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ABSTRACT This paper examines the uniform parallel-machine scheduling problem in which the objective
aims to minimize the total resource consumption (TRC) with a bounded makespan. A matheuristic is pro-
posed to deal with this strongly NP-hard problem. The performance of the proposed matheuristic is compared
with that of the state-of-the-art particle swarm optimization (PSO) meta-heuristic and the lower bound (LB)
of TRC on a set of benchmark instances. Computational results show that the proposed matheuristic
significantly outperforms the PSO meta-heuristic and its solution is very close to the tight LB. Given
the critical need for environmental protection, this paper provides an effective and efficient algorithm for
diminishing the gap between the theoretical progress of scheduling and the practical need for environmental
protection.

INDEX TERMS Operations research, scheduling algorithm, parallel machines, total resource consumption.

I. INTRODUCTION

The parallel-machine scheduling problem (PMSP) is com-
monly encountered in the machinery, electronics, textiles,
transportation, telecommunications, pharmaceuticals, chemi-
cals and service industries [1]. Since the first relevant study by
McNaughton [2], various PMSPs have attracted continuing
interest among researchers. Based on the characteristics of
parallel machines, a classical parallel-machine system (PMS)
can be categorized as identical, uniform, or unrelated [3].
In an identical PMS, jobs can be processed on any one
machine with the same speed factors; in an uniform PMS,
jobs can be processed on any one machine with different
speed factors, which are in fixed ratios with each other; while
in an unrelated PMS, each job can be processed on some
specific but not all machines with different speed factors,
which are not in fixed ratios with each other. This paper
focuses on minimizing the total resource consumption (TRC)
with a bounded makespan (i.e., maximum completion
time) in a particular uniform parallel-machine scheduling
problem (UPMSP).

The uniform PMS typically arises when factories buy
new machines but retain slower and older machines. Owing
to its academic and industrial importance, the UPMSP has
been extensively investigated in recent decades. Regarding
the exact methods, Bulfin and Parker [4] made a variety
of modifications to uniform and unrelated PMSPs with two
processors to minimize the makespan. Their experimental
results showed that relatively large problems can always be
handled routinely. Panneerselvam and Kanagalingam [5] pro-
posed a mathematical model for solving the UPMSP while
minimizing the makespan, and discussed industrial applica-
tions of such a scheduling problem. Azizoglu and Kirca [6]
presented a branch-and-bound method aiming at minimizing
total weighted flow time in the identical PMSP, and extended
the algorithm to the UPMSP. Liao and Lin [7] studied the two-
machine UPMSP, the objective is to minimize the makespan.
They transformed the UPMSP into a special identical PMSP
and then proposed an exact algorithm to solve it optimally.
In spite of the fact that the proposed exact algorithm had an
exponential time complexity, it is guaranteed to obtain the
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optimal schedules in large test instances within a short com-
putational time. Subsequently, Lin and Liao [8] developed
two theorems to minimize the makespan in the UPMSP. They
developed an approach with exponential time complexity,
incorporating the two theorems, for effectively finding the
optimal solution. Lin [9] proposed several linear program-
ming (LP) formulations and heuristic algorithms for solving
UPMSPs with identical jobs while minimizing several perfor-
mance measures. The proposed LP models provided insights
into the structures of the studied problems and yielded opti-
mal schedules with a speed and efficiency that were required
to satisfy practical requirements.

Zou et al. [10] studied several UPMSPs in which the pro-
cessing times of jobs increased with their starting times. The
objective was to minimize the total load on all machines and
the total completion time of all jobs. They showed that these
UPMSPs to be solvable in polynomial-time while the increas-
ing rates of processing times were identical for all jobs.
Zhang and Luo [11] considered the UPMSP, in which the
processing time of a job increased with its starting time and
jobs could be rejected via giving penalties. They presented
an approximation scheme for minimizing the delivery time
of all jobs. In view of the fact that most non-preemptive
UPMSPs with more than two machines are strongly
NP-hard [1], finding optimal solutions to large problems,
in particular, is a challenge for researchers and practitioners.
For practical purposes, most researchers inevitably develop
heuristic algorithms trying to find a near-optimum in polyno-
mial time.

Two categories of heuristic algorithms - constructive
heuristics and improvement heuristics - exist for solv-
ing UPMSPs. With respect to constructive heuristics,
Friesen and Langston [12] examined the UPMSP and proved
the worst-case bound on the makespan of a multifit heuris-
tic algorithm is within 1.4 times of the optimal solution.
Dobson [13] presented a worst-case bound with respect to
the makespan of the longest processing time (LPT) rule that
is applied to the UPMSP. He derived tight bounds for the
ratio of the solution obtained by the LPT rule to the optimum.
Friesen [14] further proved that the worst-case bound that was
obtained by the LPT rule for solving this problem was in the
interval (1.52, 1.67). Chen [15] evaluated the performance of
LPT rule for the same problem under different ratios of the
fastest speed to the slowest speed of the system, and presented
a worst-case analysis. Mireault et al. [16] dealt with the
UPMSP to minimize the makespan when sequencing inde-
pendent tasks on two machines, and computed the maximum
relative error of the LPT rule. Burkard and He [17] combined
the multifit heuristic with LPT rule in an incumbent algo-
rithm to solve the same problem, and presented a very tight
worst-case bound. Koulamas and Kyparisis [18] extended the
EDD rule to solve the UPMSP with the objective of mini-
mize the maximum lateness, which can yield a near-optimal
solution.

Many improvement heuristics have been proposed to
solve the strongly NP-hard UPMSPs more completely and
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effectively. De and Morton [19] developed an algorithm
for solving both identical and uniform PMSPs. Experimen-
tal results revealed that the makespan values that were
obtained by their heuristics for solving identical and uni-
form PMSPs are within 1.3% and 5%, respectively, of the
best solutions that were obtained using a truncated branch-
and-bound procedure. Bulfin and Parker [4] presented a
heuristic scheme for solving PMSPs with two identical, uni-
form, and unrelated processors and precedence constraints
to minimize the makespan. Their computational experiments
revealed that relatively large problems could be handled rou-
tinely. Hochbaum and Shmoys [20] used the dual approxi-
mation approach to present a family of polynomial approx-
imation scheme to minimize makespan in UPMSPs such
that the suboptimal solution had an error relative to the
optimum that was less than that obtained by previously
developed algorithms. Burkard et al. [21] presented a lin-
ear compound algorithm to minimize makespan on two-
machine UPMSPs, which had a worst-case bound of 7/6.
Panneerselvam and Kanagalingam [5] presented an algo-
rithm for solving the makespan minimization UPMSP with
two processors. Koulamas and Kyparisis [22] developed a
heuristic for minimizing the makespan in the UPMSP with
specified release times, and presented a worst-case bound for
the proposed algorithm.

Agarwal et al. [23] proposed 12 combinations of single-
pass heuristics in conjunction with augmented-neural-
network (AugNN) formulations for solving UPMSPs,
in which the objective was to minimize the makespan.
The computational results demonstrated that AugNN
considerably improved upon single-pass heuristics. devel-
oped an evolutionary algorithm (EA) and a genetic algo-
rithm (GA), respectively, for minimizing the makespan in
the UPMSP. The analytical results revealed that the proposed
algorithms outperformed other compared meta-heuristics,
including particle swarm optimization (PSO), simu-
lated annealing (SA), multi-objective evolutionary algo-
rithm (MOEA), and another GA. Li and Cheng [24] presented
a robust variable neighborhood search (RVNS) algorithm to
solve the UPMSP with release dates. The effectiveness of the
proposed RVNS algorithm was proven in a computational
experiment that was performed on 2000 random instances.
Elvikis et al. [25] dealt with a two-agent UPMSP that
involved sequencing two jobs, each of which required multi-
ple operations to minimize the makespan and cost functions.
They provided special properties of the strict Pareto optima
set, and polynomial-time algorithms for finding that set.
Senthilkumar and Narayanan [26] developed three variations
of the SA meta-heuristic to solve the same problem. They
compared them using ANOVA and found that no significant
differences between the three variations.

Senthilkumar and Narayanan [27] also presented four
GA-based meta-heuristics that involved various combina-
tions of crossover methods to minimize the makespan on
the UPMSP. The computational results showed that the
GA-based meta-heuristic with single point crossover method
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outperformed other compared meta-heuristics. Lee et al. [28]
proposed PSO and GA meta-heuristics for minimizing the
makespan in the UPMSP. The computational results in var-
ious scenarios revealed that PSO outperformed GA, which
was therefore recommended. Lin [29] studied the UPMSP
of scheduling identical jobs on machines with position-
based learning effects to minimize the total weighted com-
pletion time, total tardiness, total weighted tardiness, and
maximum lateness, respectively. Their computational results
demonstrated that formulating these problems as assignment
problems was more efficient than formulating them as lin-
ear programming models. The comprehensive review by
Senthilkumar and Narayanan [30] presents more on related
theoretical and practical advances, and discussed 17 classes
of UPMSPs. An overview of the literature revealed that most
studies of UPMSPs assumed that the required resources for
processes were unconstrained, at odds with the fact that
resources were always limited in practice.

Although various UPMSPs have been extensively investi-
gated in the past decades, the consumption of resources has
seldom been considered. As increasing emphasis is being
placed on environmental protection, Ji et al. [31] recently
introduced a UPMSP whose objective was to minimize the
TRC with a bounded makespan. Using the regular 3-tuple
notation of Graham et al. [32], this UPMSP can be spec-
ified as Q|Cmax < C|TRC Ji et al. [31] proved that the
O|Chax < c |TRC problem was NP-hard in the strong
sense, and then derived a very tight lower bound (LB) and
developed a PSO meta-heuristic for solving it. Their exper-
imental results revealed that the PSO meta-heuristic per-
formed extremely well with a maximum average relative error
rate (RER) of 0.811% compared with the LB among all tested
cases. Ji et al. [31] has tried to encourage more research on
scheduling problems in the field of environmental protection.
In spite of its importance, the Q|Cpax < C |TRC problem has
so far received only little research attention.

To reduce the gap between theoretical progress of schedul-
ing and the practical need for environmental protection, this
work proposes a matheuristic for solving the Q|Cpax =<
c |TRC problem. To the best of our knowledge, this study
is the first to propose a matheuristic for solving resource-
dependent scheduling problems. The rest of this paper
is organized as follows. Section 2 formally defines the
O|Cmax < CITRC problem. Section 3 describes in detail
the proposed matheuristic. Using a benchmark problem
sets, Section 4 evaluates the performance of the proposed
matheuristic by comparing it with that of the PSO meta-
heuristic. Section 5 provides conclusions and suggests direc-
tions for future research.

Il. PROBLEM FORMULATION

To formulate the Q|Cmax < é|TRC problem of interest
herein, consider a set of n jobs ¥ = {J1,J2,...,J,} to be
processed on a set of m uniform parallel-machines M =
{U1, Uy, ..., Uy} that are functionally equivalent but differ
in terms of processing speed. Each job J; € ¥ requires a
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single operation on either of the machines with a processing
time p; = p;/v; that depends on the absolute processing
time p; of job J; and the processing speed v; of machine
U; to which it is assigned. Moreover, processing jobs on
machine U; consumes §; (i = 1, ..., m) of resources per unit
time; these resources may be water, electricity usage, or a
carbon emission equivalent. Given the above definitions,
the objective is to get a schedule I1 = {m,m2, ..., Ty}
for the n jobs that minimizes the TRC without violating the
constraint that all the jobs must be completed before a bound
on the makespan (é): Cmax = maxi<j<p{C;} < C‘, where
m (k = 1,2,...,m) is the sequence of jobs on machine
Uk, and C; represents the completion time of job J;. Notably,
any job that cannot be completed before c using the m
uniform parallel machines is processed on a set of outsourc-
ing machines with higher resource consumption rates. If the
outsourcing machines are assumed to be identical, then the
problem can be reduced to one with a single outsourcing
machine U,,+1, which consumes f,,41 of resources per unit
time. This machine is not subject to the constraint that all of
the jobs that are assigned to it must be completed before C.

The Q|Cpax < C |TRC problem that is considered herein

satisfies the following basic assumptions.

o The number of machines, the number of jobs, the bound
on the makespan, the processing times, and the resources
consumed by the jobs are given by deterministic non-
negative integers.

o All jobs are prepared for processing at the start of
the scheduling horizon, and no precedence constraints
among the jobs are imposed.

« Every machine is persistently available for work when-
ever required, and can process just one job at a time.

o The number of jobs is more than the number of machines
to eliminate trivial cases.

o The setup times are sequence independent, and have
been integrated in the processing times of those jobs.

« Each job has to be processed without preemption on its
assigned machine.

IlIl. PROPOSED MATHEURISTIC

The proposed matheuristic comprises three phases. In the first
phase, a simple heuristic rapidly yields an initial solution to
the O|Crax < C |TRC problem. In the second phase, the ini-
tial solution is improved using the SA algorithm to yield a
better solution. At last, in the third phase, the obtained better
solution is set as the initial feasible solution and the upper
bound (UB) of the proposed MILP model of the Q|Cpax <
C |TRC problem. Then, the MILP model is solved using
the Gurobi optimizer to find an optimal solution. The three
phases of the proposed matheuristic are described in detail as
follows.

A. PHASE I: USING SIMPLE HEURISTIC TO FIND

AN INITIAL SOLUTION

The basic idea of the proposed simple heuristic is to exploit
machines with smaller 8;/v; values as much as possible. Sup-
pose that machines have been sorted according the increasing
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Procedure Local_Search (I11,)

Begin
for(j=Lj<n-1;i++){
for(k=j+1 k<mk++){

If (jth job and kth job are not processed in the same machine) {
I1, = solution obtained by exchange the jthand kth jobs of T1,;

temp
If (TRC(T1
I, =11
}
H

H
}

return I ;

) <TRC(I1,)) {

temp

temp

End

FIGURE 1. The procedure of the local search.

order of the value §;/v;; the initial solution is then generated
using the simple heuristic as follows.

Step 1. Arrange the jobs in ascending order of their process-
ing times;

Step 2. Set the starting time of each machine ST; = 0(Vi);

Step 3. Find the unscheduled job j with the shortest process-
ing time;

Step 4. Assign jobs j to machine i, where i is the smallest
machine index that satisfies (S7; + pi/vi) < C ;

Step 5. Update the starting time of machine i by adding p;/v;
to 1t;

Step 6. If all jobs have been scheduled, then terminate the
assignment procedure; Else go to Step 3;

Step 7. Use the pairwise interchange local search (presented
in Fig. 1) to improve the obtained initial solution
ITp. Notably, the local search is designed to find as
many feasible neighborhood solutions as possible
within the specified period. All infeasible solutions
found by the local search will be discarded. Since
exchanging the jobs that are processed in the same
machine does not improve the solution quality, such
cases are not considered.

B. PHASE II: APPLYING THE SA HEURISTIC TO

IMPROVE THE INITIAL SOLUTION

In phase II of the proposed metheuristic, an SA algorithm
is used to improve the initial solution ITj to obtain a better
solution. Figure 2 presents the steps for implementing the
proposed SA algorithm. Given the initial solution [T, the ini-
tial temperature 7, the maximum number of iterations at a
specific temperature I, the rate of decrease of tempera-
ture «, and the maximum permitted number of successive
temperature reductions without the improvement of the

15794

incumbent solution, Nyon—improvement» the proposed SA algo-
rithm initializes the temperature T,, the number of temper-
ature reductions N, the incumbent solution IT, and the best
solution ITpest. In each iteration, a new solution I, is
obtained from the incumbent solution IT by randomly select-
ing and swapping two jobs in I1. Let A = TRC(ITpew) —
TRC(I1); if A < 0, then the incumbent solution IT is replaced
by the new solution I1,,,,; otherwise, the probability of substi-
tuting IT with IT,,,, is e(~2/7¢) Replacement is performed by
generating a random number, r, from a uniform distribution
U(0,1) and replacing IT with IT,,,, if r < e(=2/T¢)_ The cur-
rent temperature 7, is decreased after I, iterations from the
preceding reduce, along with the formula 7, = «T,, where
0 < a < 1. If the current best solution is not recovered in
Nron—improvemen: cONsecutive temperature reductions, then the
process is terminated. Upon termination, the (near-) optimal
solution ITpege With its penalty cost TRC (ITyeg;) are output.

C. PHASE IlI: OPTIMALLY SOLVING THE MILP MODEL
Let x;; be a binary variable that equals 1 if job J; is assigned to
machine Uj;, and 0 otherwise. The Q|Cnax < C|TRC problem

that is considered herein can be formulated as an MILP model
Jiet al. [31] as follows.
The objective function is as follows.

L. n m+1
Minimize TRC = Zj: ' Zi:] Bixiip;/vi
The constraints are,

m+1 .

24 -xl'j = 17 Vj’
i=1
n A

Y xpi/vi<Co Vi
J:

x; € {0, 1}, Vi,j.
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Procedure Simulated _Annealing (11,1 ,1,,,.,c, N,

on—improving )

Setting the parameters 7, =7,; N =0; 1 =11, ; T, =11;;

WHILE (N < N,

non-improvement ) {

FOR (I=L;I<1,,;I++) {

iter>

Generate a new solution IT, ., from I1 by swapping two randomly selected jobs;

A=TRC(I1,,,)—TRC(IT);
IF(A<0), THEN =11 ;
ELSE {

r =random U(0,1);
IF (r<e""%)) THEN IT=11

new °

} IF (TRC(IT) < TRC (I, ) {
e =11;
N=0;
}
H
I,=al,;
N=N+1;

}
Return I, and TRC(IT,)

FIGURE 2. The procedure of the SA algorithm.

The objective function (1) is to minimize the TRC. Con-
straint set (1) specifies that each job is assigned to exactly
one machine. Constraint set (1) ensures that all jobs must be
completed before the bound on the makespan C. Constraint
set (4) defines the binary variables.

To shrink the solution space and solve the MILP model
more efficiently, the solution that is obtained by the
SA algorithm is set as the initial feasible solution and the UB
of the model. Then, by using Gurobi (version 7.0), a (near-)
optimal solution can be obtained within a predefined maximal
computing time. This advantage is significant, especially for
large-scale Q|Cpax < c |TRC problems.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This section describes the details of the benchmark problem
set of Ji et al. [31], the execution environment, the param-
eter selection and the computational results of the proposed
matheuristic are compared to those of the PSO meta-heuristic,
and the LBs of the optimal solutions [31] are discussed.

A. TEST PROBLEMS

In this study, the well-known Ji et al. [31] benchmark problem
instances were employed for the performance evaluation. The
benchmark problem set of Ji et al. [31] has three data sets.
In the first data set, 2400 problems with 11 jobs — a fixed
small number - are generated as follows. The number of
machines (m) is set to two values, m € {2, 3}. The resources
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consumed per unit time by machine U;, ; (i = 1, ..., m), and
the processing speed of machine U;, v; (i = 1,...,m), are
created from uniform distributions U(1, 5) and U(1, 10). The
speed and resource consumed per unit time of the outsourcing
machine are set to 1 and 100, respectively. The processing
times (p;) are created from discrete uniform distributions
U(1, 100), U(100, 200), and U(100, 800). The bound on the
makespan (é’) is created from a discrete uniform distribu-
tion UCY_'_; pj/ D iz Vi-)_j—1 j/m). For each combination
of parameters, 100 test instances are generated. Therefore,
24 (2 x 2 x 2 x 3) combinations of parameters are used,
yielding a total of 2400 test instances in the first data set of
the computational experiment.

In the second data set of the experiment, 2000 problems
with a large number of jobs are created as follows. The
number of machines m € {10, 20, 30, 40, 50}. The number
of jobs n € {100,200, 500, 1000}. The processing times
are created from a discrete uniform distribution U(1,100).
The resource consumed per unit time by machine U;, B;
(i = 1,...,m), and the processing speed of machine Uj,
vi i = 1,...,m), are created from a uniform distribution
U(l1, 5). The speed and resource consumed per unit time of
the outsourcing machine are set to 1 and 100, respectively.
The value of C is created from a discrete uniform distribu-
tion UG L, pj/ Y_ity vis 2y pj/m). For each combination
of parameters, 100 test instances are generated. As a result,
20 (4 x 5) combinations of parameters are considered,
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TABLE 1. The solution quality of proposed matheuristic on test problems with a small number of jobs.

(PSO-LB)/LB (PSO-OPT)/OPT Phase I* Phase IT* Phase III* Opt
m B v P Mean Max Mean Max Mean Max Mean Max Mean Max
2 U5 U@d5  U(1,100) 0.00045 0.01731 0.00000 0.00000 0.00685 0.44352 0.00000 0.00000 0.00000 0.00000 100
2 U((,5) U(5) U((100,200) 0.00081 0.04387 0.00000 0.00000 1.38000 0.52087 0.00000 0.00000 0.00000 0.00000 100
2 U5  U(L5) U((100,800) 0.00106 0.03447 0.00001 0.00070 1.38000 0.15534 0.00000 0.00000 0.00000 0.00000 100
2 U((,5) U((1,10)0 U(1,100) 0.00082 0.03664 0.00000 0.00000 1.24000 0.09217 0.00000 0.00000 0.00000 0.00000 100
2 U((1,5) U(1,10) U(100,200) 0.00120 0.09440 0.00000 0.00000 1.18000 0.10280 0.00000 0.00000 0.00000 0.00000 100
2 U(,5) U(1,10) U(100,800) 0.00026 0.01367 0.00000 0.00000 1.19000 0.02953 0.00000 0.00000 0.00000 0.00000 100
2 U(1,100  U(L5) U(1,100) 0.00154 0.05248 0.00000 0.00000 1.45000 0.05782 0.00000 0.00000 0.00000 0.00000 100
2 U(1,10)  U(1,5) U(100,200) 0.00483 0.15461 0.00000 0.00000 1.47000 0.89213 0.00000 0.00000 0.00000 0.00000 100
2 U(1,10)  U(L5) U((100,800) 0.00138 0.03587 0.00000 0.00000 1.49000 0.10654 0.00000 0.00000 0.00000 0.00000 100
2 U(1,10) U(1,10) U(1,100) 0.00102 0.04420 0.00000 0.00000 1.13131 0.10009 0.00000 0.00000 0.00000 0.00000 100
2 U(1,10) U(1,10) U(100,200) 0.00129 0.08205 0.00000 0.00000 1.22000 0.09539 0.00000 0.00000 0.00000 0.00000 100
2 U(1,10) U(1,10) U(100,800) 0.00236 0.14808 0.00000 0.00000 1.22000 0.08431 0.00000 0.00000 0.00000 0.00000 100
3 U(LS)  U(L5) U(,100) 0.00174 0.04802 0.00000 0.00000 1.97000 0.19799 0.00001 0.00146 0.00000 0.00000 100
3 U5  U(L5) U((100,200) 0.00323 0.05238 0.00000 0.00000 1.89000 1.12330 0.00000 0.00005 0.00000 0.00000 100
3 U(LS)  U(L5) U(100,800) 0.00172 0.05199 0.00000 0.00000 1.91000 0.26693 0.00000 0.00006 0.00000 0.00000 100
3 U5 U(,10) U(1,100) 0.00175 0.10261 0.00000 0.00000 1.29293 0.98867 0.00000 0.00000 0.00000 0.00000 100
3 U(L5) U(1,10) U(100,200) 0.00160 0.04378 0.00000 0.00000 1.41000 0.34155 0.00000 0.00000 0.00000 0.00000 100
3 U5 U(1,10) U(100,800) 0.00039 0.01371 0.00000 0.00000 1.34000 0.14578 0.00000 0.00000 0.00000 0.00000 100
3 U(1,100  U(L5) U(1,100) 0.00228 0.06410 0.00000 0.00035 1.95000 0.10086 0.00000 0.00023 0.00000 0.00000 100
3 U(1,100  U(L,5) U((100,200) 0.00887 0.21462 0.00000 0.00000 1.95960 0.68869 0.00000 0.00000 0.00000 0.00000 100
3 U(1,10)0  U(L,5) U((100,800) 0.00256 0.10428 0.00000 0.00017 1.85000 0.18096 0.00000 0.00000 0.00000 0.00000 100
3 U(1,100 U(1,10)  U(1,100) 0.00077 0.02428 0.00000 0.00000 1.41000 0.03765 0.00000 0.00009 0.00000 0.00000 100
3 U(1,10) U(1,10) U(100,200) 0.00460 0.12219 0.00000 0.00000 1.43000 1.19601 0.00000 0.00000 0.00000 0.00000 100
3 U(1,10) U(1,10) U(100,800) 0.00191 0.04345 0.00000 0.00000 1.39000 0.05617 0.00000 0.00000 0.00000 0.00000 100

Phase I* denotes the objective function value of the initial solutions.
Phase IT* denotes the objective function value obtained by the SA.
Phase III* denotes the objective function value obtained by the MILP.

yielding a total of 2000 problems in the second data set of
the computational experiment.

The third data set of the experiment clarifies the change
in resource consumption with the value of C. The test
instances are created using n = 100,m = 5, and C =

03y pj/m)(b/100), where b = 1,2, ...,100 denotes the

makespan budget. The processing times (p;) are created from
discrete uniform distributions U(1, 100). The resource con-
sumed per unit time of machine U;, 8; (i = 1,...,m), and
the processing speed of machine U;, v; i = 1,...,m), are
created from continuous uniform distributions U(1, 5). The
speed and resource consumed per unit time of the outsourcing
machine are set to 1 and 5, respectively. For each value of the
parameter b, 20 instances are randomly generated, yielding a
total of 2000 (20 x 100) problems in the third data set of the
experiment.

B. EXECUTION ENVIRONMENT AND

PARAMETER SELECTION

The algorithm is coded in C and run on a PC with a 2.66GHz
Intel Core2 Quad CPU Q9400 and 4 GB RAM, running
Windows 10. Since the parameter settings may influence
the results, the following parameter values are used to test
the proposed SA algorithm; Tp = {5000, 10000, 15000,
20000};e¢ = {0.80, 0.85, 0.90, 0.95}; Ii.r = {500, 1000,
1500, 2000}; Nyon—improvement = {5, 10, 15, 20}. Based on
pilot tests, the parameter values of the proposed SA algorithm
were set to Tp = 10000, « = 0.90, Ij;., = 1000 and
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Nuon—improvemens = 20. The maximal computational time is
set to 10 s, including all the times for all computations in the
three phases.

C. RESULTS AND DISCUSSION
Table 1 presents the results of the computations that were
performed on the first data set. Columns 1 to 4 represent
the different combinations of parameters. Columns 5 and
6 present the mean and maximum relative percentage devi-
ations, calculated as (PSO—LB)/LB, for each combination
of parameters, while columns 7 and 8 present the mean
and maximum relative percentage deviations, calculated as
(PSO—OPT)/OPT, for each combination of parameters. The
LB was obtained by Ji et al. [31], and OPT is the opti-
mal solution that was obtained using MILP. Columns 9-10,
11-12, and 13-14 present the mean and maximum relative
percentage deviations, calculated as (Phase 1—OPT)/OPT,
(Phase 2—OPT)/OPT, and (Phase 3—OPT)/OPT, for the first,
second, and third phases, respectively. Table 1 reveals that the
solutions that are obtained in Phase II almost equal those of
PSO meta-heuristic. The final column presents the number of
optimal solutions that are getting by the proposed matheuris-
tic. As revealed in Table 1, the proposed matheuristic yields
optimal solutions to all test problems with a small number of
jobs.

Table 2 presents the quality of the solutions to the test
problems with a large number of jobs that are obtained
by PSO and the three phases of the proposed matheuristic.
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TABLE 2. The solution quality of the proposed matheuristic on test problems with a large number of jobs.

(PSO-LB)/LB (Phase I-LB)/LB (Phase II-LB)/LB (Phase I1I-LB)/LB
m n Mean Max Mean Max Mean Max Mean Max

10 100  0.00039 0.00607  0.00047 0.00474  0.00045 0.00474  0.00031* 0.00338
10 200 0.00012 0.00123  0.00012 0.00099  0.00012 0.00099 0.00011 0.00099
10 500 0.00006 0.00039  0.00006 0.00039  0.00006 0.00039 0.00006 0.00039
10 1000 0.00002 0.00016  0.00002 0.00016 ~ 0.00002 0.00016  0.00002 0.00016

20 100 0.001050.02093  0.00096 0.01114  0.00096 0.01114  0.00059 0.00661
20 200 0.00042 0.00602  0.00036 0.00498  0.00036 0.00498  0.00031 0.00303
20 500 0.00010 0.00061  0.00010 0.00052  0.00010 0.00052 0.00010 0.00052
20 1000 0.00005 0.00034  0.00006 0.00048  0.00006 0.00048 0.00005 0.00034

30 100 0.00272 0.02630  0.00183 0.01397  0.00183 0.01397  0.00123 0.01057
30 200 0.00068 0.00744  0.00046 0.00338  0.00046 0.00338 0.00041 0.00322
30 500 0.00020 0.00229  0.00018 0.00152  0.00018 0.00152  0.00018 0.00152
30 1000 0.00008 0.00063  0.00008 0.00063  0.00008 0.00063 0.00008 0.00063

40 100 0.008110.10570  0.00290 0.02142  0.00290 0.02142 0.00218 0.02048
40 200 0.001310.02232  0.00071 0.00609  0.00071 0.00609 0.00062 0.00571
40 500 0.00025 0.00246  0.00022 0.00155  0.00022 0.00155 0.00021 0.00155
40 1000 0.00010 0.00070  0.00010 0.00064  0.00010 0.00064 0.00010 0.00064

50 100 0.00766 0.16308  0.00264 0.01669  0.00264 0.01669 0.00220 0.01669
50 200 0.00190 0.03298  0.00090 0.00964  0.00090 0.00964 0.00082 0.00919
50 500 0.00044 0.00463  0.00033 0.00254  0.00033 0.00254  0.00032 0.00254
50 1000 0.00016 0.00205 0.00016 0.00177  0.00016 0.00177 0.00016 0.00177

*Bold value denotes the RPD is better than that of PSO.

TABLE 3. The computing time of the proposed matheuristic on test problems with a large number of jobs.

PSO Phase | Phase 11 Phase III
m n Mean Max Mean Max Mean Max Mean Max

10 100 0.83945 0.98300 0.02304 0.08600 0.08389 0.19300 0.19241 5.07600
10 200 1.75046 1.95000 0.02234 0.07400 0.15128 0.30400 0.17059 0.80100
10 500 4.88774 5.44400 0.03827 0.06000 0.35673 0.71600  0.36948 0.65300
10 1000 10.45724 11.56000 0.06788 0.09900 0.71485 1.34500  0.73036 1.07900

20 100 0.93510 1.10800 0.01788 0.05000 0.08130 0.11200 0.97615 5.15900
20 200 2.00901 2.41800 0.02529 0.09300 0.13309 0.18700 0.46643 2.60800
20 500 5.37611 6.20900 0.04272 0.09300 0.28669 0.31200  0.82333 1.78700
20 1000 11.70929 13.93100 0.06782 0.10900 0.56549 0.57800 1.66132 3.82100

30 100 1.03490 1.34200 0.01587 0.04600 0.07043 0.09300  2.26340 5.28300
30 200 2.17865 2.80800 0.02423 0.04700 0.14387 0.21900  1.19916 5.39900
30 500 6.02144 7.31600 0.04450 0.06200 0.34731 0.43900  1.43908 5.68100
30 1000 12.64781 15.86600 0.07116 0.10900 0.66055 0.85800  2.43954 4.99700

40 100 1.15531 1.52900 0.01851 0.04600 0.09288 0.12500  3.59384 5.24900
40 200 2.38855 3.18300 0.02681 0.07800 0.13358 0.21800  2.07156 5.53000
40 500 6.54459 8.51800 0.05343 0.07800 0.29199 0.31200 2.45620 6.06300
40 1000 13.74363 18.34500 0.08830 0.12400 0.58361 0.84300  3.49927 7.11800

50 100 1.21654 1.65400 0.02187 0.04600 0.09511 0.12500  4.58622 5.41100
50 200 2.63671 3.49500 0.03295 0.04600 0.16892 0.23400  3.30239 5.63000
50 500 6.99731 9.68800 0.04773 0.09300 0.36981 0.48400  3.22061 6.22800
50 1000 14.76697 19.81200 0.08166 0.10900  0.57025 0.59300  4.73032 7.45400

Columns 1 and 2 in Table 2 present the number of machines percentage deviations, calculated as (PSO—LB)/LB, for
and the number of jobs for various combinations of parame- each combination of m and n. Columns 5-6, Columns 7-8,
ters. Columns 3-4 present the mean and the maximum relative and Columns 9-10 provide corresponding information for
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solutions that were obtained in Phase 1, Phase 2, and Phase3,
respectively. As revealed in Table 2, all of the solutions that
were obtained in the three phases are better or equal than
those obtained using PSO and very close to the tight LB.

Table 3 presents the computational time (in seconds) of
PSO and the three phases of the proposed matheuristic for the
test problems with a large number of jobs. Columns 1 and 2 in
Table 3 present the numbers of machines and jobs for various
combinations of parameters. Columns 3-4 present the mean
and maximum computational times, obtained by PSO, for
each combination of m and n. Columns 5-6, Columns 7-8, and
Columns 9-10 present corresponding information obtained
in Phase 1, Phase 2, and Phase3, respectively. As revealed
in Table 3, the average computational times of the three
phases of the proposed matheuristic are all shorter than that
of PSO. In summary, Phase I, Phase II, and Phase III of
the proposed matheuristic find solutions better than those
found by PSO and is close to the tight LB, in less compu-
tational time. The computational efficiencies could not be
directly compared because it vary with the hardware, software
and programming skill. However, the average computational
times, presented in Table 3, demonstrated that the proposed
matheuristic outperformed the PSO meta-heuristic within a
reasonable computing time.
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FIGURE 3. The resource consumption versus the bound of makespan.

Figures 3 and 4 present the computational results obtained
using the third data set. Figure 3 plots b versus the TRC,
while Fig. 4 plots b versus computational time. As shown
in Fig. 3, the total resource consumption decreased with b
when PSO, Phase I, Phase II, or Phase III is used to solve
the problem. Since a larger b represents a larger makespan
budget, a more efficient machine can process more jobs,
yielding a lower value of the total resource consumption. This
result is in agreement with the findings of Ji et al. [31]. The
TRC that is used by Phase I, Phase II, or Phase III of the
proposed matheuristic is slightly lower than that used by PSO.
Figure 4 reveals that the computational time that is required
for the PSO meta-heuristic decreases as b increases. Inter-
estingly, the computational time that is required by Phase I,
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FIGURE 4. The executive time of the algorithms versus the bound of
makespan.

Phase 11, or Phase III varies only little with b, indicating the
proposed matheuristic is not greatly affected by the makespan
budget. Additionally, as revealed in Fig. 4, the computational
times that are used by Phase I, Phase II, and Phase III
of the proposed matheuristic are shorter than that used by
PSO. In summary, the Phase I, Phase II, and Phase III of
the proposed matheuristic require less computational time to
find better solutions than found by PSO, and those solutions
are very close to the tight LB, when the third data set is
used. This fact confirms again that the proposed matheuristic
outperforms the state-of-the-art PSO meta-heuristic.

V. CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE RESEARCH

The Q|Cmax < C|TRC problem is an important produc-
tion scheduling problem for industries that consume very
large amounts of natural resources. This work develops a
matheuristic for solving this strongly NP-hard problem, sub-
ject to the desired makespan, reducing the excess use of
natural resources. The computational results reveal that the
proposed matheuristic outperforms the best algorithm to date
and the solution is very close to the tight LB. Since little
theoretical progress has been made on this problem, this work
represents a significant development that should encourage
the application of the proposed matheuristic to real-world
0|Cpmax < C|TRC problem.

Given the little available research on the Q|Ciax < c |TRC
problem, much research is yet to be done on scheduling
problems that are associated with environmental protection.
First, additional meta-heuristic algorithms for solving the
O|Chax < C‘|TRC problem are worthy of research. Sec-
ond, the proposed matheuristic can be applied to solve the
UPMSP whose objective is to minimize the total resource
consumption with a bound on other significant performance
metrics. Third, the UPMSP in which the objective is to
minimize the makespan with a bound on the resource con-
sumption warrants further study. Fourth, mathematical pro-
gramming methods to find optimal solutions of the Q|Cpax <
é’|TRC problem should be pursued, given that the problem
is NP-hard in the strong sense. Finally, theoretical research
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should go beyond the static Q|Cpax < C‘|TRC problem to
address corresponding dynamic problems.
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