instance. For instance, at a smoke
shop, the distribution of cigarettes bought will certainly not
be unimodal. This is because smoking patterns are rather
different among heavy, moderate and occasional smokers.
On the other hand, error measurements from an industrial
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FIGURE 2. Comparison between Hoeffding’s and Popoviciu-modified
Bernstein’s bound for different sample sizes.

experiment for instance, tend to accumulate around an attrac-
tor, making the assumption of unimodality more realistic.
Under assumption 1 and the overarching assumption of
the variables being bounded on [0,1], Dharmadhikari and
Joag-Dev [13] note that:

Var(Xi) ≤
1
9

(12)

and under assumption 2, that:

Var(Xi) ≤
1−M (1−M )

9
(13)

These two observations will be of pivotal importance in
proposing better bounds on the tail probabilities.
Theorem 5 (Modal Assumption 1-Modified Bernstein’s

Bound): Let X1,X2, . . . ,Xn be independent random variables
such that Xi ∈ [0, 1] almost surely ∀i = 1, 2, . . . , n and
assume that the p.d.f of these variables are unimodal. With
X̄ = 1

n

∑n
i=1 Xi and any ε > 0:

P(X̄ − E(X̄ ) ≥ ε) ≤ e
−

nε2

2( 19+
ε
3 ) (14)

Proof: Similar to Theorem 4.
Theorem 6 (Modal Assumption 2-Modified Bernstein’s

Bound): Let X1,X2, . . . ,Xn be independent random variables
such that Xi ∈ [0, 1] almost surely ∀i = 1, 2, . . . , n and
assume that the p.d.f of these variables are unimodal with
mode M . With X̄ = 1

n

∑n
i=1 Xi and any ε > 0:

P(X̄ − E(X̄ ) ≥ ε) ≤ e
−

nε2

2( 1−M (1−M )
9 +

ε
3 ) (15)

Proof: Similar to Theorem 4.
As our next exercise, wewould like to exhibit the sharpness

of each of the modal assumption modified Bernstein’s bound
with the Hoeffding’s bound through:
Theorem 7 (Sharpness Over the Hoeffding’s Bound): Let

X1,X2, . . . ,Xn be independent random variables such that
Xi ∈ [0, 1] almost surely ∀i = 1, 2, . . . , n and assume that the

FIGURE 3. Comparison between Hoeffding’s and
unimodality (assumption 1)-modified Bernstein’s bound for different
sample sizes.

p.d.f. of these variables are unimodal. With X̄ = 1
n

∑n
i=1 Xi

and any ε ∈ [0, 5
12 ]:

P(X̄ − E(X̄ ) ≥ ε) ≤ e
−

nε2

2( 19+
ε
3 ) ≤ e−2nε

2
(16)

Proof: If we assume e
−

nε2

2( 19+
ε
3 ) ≤ e−2nε

2
, taking loga-

rithms on both sides:

−
nε2

2( 19 +
ε
3 )
≤ −2nε2

⇒ 1 ≥ 4(
1
9
+
ε

3
)

⇒ ε ≤
5
12
= 0.4167

We note that the value 0.4167 is not too strict a limitation
in view of the fact that most prevalent statistical practices
keep the probability bounds at levels such as 0.05 or 0.1.
What follows is a graphical confirmation of the claim above
(Fig. 3).

The limit 0.4167 can be pushed further to the right if one
intends to use assumption 2.
Theorem 8 (Sharpness Over the Hoeffding’s Bound): Let

X1,X2, . . . ,Xn be independent random variables such that
Xi ∈ [0, 1] almost surely ∀i = 1, 2, . . . , n and assume that
the p.d.f. of these variables are unimodal with modeM . With
X̄ = 1

n

∑n
i=1 Xi and any ε ∈ [0, 5

12 +
1
3M (1−M )]:

P(X̄ − E(X̄ ) ≥ ε) ≤ e
−

nε2

2( 1−M (1−M )
9 +

ε
3 ) ≤ e−2nε

2
(17)

Proof: Similar to Theorem 7.
Note that the limit coincides with the one obtained in

Theorem 7 under extreme skewness, i.e when M = 0 or
when M = 1.

V. TEST BASED ON BERNSTEIN’S BOUND
A rigid parametric set of assumptions such as Gaussianity
often pave the way foe tests to capture erratic movements in
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the average or the dispersion structure of an ongoing process.
But unfortunately, such assumptions often prove unrealistic
and far-fetched, which in turn calls for the development of
distribution free tests, along lines similar to the one proposed
by Blanco et al. [7], detailed below:
Theorem 9 (Test Based on Hoeffding’s Inequality,

Blanco et al. [7]): If X1,X2, . . . ,Xn and Y1,Y2, . . . ,Yn are
independent random variables with values in [0,1], then to test

H0 : E(X̄ ) ≤ E(Ȳ ) vs H1 : E(X̄ ) > E(Ȳ ) (18)

the critical region would be X̄ − Ȳ ≥ εα where:

εα =

√
1
n
ln
1
α

(19)

with α being the pre-decided level of significance.
Proof: This can be readily checked using Theorem 1 by

setting Zi = Xi − Yi ∀i = 1(1)n thereby converting a two-
dimensional problem into a one- dimensional form.

Blanco et al. [7] used the region above to propose a limit to
the probability of Type-II error and have generalized this test
to its weighted counterpart. Owing to the sharpness evidenced
in the modal assumptionmodified Bernstein’s inequality over
Hoeffding’s, it stands to reason that a similar test using the
better inequality will generate a better critical region. Such a
realization leads to the following:
Theorem 10 (Test Based on Bernstein’s Inequality):

If X1,X2, . . . ,Xn and Y1,Y2, . . . ,Yn are independent random
variables with values in [0,1], then to test

H0 : E(X̄ ) ≤ E(Ȳ ) vs H1 : E(X̄ ) > E(Ȳ ) (20)

the critical region (stricter than the one shown previously)
can be taken to be X̄ − Ȳ ≥ ε∗α where ε∗α can be solved from
the quadratic:

nε2α −
2
3
εαln(

1
α
)−

2
9
ln(

1
α
) = 0 (21)

Proof: This follows by setting e
−

nεα2

2( 19+
εα
3 )
= α and

solving for α.
Such a critical region would then lead to confidence inter-

vals or bounds on probabilities of misclassification. We shall
however, not dwell on these matters, but rather focus on
formalizing the result above through an algorithm.

A. NON-PARAMETRIC DRIFT DETECTION ALGORITHM
A straightforward approach to the application of the modified
Bernsteins bound to drift detection is presented here. Indeed,
the proposed inequality is not limited to any one particular
algorithm. It can be used in any implementation based on a
statistical test by substituting the test used to detect drift with
the one described above. In this approach, the general idea is
to compare the expected value of two contiguous halves of a
new stream of data such that when their difference exceeds
the threshold determined by Bernsteins bound, we can be
confident that concept drift has appeared and update the
classifier accordingly.

Algorithm 1N-PDDA: Drift Detection Method Based on the
Modified Bernsteins Bound
Input: A stream of x1, x2, x3, . . . where xi ∈ [a, b]∀i.
Parameter: w ∈ (0, 1): fraction of drift detection thresh-
old
used for warning level, αW ∈ (0, 1]: confidence for
warning
level, αD in(0, 1]: confidence for drift level.
Ensure: STATE ∈ STABLE, WARNING, DRIFT
/* variable declarations */
X̄ : mean of values computed from x1 to xn/2
Ȳ : mean of values computed from xn/2+1 to xn
ε∗αD , ε

∗
αW

: critical values used.
for all new xi in stream do
update X̄and Ȳ considering new value xi
calculate ε∗αD , ε

∗
αW

if E(X̄ ) ≤ E(Ȳ ) is rejected at level αD
then
STATE← DRIFT
reset Xand Y
goto "for all"
else
if E(X̄ ) ≤ E(Ȳ ) is rejected at level αW
then
STATE←WARNING
else
STATE← STABLE
end if
end if
end for

Algorithm 1 revolves around three states that describe the
current condition of the data: STABLE, which indicates that
no drift appears to be present, WARNING, when concept
drift may be present, and DRIFT, when we are confident
that concept drift is present. The state is determined by the
previously described statistical test, in which WARNING is
signaled when the difference exceeds a predefined fraction
of the critical value, and DRIFT is signaled when the crit-
ical value is exceeded. The algorithm does not explicitly
address the actions taken as a result of the state, which are
open to implementation. The presence of the intermediary
WARNING state can be used to allow an implementation to
buffer new observed data to train a new classifier. Then, in the
case that concept drift is eventually confirmed via the DRIFT
state, the new classifier can be instated. However, should the
state return to STABLE after having been in WARNING,
we can safely assume a false alarm and discard the buffered
data.

In each iteration corresponding to the presence of a new xi
on stream, the algorithm updates the values of X̄ and Ȳ with
the new data taken into account. The set of values used to
compute each mean together comprise the entire set of new
data processed since concept drift was last detected, such
that each set contains a contiguous half exactly equal in size.
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In other words, X contains values x1 to xn/2 and Y contains
values xn/2+1 to xn. There are implementation-level concerns
involving adjusting the sets and accounting for odd amounts
of data that can be addressed as trivial. Once the means are
updated, we can determine the state of the data by applying
the statistical test. If the difference exceeds the critical value
ε∗α , we have identified concept drift, in which case a new
classifier is installed, all variables are reset, and the algorithm
restarts on a new stream of data. If the difference does not
exceed the critical value but does exceed the warning level,
the WARNING state is instead invoked, possibly prompting
the collection of data and training of a potential replacement
classifier. Barring these events, the state is STABLE.

VI. SIMULATION STUDIES
This section will employ both Hoeffding’s and Bernstein’s
methods on data drawn from parametric distributions such
as Beta and Logitnormal and will attempt to find a winner,
a most efficient method. Such an effort will motivate our real
data analyses to follow. The Beta(m, n) density of the first
kind is given by the following p.d.f.:

f (x|m, n) =
1

B(m, n)
xm−1(1− x)n−1 , x ∈ [0, 1] (22)

where B(m, n) is the usual Beta function given by B(m, n) =
0 (m)0 (n)
0 (m+n) . Methods to simulate observations from this density
exist on softwares such as R which we shall use to draw
samples of varying sizes. Another useful density to look at
will be the Logitnormal (µ, σ ) density given by:

f (x|µ, σ )=
1

σ
√
2π

1
x(x−1)

e−
(logit(x)−µ)2

2σ2 , x∈ [0, 1] (23)

where logit(x) = log x
1−x . The theorems described above can

be used on data coming from either of these distributions
since they are bounded by [0,1].

A. THE SIMULATED DATA SETS
We first re-parametrize the Beta density as Beta(m, n + δ)
with δ serving as the tuning parameter, so that changes in δ
will change the distribution in a recognizable way as depicted
in Fig. 4. It is not hard to show that E(X ) = m

m+n under
Beta(m, n) sampling.

To generate the empirical distributions shown above,
we have heldm and n at 3 and 4 respectively and varied δ over
0,3,6. Higher values of δ thus leads to easier differentiation
between the baseline population (say X , corresponding to
δ = 0) and the alternate population (say, Y ). Almost all
reasonable change detection tools should sound alarms for
large vales of δ, but those that are able to do so even for small
values of δ (i.e. when X and Y samples are extremely similar)
are of course, preferable. The power functions discussed later
will shed the necessary light on this property.

The Logitnormal density does not admit closed form repre-
sentation for itsmean, but changingµ can have a drastic effect
on the skewness structure as shown in the adjoining graph.
So for the power analyses to follow, σ shall be held constant

FIGURE 4. Changes in the empirical distribution with changing δ,
Beta case.

FIGURE 5. Changes in the empirical distribution with changing δ,
Logitnormal case.

at 1 and µ shall change to replicate the different Logitnormal
densities (Fig. 5).

B. POWER COMPARISONS
We can recall that power of a test is the probability of
reaching a correct conclusion, formally defined through
1−Prob(Type−IIerror). This quantity needs to bemaximized
and to get reasonable reliable estimates, we have generated
the X values from a Beta(3, 4) density and the Y values from
Beta (3, 4 + δ) densities with different choices of δ. In view
of the analytical expression for the mean, the original testing:

H0 : E(X̄ ) ≤ E(Ȳ ) vs H1 : E(X̄ ) > E(Ȳ ) (24)

boils down to testing:

H0 : 1+
δ

7
≤ 1 vs H1 : 1+

δ

7
> 1 (25)

Choosing α = 0.05 and different values of the sample size
n, we evaluate the critical region using (21) with simulations
of strength 1000, find the proportion of times the statistic
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FIGURE 6. Power comparison between the two competing processes,
Beta case.

TABLE 1. Summary of data sets.

X̄−Ȳ gets trapped in the critical region. This serves as an esti-
mate of the power. The following graphs record our findings
Figs. 6 and 7:

We can observe that for either case, for every choice of the
sample size, the new method proposed through the modified
version of the Bernstein’s inequality is generating greater
power than the established method using Hoeffding’s bound.
The new power curves are consistently steep even for small
choices of the tuning parameters (synonymous to a difficult
detection), without a taxing necessity for a large sample size.

VII. REAL DATA EXPERIMENT
To follow the simulation studies, this section involves the
application of the proposed drift detection algorithm on
several real-world datasets.1 Six time-series datasets with
sizes ranging from a couple thousand values to over two
million were selected. Fig. 8 displays the time-series plots

1http://archive.ics.uci.edu/ml/datasets/Ozone+Level+Detection
https://datamarket.com/data/set/232a/half-hourly-precipitation-and-stream-
flow-river-hirnant-wales-uk-november-and-december-1972
http://archive.ics.uci.edu/ml/datasets/Air+Quality
http://archive.ics.uci.edu/ml/datasets/Occupancy+Detection
https://datamarket.com/data/set/235a/mean-daily-saugeen-river-flows-jan-
01-1915-to-dec-31-1979
http://archive.ics.uci.edu/ml/datasets/Individual+household
+electric+power+consumption

FIGURE 7. Power comparison between the two competing processes,
Logitnormal case.

FIGURE 8. Time series generated from six different data sets.

of each dataset, and Table 1 contains their basic attributes.
Variations in their appearance and characteristics, as can be
seen, serve to provide a more complete analysis of the effec-
tiveness of the tests. The presence and type of concept drift in
these datasets cannot be determined, but for the purposes of
our experiment it is sufficient to compare the volume of drift
detected by Hoeffdings and modified Bernsteins inequality
tests.

As is apparent, some of these are more volatile compared
to others and not much can be said definitely of the presence
and type of concept drift in the data sets, but the value of
the analysis lies in the comparison of the number of drifts
detected throughout a dataset by the two competing inequal-
ity tests. The results of the experiments can be observed
in Table 2.

It is instantly observable that the Bernsteins inequality
test detected more instances of drift than the Hoeffdings
inequality test for every dataset. In some cases, the differ-
ence is impressively pronounced; for datasets like Occupancy
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TABLE 2. Drift detection.

Detection, the modified Bernsteins inequality proved to be
demonstrably more sensitive in detecting drift. In the stream-
flow datasets (River Hirnant Flow and Saugeen River Flow)
the difference in drifts detected was much smaller. This is
likely attributable to the sharply defined movements seen in
the graphs, which caused both inequality tests to identify
drifts simultaneously. For other datasets with more noise and
less definition, the finer sensitivity of the modified Bernsteins
bound proved to key in on drift that Hoeffdings was unable
to, to tremendous effect. It seems quite conclusive that the
application of the modified Bernsteins inequality presents
a marked improvement over Hoeffdings inequality in drift
detection in real-world data.

VIII. CONCLUSIONS AND FUTURE WORK
Our current work advocates the use of a new technologymod-
ifying an infrequently used concentration inequality termed
Bernstein’s bound through a realistic assumption on uni-
modality to detect drifts in the mean level of an online
process. While established methods such as the ones using
Hoeffding’s inequality ignores the dispersion structure of the
data, our method does not with the interesting consequence
of an improved power function. Real and simulated data
analyses confirm that even small changes in the mean level
will be picked up with a greater degree of reliability. Effi-
cient detection of rare and risky events will be particularly
easier owing to its capability to handle small sample sizes.
Dependence on minimal assumptions such as boundedness
and unimodality will make it amenable to a large variety of
real world situations.

Fruitful work can be done from here from toward differ-
ent avenues of research. Concentration inequalities putting
bounds on the deviation of mean from its expected value
arise with considerable frequency in probabilistic literature.
Bercu et al. [4] for instance, is an excellent source in this
regard. As shown by Zheng [40], under assumptions similar
to ours,

P(X̄ − p > t) ≤ w−n(p+t)(q+ pw−
σ 2(w− 1)2

2w
)n (26)

where

p = E(X̄ ), q = 1− p, pi = E(Xi),

σ 2
=

n∑
i=1

(pi − p)2/n,

A = (q− t)(p−
σ 2

2
), B = −(p+ t)(q+ σ 2),

C =
σ 2

2
(1+ p+ t), w =

−B+
√
B2 − 4AC
2A

or as shown by Krafft and Schmitz [24] using infinite series
expansions:

P(X̄ − µ > t) ≤ e−nL1(t), 0 < t < 1− µ (27)

P(X̄ − µ > t) ≤ e−nL(1/2,t),

0 < t < 1− µ ≤
1
2
or 0 < t <

1
2
− µ (28)

where

L1(t) = 2t2 +
4
9
t4 +

2
9
t6

and

L(1/2, t) = 2t2 +
4
3
t4 +

32
15
t6 +

∞∑
k=4

(2t)2k

2k(2k − 1)
.

Each of these has inherent limitations: in the first instance,
for example, the right hand bound is itself a function of the
parameter of interest. In the second, apart from the forbidding
numerical computations, the upper bound is split up into
ranges which might pose considerable hindrances to real
applications. However, if methods can be devised to circum-
navigate these (for instance, through dynamically changing
estimates on the right hand side of (26)), then it would be
interesting to compare the power functions to the one we have
got here.

That apart, a generalized weighted version of the method
using the McDiarmid [27] approach can be formulated along
lines similar to Blanco et al. [7] where recent observations
will carry more weight towards detecting a change. Similar
ideas can be extended to the context of checking drifts in the
variance structure. For the time being however, it is hoped
that the significant improvement in power will encourage data
modelers to adopt the new methodology and generate fruitful
research along the veins suggested and detailed above.
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