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ABSTRACT This paper presents a new method of computing a minimal supervisory structure that optimally
enforces liveness on the Petri net models for flexible manufacturing systems (FMSs). The proposed method
utilizes the structural properties of a Petri net model to avoid the computation of its reachability graph,
which in general leads to the state explosion problem. This paper aims to design a single control place for
each concurrent process of a Petri net model or a sub-net model, which thus provides a constant number of
control places in a supervisor regardless of the number of resource places in a Petri net or sub-net model.
It is shown that the structural size of a supervisor is minimal as the number of control places depends on
the number of concurrent processes in the Petri net model. Precisely, two algorithms are developed in this
paper. The first aims to compute active uncontrolled transitions and the second is concerned with a method
to compute the generalized mutual exclusion constraints (GMECs) for each process of the Petri net model of
an FMS. Furthermore, it provides an approach to design control places for each computed GMEC without
solving integer linear programming problems, which greatly reduces the computational costs. When the
computed control places are coupled with the uncontrolled Petri net model for an FMS, it optimally enforces
liveness behavior of the Petri net model, and hence ensures the high utilization of resources in a considered
system.

INDEX TERMS Liveness-enforcing supervisor, deadlock, flexible manufacturing system (FMS), Petri net.

I. INTRODUCTION
Flexible manufacturing systems (FMSs) that are usually
highly automated production processes with complex struc-
tures ever-increasingly play an essential role in economic
diversifications. Recently, most of developed countries have
to pay special attention to novel production modes in which
FMSs act as a critical part in boosting desired economic
aspiration [72], [73]. However, FMSs require highly techno-
logical skills to manage and utilize all the resources incorpo-
rated. An FMS usually consists of two main parts: a physical
system that is composed of manufacturing resources (such
as machine tools, robots and transportation systems) shared
by multiple jobs and a management system or decision

making system responsible for the control of the physical sys-
tem to achieve the goal of productivity with pre-established
quality [22]. Due to the request of high throughput of such
a system, deadlocks can occur because of high resource-
sharing, which may degrade the performance of an FMS [13],
[15], [23], [41], [63]. In general, deadlocks can occur in
highly automated production processes such as semiconduc-
tor manufacturing or safety-critical systems and thus may
lead to serious economy losses [74], [75].

Deadlocks can be tackled in the design and control stage
of an FMS [10], [25], [40], [64]. In a resource allocation
system, Coffman in [18] enumerates necessary conditions for
the occurrence of a deadlock. They are popularly known as
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Coffman conditions [14], [29], [64], i.e., (1) Mutual exclu-
sion: a process can only utilize one resource at a time;
(2) Hold and wait: processes that use some resources may
need another new resource; (3) Non-preemption: it is infeasi-
ble to remove a resource that is held by a particular process,
but a process can only release a resource by an explicit action
of that process; and (4) Circular-wait: two or more processes
form a circular chain where each process waits for a resource
that is held by the next process in the chain. To prevent the
occurrence of deadlocks, at least one of the four conditions
should be broken. Several tools have been developed to deal
with deadlocks in FMSs [1], [4], [14], [34], [42], [43], [63].

An effective and accurate supervisor can prevent the occur-
rence of deadlocks in an FMS [19], [44], [46], [47]. Petri nets,
automata and graph theory are the three main methodologies
to deal with this problem. Petri nets remain the most effective
formalism to model and control an FMS as well as discrete
event systems [38], [56]–[62]. Furthermore, they can verify
the existence of deadlocks and prevent their occurrences in
an FMS, since they are appropriate to describe both struc-
tural and behavioral properties of an FMS, such as conflicts,
concurrency, casual dependency, liveness, and bounded-
ness [10], [33], [39], [45], [48], [50], [52], [54], [70], [71],
[76], [77]. There are four typical strategies for handling
deadlocks in automated manufacturing systems [2], [10],
[14], [16], [51], [55], [64]: (1) Deadlock ignoring, (2) Dead-
lock detection and recovery, (3) Deadlock avoidance, and
(4) Deadlock prevention.

Two techniques exist for the analysis of a Petri net model
to cope with deadlocks [1], [4], [5], [8], [11], [14], [44],
[54], [78]: structural analysis, and reachability graph analysis.
The reachability graph (RG) analysis usually requires a com-
plete or partial enumeration of reachable states. Therefore,
it suffers from the state explosion problem [53]. The theory of
regions developed in [21] remains the most effective method
of deadlock prevention for designing an optimal supervisor,
ensuring that all the legal (safe), i.e., live states are pre-
served, although it is computationally expensive due to too
many inequality constraints in the linear programming prob-
lems [21]. A supervisor is said to be optimal or maximally
permissive if the supervisor of a plant (a plant is an alias
of a system to be controlled) can prevent the reachability
of all unsafe (illegal) states (a state is said to be unsafe if
the initial marking is not reachable from it) and ensure the
reachability of all safe states (a state is said to be safe if
the initial marking is reachable from it). A system is said
to be optimally controlled if it is supervised by an optimal
supervisor. When such a system is modeled with Petri nets,
it is called a optimally controlled (Petri net) system. That is
to say, an optimally controlled (Petri net) system contains all
the safe states and no unsafe states.

To upgrade and improve the ideas of theory of regions, the
work in [35] and [36] divides the reachability graph (RG)
of a Petri net model into two disjoint components: a live
zone (LZ) and a deadlock zone (DZ). The former contains
legal (safe) markings and the latter contains illegal (unsafe)

markings. The partition of an RG is used to find the first-met
bad markings (FBMs) in the DZ such that, once all FBMs
are prohibited, all illegal (unsafe) markings in the DZ are not
reachable. The deadlock preventionmethod in [35] and [36] is
an iterative procedure in which at each iteration step, an FBM
is controlled by designing a control place. The iterations are
repeated until all FBMs in the DZ of a Petri net model are for-
bidden. However, this method does not guarantee maximally
permissive behavior of the controlled system. It provides a
sub-optimal (near-optimal) behavior. A supervisor is said to
be near-optimal or sub-optimal if it is not optimal but very
close to be ‘‘optimal’’. Usually, the behavior of a near-optimal
supervisor should make the controlled system reach more
than 90% legal (safe) states, while all the illegal states are
prohibited. For example, suppose that a plant has h safe states.
A near-optimal supervisor should make the plant contain
more than 0.9h of safe states (of course no unsafe states are
included).

For structural analysis, it utilizes some of the important
properties of a Petri net structure, such as siphons, place and
transition invariants, and resource transition circuits. Such
properties are useful, as they can describe the relationships
between behavioral properties of a Petri net and its struc-
tural components. A deadlock prevention policy derived from
siphon control is usually sub-optimal, since it is difficult
to ensure that each legal state is included in the controlled
system. The main idea behind siphon control is to ensure that
each strict minimal siphon is sufficiently marked, by adding
control places to the Petri net model of an FMS [20], [26],
[27], [30], [32], [34], [35], [43], [64], [66]. In general, the
number of siphons grows exponentially with the structural
size of a Petri net. The studies in [15], [23], and [24] develop
an elementary siphon approach to reduce the computational
complexity for designing a supervisor and the structural com-
plexity of the supervisor for an FMS. However, it does not in
general provide an optimal control strategy. The work in [23]
adopts the elementary siphon-based approaches to reduce the
number of siphons to be explicitly controlled. However, the
concept does not in general provide a maximally permissive
supervisor except for a limited class of Petri nets at some
particular initial markings [67].

Liu et al. [28] develop a deadlock prevention policy using
structural analysis by combining elementary siphons with
varying arc weights for a Petri net model of an FMS. The
policy employs the circular wait (CW) structure and the state
of circular blockings (CBs) to investigate the existence of
deadlocks in a Petri net model. Deadlocks are tackled by
adjusting the weighted simple directed circuits (WSDCs) that
describe the structure of CW with weights, which are tied to
the occurrence of deadlocks. The advantage of the policy is
that the information of the weighed arcs is included in the
computation of siphons.

The generalized mutual exclusion constraints (GMECs)
are developed in [65]. They can represent effectively the
first-met bad markings (FBMs) from the deadlock zone of
a Petri net model. A GMEC can express that the weighted
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token sum in a particular set of places is not greater than
a given constant. The study in [3] develops a method to
enforce a conjunction of GMECs on a controlled Petri net.
The method addresses the structural properties of forward-
concurrent-free nets. The developed method transforms a
given conjunction of GMECs into a conjunction of admissible
GMECs. However, the method does not specify the class of
Petri nets considered in the work.

Furthermore, the work in [9] develops an approach to
construct a controller that realizes an OR-AND GMEC.
The developed method introduces a monitor switcher con-
trol structure which contains both places and transitions to
enforce OR-AND GMECs. It proposes a two-stage pro-
cedure for designing a controller capable of enforcing
OR-AND GMECs under the assumption that the GMECs are
bounded. By using this approach, a compiled Petri net con-
troller to enforce a given OR-AND GMEC can be obtained.
The main advantage of such a compiled controller is the
possibility of constructing a model of a closed-loop system
as a place/transition net that can be validated using existing
techniques such as structural analysis. The shortcoming of
the developed method is that the OR-AND GMECs-based
controller may create extra states that are not in the state space
of the original uncontrolled Petri net model. Furthermore, the
method, due to its generality, does not utilize the structural
properties of the Petri net model for flexible manufacturing
systems. It is worthy noting that the results from general Petri
nets provide a spur and motivation to the development of
deadlock control strategies for FMSs [69], [71], [72], [75].

In this paper, a method is proposed to enforce liveness for a
safe Petri net model, called an αn-S3PR, for FMSs. It provides
a novel, yet minimal supervisory structure for the Petri net
model. A modified GMEC is used to design control places
to enforce liveness on the Petri net model for such FMSs.
The proposed method considers three cases of a safe Petri net
model with an αn-S3PR structure. For each case, a minimal
supervisory structure is derived to enforce liveness on the
Petri net model, achieving optimal or near-optimal control
purposes. The main contributions of the proposed method are
summarized as follows:

(1) It uses structural analysis to compute active uncon-
trolled transitions for each concurrent process of a Petri net
model to avoid the computation of all the reachable markings.

(2) For each active uncontrolled transition, a modified
GMEC equation is computed and a control place is designed
to enforce liveness of a plant net with its sub-optimal control.

(3) Experimental examples show that the proposed method
can derive a structurally simple supervisor.

The proposed approach is different from the traditional
methods (policies) available in the literature. In this method,
we associate each concurrent process of the Petri net model
or sub-net model to be controlled with a single control
place, which precisely reduces the structural complexity of a
supervisor compared with traditional methods. On the other
hand, the complexity of the supervisory structure due to the
traditional policies depends on the number of resources in the

Petri net model, i.e., the larger the number of resources is,
the more complex of the supervisory structure is. While, for
the proposed method, its complexity depends solely on the
number of concurrent processes of an FMS. In general, the
number of concurrent processes is always less than that of
available resources in a Petri net or sub-net model. Hence,
the supervisory structure derived from the proposed method
is always structurally simple regardless of the number of
resources used in an FMS.

The remainder of this paper is organized as follows. Formal
descriptions of Petri nets and notations used in this paper
are presented in Section II. Section III describes Petri net
models with an αn-S3PR or αn-S4PR structure. Section IV
presents a method of deriving GMECs from αn-S3PR and
αn-S4PR. Section V develops the method to compute con-
trol coefficients without solving integer linear program-
ming, while Section VI reports a deadlock prevention policy.
Experimental examples are provided in Section VII. A dis-
cussion for the computational complexity is provided in
Section VIII. Finally, Section IX concludes this paper.

II. PRELIMINARIES
A Petri net is a four-tuple N = (P,T ,F,W ), where P
and T are finite and non-empty sets. P is a set of places
and T is a set of transitions with P ∩ T = ∅. F ⊆

(P × T ) ∪ (T × P) is called a flow relation of the net,
represented by arcs with arrows from places to transitions
or from transitions to places. Places are graphically repre-
sented by circles while transitions by bars or square boxes.
W : (P × T ) ∪ (T × P) → N is a mapping that assigns a
weight to an arc:W (x, y) > 0 if (x, y) ∈ F , andW (x, y) = 0,
otherwise, where (x, y) ∈ (P × T ) ∪ (T × P) and N is the
set of non-negative integers. N = (P,T ,F,W ) is said to be
ordinary, denoted as N = (P,T ,F), if ∀f ∈ F , W (f ) = 1.
Let x ∈ P∪T be a node inN = (P,T ,F,W ). The preset of x,
denoted by •x, is defined as •x = {y ∈ P ∪ T | (y, x) ∈ F}
and x• = {y ∈ P ∪ T | (x, y) ∈ F} is called the postset
of x. A marking M of a Petri net N = (P,T ,F,W ) is a
mapping from M : P → N, where M is a |P|-dimensional
vector. Let t ∈ T be a transition in N = (P,T ,F,W ).
Transition t is said to be enabled at a marking M , denoted
byM [t〉, if ∀p ∈ •t ,M (p) ≥ W (p, t). An enabled transition t
can fire, leading to a new marking M ′, i.e., ∀p ∈ P, M ′(p) =
M (p)−W (p, t)+W (t, p). A place p ∈ P is said to be bounded
if ∀M ∈ R(N ,M0), ∃k ∈ N, M (p) ≤ k . A net system is said
to be k-bounded if any place is k-bounded. A place p ∈ P is
said to be safe if it is 1-bounded. A net is said to be safe if all
of its places are safe. Transition t ∈ T in (N ,M0) is said to
be live if ∀M ∈ R(N ,M0), ∃M ′ ∈ R(N ,M ), such that M ′[t〉.
(N ,M0) is live if ∀t ∈ T , t is live at M0. N is dead at M0
if @t ∈ T , M0[t〉 holds. Let σ be a transition sequence. The
Parikh vector of σ , denoted by −→σ , is a column vector, rep-
resented by−→σ =[#σ (t1), #σ (t2), . . . , #σ (t|T |)]T , where #σ (ti)
denotes the number of occurrences of ti in σ . A P-vector
is a column vector I : P → Z, indexed by P, where Z =
{. . . ,−2,−1, 0, 1, 2, . . .}. A P-vector I is a place invariant
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if I 6= 0 and IT [N ] = 0T . A T-vector is a column vector
H : T → Z indexed by T . A T-vector H is a transition
invariant if [N ]H =0 and H 6=0. The support of a place
(transition) invariant I (H ) is denoted by ||I || = {p|I (p) 6= 0}
(||H || = {t|H (t) 6= 0}). Let N+ denote the set of positive
integers.

III. PETRI NET MODEL WITH αn-S3PR AND
αn-S4PR STRUCTURES
Systems of simple sequential processes with resources
(S3PR) are extensively used and adopted in the analysis of
FMSs [19], [25]. In this paper, two subclasses of an S3PR
and one subclass of S4PR are considered.
Definition 1: A system of simple sequential processes

with resources (S3PR) is a Petri netN = (P,T ,F), satisfying:

1) P = PA∪PR∪P0 is a partition of places with PA∩PR =
∅, PA ∩ P0 = ∅, and PR ∩ P0 = ∅;

a) PA =
⋃m

i=1 PAi with PAi ∩PAj = ∅ for all i 6= j is
called a set of activity places;

b) PR = {r1, r2, · · · , rn}, n > 0, is called a set of
resource places;

c) P0 = {p01, p
0
2, · · · , p

0
m}, m > 0, is called a set of

idle places;

2) T =
⋃m

i=1 Ti, with Ti ∩ Tj = ∅ for all i 6= j, is a set of
transitions;

3) ∀i ∈ {1, 2, · · · ,m},∀p ∈ PAi, ••p ∩ PR = p•• ∩ PR
and |•• p ∩ PR |= 1,

4) N is strongly connected.
Definition 2: An S3PR Petri net model N = (P,T ,F)

satisfying the following statements is called an α1-S3PR:

1) ∀i ∈ {1, 2, · · · ,m},∀ri ∈ PR, r2 ∈ r••1 , r3 ∈
r••2 , · · · , rm ∈ r••(m−1);

2) ∀r ∈ PR, |•r ∩ Ti| = |r• ∩ Ti| = 1 and |•r ∩ Tj| =
|r• ∩ Tj| = 1, with Ti ∩ Tj = ∅, for all i 6= j;

3) ∀i ∈ {1, 2, · · · ,m}, r••i =
••ri.

Definition 3 [68]: An S4PR is a connected generalized
self-loop free Petri net N = (P,F,T ,W ) where:

1) P = P0 ∪ PA ∪ PR is a partition such that a) PA =⋃
i∈N+ PAi is a set of activity places, where for each

i ∈ N+, PAi 6= ∅ and for each i, j ∈ N+, i 6= j, PAi ∩
PAj = ∅; b) P0 =

⋃
i∈N+{p

0
i } is a set of idle places; c)

PR =
⋃

i∈N+ PRi = {r1, r2, · · · , rn}, n > 0, is a set of
resource places.

2) T =
⋃

i∈N+ Ti, where for each i ∈ N+, Ti 6= ∅, and for
each i, j ∈ N+, Ti ∩ Tj = ∅;

3) For each i, j ∈ N+, the subnet N S
i = N |N ({P0i } ∪

PAi ,Ti) is a strongly connected state machine such that
every cycle contains p0i .

4) ∀r ∈ PRi , there exists a unique minimal P-semiflow
Ir ∈ N|P| such that {r} = ||Ir || ∩ PRi , {p0i } ∩ ||Ir || = ∅,
||Ir || 6= ∅, Ir (r) = 1.

5) PAi =
⋃

r∈PRi
(||Ir || \ {r}).

Definition 4: A Petri net model (N ,M0) with N =

(P,T ,F) being an S4PR is called an α2-S4PR if it satisfies
the following statements:

1) ∀i ∈ {1, 2, · · · ,m},∀ri ∈ PR, r2 ∈ r••1 , r3 ∈
r••2 , · · · , rm ∈ r••(m−1);

2) ∀r ∈ PR, |•r ∩ Ti| = |r• ∩ Ti| = 1 and |•r ∩ Tj| =
|r• ∩ Tj| = 1 with Ti ∩ Tj = ∅, for all i 6= j;

3) ∀i ∈ {1, 2, · · · ,m}, r••i ∩ PR =
••r2 ∩ PR;

4) ∀r ∈ PR, ∃t ∈ T , |•t| > 1, •t ∩ PR = t••• ∩ PR = {r}
and |t••• ∩ PR| = 1.

Definition 5: An S3PR Petri net model (N ,M0) with N =
(P,T ,F) is called α3-S3PR if it satisfies the following
statements:

1) ∀i ∈ {1, 2, · · · ,m},∀ri ∈ PR, r2 ∈ r••1 , r3 ∈
r••2 , · · · , rm ∈ r••(m−1);

2) ∀r ∈ PR, |•r ∩ Ti| = |r• ∩ Ti| = 1 and |•r ∩ Tj| =
|r• ∩ Tj| = 1, with Ti ∩ Tj = ∅, for all i 6= j;

3) ∀i ∈ {1, 2, · · · ,m}, r••i ∩ PA =
••ri ∩ PA;

4) ∀i ∈ Nm, ∀p ∈ PAi, ••p∩PR 6= p•• ∩PR, •(p•)∩PR 6=
(•p)• ∩PR, ∃r ∈ PR, (•(p•)∩PR)∪ ((•p)• ∩PR) = {r},
and |•(p•) ∩ PR| = 1.

In this paper, a Petri net N under consideration can
be thought of as the composition of a set of subnets
N1, N2, . . ., Nm via shared places, which is denoted as
N = ©m

i=1Ni.

Definition 6 [67]: A directed circuit τ in a marked Petri
net (N ,M0) is called a resource transition circuit (RTC) if
it contains resource places and transition only. Let τ (t) and
τ (r) denote the sets of all transitions and resource places in
τ , respectively.

Definition 7: Let χ be an elementary circuit in a Petri net
model (N ,M0). χ is called a minimal activity resource tran-
sition circuit (ARTC) if it contains activity places, resource
places and transitions. Let χ (A), χ (r), and χ (t) denote
the sets of activity places, resources, and transitions in χ ,
respectively.

Definition 8: Resource r is said to be shared if ∃p, p′ ∈
(||Ir ||\{r}), p ∈ PAi, p′ ∈ PAj, i 6= j.
Precisely, an RTC τ does not contain any activity places

and can be determined by its transition set τ (t) and resource
set τ (r) such that τ = N [τ (t) ∪ τ (r)]. While an ARTC χ

contains activity places, resource places and transitions, and
can be determined by its activity place set χ (A), resource
place set χ (r) and transition set χ (t) such that χ = N [χ (A)∪
χ (r) ∪ χ (t)].
The following properties are verified for a Petri net model

with an α1-S3PR structure:

• For any RTC τ , (τ (t))• ∩ τ (r) = τ (r);
• For any ARTC χ , ||χ (A)|| = 1 and ||χ (t)|| = 2;
• Let ri be a resource place and τ1 and τ2 be two RTCs
such that ri ∈ τ1 and ri ∈ τ2. The following properties
hold:

(a) ••(ri) ∩ τ1 = (ri)•• ∩ τ1 and
(b) ••(ri) ∩ τ2 = (ri)•• ∩ τ2.

A Petri net model with an α2-S4PR structure has a dual
mode of (i.e., two separate) distinct RTCs; each separate RTC
has the following properties:
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FIGURE 1. Petri net model with an (a) α1-S3PR structure (b) α2-S4PR structure, and (c) α3-S3PR structure.

• (τ (t))• ∩ τ (r) = τ (r);
• ||χ (A)|| = 2, ||χ (t)|| = 3; and
• Let ri be a resource place and τ1 and τ2 be two RTCs
such that ri ∈ τ1 and ri ∈ τ2. The following properties
hold:
(a) ••(ri) ∩ τ1 = (ri)•• ∩ τ1 and
(b) ••(ri) ∩ τ2 = (ri)•• ∩ τ2.

Fig. 1(a) shows a typical example of a Petri net with an
α1-S3PR structure. Fig. 1(b) shows an example of a Petri net
model with an α2-S4PR structure, where its RTCs are:

τ1 = 〈p19, t16, p21, t3, p19〉,

τ2 = 〈p20, t15, p22, t4, p20〉,

τ3 = 〈p21, t14, p23, t5, p21〉,

τ4 = 〈p22, t13, p24, t6, p22〉

and

τ5 = 〈p23, t12, p25, t7, p23〉.

The ARTCs are

χ1 = 〈p19, t1, p2, t2, p3, t3, p19〉,

χ2 = 〈p20, t2, p3, t3, p4, t4, p20〉,

χ3 = 〈p21, t3, p4, t4, p5, t5, p21〉,

χ4 = 〈p22, t4, p5, t5, p6, t6, p22〉,

χ5 = 〈p23, t5, p6, t6, p7, t7, p23〉,

χ6 = 〈p24, t6, p7, t7, p8, t8, p24〉,

χ7 = 〈p25, t7, p8, t8, p9, t9, p25〉,

χ8 = 〈p19, t16, p16, t17, p17, t18, p19〉,

χ9 = 〈p20, t15, p15, t16, p16, t17, p20〉,

χ10 = 〈p21, t14, p14, t15, p15, t16, p21〉,

χ11 = 〈p22, t13, p13, t13, p14, t15, p22〉,

χ12 = 〈p23, t12, p12, t13, p14, t14, p23〉,

χ13 = 〈p24, t11, p11, t12, p12, t13, p24〉

and

χ14 = 〈p25, t10, p10, t11, p11, t12, p25〉.

Let us consider the Petri net model with an α3-S3PR
structure. The resource places in the net are partitioned into
two sets: shared and unshared resource places, i.e., PR =
RS ∪ RU , where RS and RU denote the sets of shared and
unshared resource places, respectively. Fig. 1(c) shows a
typical example of an α3-S3PR structure. From Fig. 1(c),
the sets of shared and unshared resource places are RS =
{p13, p14, p15} and RU = {p16, p17, p18, p19}, respectively.
The following properties are verified for the Petri net model
with an α3-S3PR structure:
• For any RTC τ , ••τ (t) ∩ τ (t) = τ (t)•• ∩ τ (t), ••τ (t) =
τ (t)••, and •τ (t) ∩ R(τ ) = τ (t)• ∩ τ (r), and

• ||χ (A)|| = 1 and ||χ (t)|| = 2.
The ARTCs in the Petri net model shown in Fig. 1(c)

are χ1 = 〈p13, t1, p2, t2, p13〉, χ2 = 〈p16, t2, p3, t3,
p16〉, χ3 = 〈p14, t3, p4, t4, p14〉, χ4 = 〈p17, t4, p5, t5, p17〉,
χ5 = 〈p15, t5, p6, t6, p15〉, χ6 = 〈p15, t7, p7, t8, p15〉,
χ7 = 〈p18, t8, p8, t9, p18〉, χ8 = 〈p14, t9, p9, t10, p14〉, χ9 =
〈p19, t10, p10, t11, p19〉, and χ10 = 〈p13, t11, p11, t12, p13〉.
Definition 9: Let (N S

i , M
S
0 ) be the sub-net in the Petri net

model with an α2-S4PR structure. The sub-net (N S
i , M

S
0 ) has

VOLUME 5, 2017 15735



M. Bashir et al.: Minimal Supervisory Structure to Optimally Enforce Liveness on Petri Net Models for FMSs

the following properties:
1) N S

i = (PAi ∪ P
0
∪ PRi ,T ,Fi).

2) ∀N S
i , PRi ⊆ PR, PAi ⊆ PA and Fi ⊆ F .

3) ∀N S
i , we have (a)

••(ri)∩τ1 = (ri)••∩τ1 and (b) ••(ri)∩
τ2 = (ri)•• ∩ τ2.

4) ∀r ∈ PRi , there exists a unique minimal P-semiflow
Ir ∈ N||m|| such that {r} = ||Ir || ∩ PRi , P0i ∩ ||Ir || 6= ∅,
||Ir || 6= ∅, Ir (r) = 1, where we assume m = |P|.

5) PAi =
⋃

r∈PRi
(||Ir || \ {r}).

To ease the computation load of synthesizing a supervisor
of a Petri net model with α2-S4PR structure for an FMS, the
Petri net model can be split-up into two sub-nets with each
having two concurrent processes and satisfying Definition 9.
The Petri net model shown in Fig. 1(b) is split-up into two
different sub-nets (N S

1 , M
S
0 ) and (N S

2 , M
S
0 ) as shown in Fig.

2(a) and (b), respectively.

FIGURE 2. Sub-net model of (a) (NS
1 , MS

0 ) and (b) (NS
2 , MS

0 ).

An ARTC in a Petri net model (N ,M0) is either formed
by a shared resource place or unshared resource place. For a
better representation, with no ambiguity, let χ j

rSi
(A) be the set

of activity places in an ARTC χ formed by a shared resource
place ri in process j and χ j

rUk
(A) be the set of activity places

in an ARTC formed by an unshared resource place rk in
process j, where i ∈ {1, 2, · · · , α} and k ∈ {α + 1, α +
2, · · · , β}, indicating that there are α shared resource places
and β − α unshared resource places, respectively, in a Petri
net model. To further simplify the notation, let χ jci denote the
algebraic sum form of χ j

rSi
(A). Note that j ∈ {1, 2, · · · , l} in

χ
j
rSi
(A) (χ j

rUi
(A)) represents the j-th concurrent process in the

Petri net model.
Definition 10: If there exists an ARTC χr formed by

an unshared resource place r involving the j-th process

between the two ARTCs formed by shared resource places,
i.e., χ j

rSi
(A)→ χ

j
r (A)→ χ

j
rSi+1

(A), then χri is called an ARTC

attached by χr . The extended algebraic sum form of χ j
rSi
(A)

is defined as χ jci = χ
j
rSi
(A)+ χ jr (A).

Let us consider the Petri net model shown in Fig. 1(a). The
sets of activity places in ARTCs are χ1

rS1
(A) = {p2}, χ1

rS2
(A) =

{p3}, χ1
rS3
(A) = {p4}, χ1

rS4
(A) = {p5}, χ1

rS5
(A) = {p6}, χ2

rS5
(A) =

{p7}, χ2
rS4
(A) = {p8}, χ2

rS3
(A) = {p9}, χ2

rS2
(A) = {p10}, and

χ2
rS1
(A) = {p11}. Their corresponding algebraic sum form of

χ
j
rSi
(A) is χ1

c1 = p2, χ1
c2 = p3, χ1

c3 = p4, χ1
c4 = p5, χ1

c5 = p6,

χ2
c5 = p7, χ2

c4 = p8, χ2
c3 = p9, χ2

c2 = p10, and χ2
c1 = p11.

The sets of activity places in ARTCs in the Petri net model
shown in Fig. 2(a) are χ1

rS1
(A) = {p2, p3}, χ1

rS2
(A) = {p4, p5},

χ1
rS3
(A) = {p6, p7}, χ1

rS4
(A) = {p8, p9}, χ2

rS4
(A) = {p10, p11},

χ2
rS3
(A) = {p12, p13}, χ2

rS2
(A) = {p14, p15} and χ2

rS1
(A) =

{p16, p17}. Their corresponding algebraic sum form of χ j
rSi
(A)

is χ1
c1 = p2+p3, χ1

c2 = p4+p5, χ1
c3 = p6+p7, χ1

c4 = p8+p9,
χ2
c4 = p10 + p11, χ2

c3 = p12 + p13, χ2
c2 = p14 + p15 and

χ2
c1 = p16 + p17. The sets of activity places in ARTCs in

the Petri net model shown in Fig. 1(c) are χ1
rS1
(A) = {p2},

χ1
rS2
(A) = {p4},χ1

rS3
(A) = {p6},χ2

rS3
(A) = {p7},χ2

rS2
(A) = {p9},

χ2
rS1
(A) = {p11}, χ1

rU4
(A) = {p3}, χ1

rU5
(A) = {p5}, χ2

rU6
(A) =

{p8}, and χ2
rU7
(A) = {p10}. ByDefinition 10, their correspond-

ing extended algebraic sum form of χ j
rSi
(A) is χ1

c1 = p2 + p3,

χ1
c2 = p4+p5, χ1

c3 = p6, χ2
c3 = p7+p8, χ2

c2 = p9+p10, and
χ2
c1 = p11.
Definition 11: An active uncontrolled transition is a transi-

tion whose firing at a state leads a system to lose its liveness.
Let 5 denote the set of active uncontrolled transitions in a
Petri net model.
Note that, the method of computing active uncontrolled

transitions is presented in Algorithm 1.
Definition 12: Transition tSi is said to be a sink transi-

tion in a Petri net N with N = (P0 ∪ PA ∪ PR,T ,F,W )
if tSi ∈

•(P0). The set of sink transitions is denoted as 9 =
{t | t ∈ T , t ∈ •(P0)}.
In the Petri net model shown in Fig. 1(a), the active uncon-

trolled transitions are t11 = t1 and t22 = t7, and the set of active
uncontrolled transitions is 5 = {t1, t7}. Firing t1 at certain
states would violate the desired specification requirements in
the production sequence of process II. Similarly, firing t7 at
certain states would derive the system to undesired states in
the production sequence of process I. To avoid the violation
of the desired specifications, a separate supervisory structure
is added to the uncontrolled Petri net model to supervise
the firing of active uncontrolled transitions at each state
by denying their firing at some specific states to prevent
the violation of the specification requirements. Supervisory
structure usually is constituted by control places to enforce
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liveness on a Petri net model. The sink transitions in the Petri
net model shown in Fig. 1(a) are tS1 = t6 and tS2 = t12. The
firing of sink transitions at any state cannot cause the system
to violate the specification requirements. Those transitions
are not included in the supervisory structure as there is no
need to supervise their firings.
Definition 13: Let χ j

rSi
(A) be the set of activity places in an

ARTC. S(h̄Nj ) is called a set of null places if •(tSi ) ⊆ χ
j
rSi
(A),

then S(h̄Nj ) = χ
j
rSi
(A).

Definition 14: Let χ j
rSi
(A) be the set of activity places in an

ARTC. S(h̄Aj ) is called a set of active places if (t
j
i )
•
⊆ χ

j
rSi
(A),

then S(h̄Aj ) = χ
j
rSi
(A).

Definition 15: Let S(h̄Aj ) be a set of active places and
S(h̄Nj ) be a set of null places in (N , M0). The set of passive
places is defined as 1j

= PAj\(S(h̄
A
j ) ∪ S(h̄

N
j )).

Let us consider the Petri net model shown in Fig. 1(a). The
sets of null places are S(h̄N1 ) = {p6} and S(h̄

N
2 ) = {p11}. The

sets of null places in the Petri net model shown in Fig. 2(a)
are S(h̄N1 ) = {p8, p9} and S(h̄

N
2 ) = {p16, p17}. While for the

Petri net model shown in Fig. 1(c), the sets of null places are
S(h̄N1 ) = {p6} and S(h̄

N
2 ) = {p11}. The sets of active places

in the Petri net model shown in Fig. 1(a) are S(h̄A1 ) = {p2}
and S(h̄A2 ) = {p7}. The sets of active places in the Petri net
model shown in Fig. 2(a) are S(h̄A1 ) = {p2, p3} and S(h̄

A
2 ) =

{p10, p11}. The sets of active places in the Petri net model
shown in Fig. 1(c) are S(h̄A1 ) = {p2, p3} and S(h̄

A
2 ) = {p7, p8}.

The set of passive places is computed for each process of
a Petri net model. In the Petri net model shown in Fig. 1(a),
the sets of passive places are 41

= {p3, p4, p5} and 42
=

{p8, p9, p10}. The sets of passive places in the Petri net model
shown in Fig. 2(a) are 41

= {p4, p5, p6, p7} and 42
=

{p12, p13, p14, p15}. The sets of passive places in the Petri
net model shown in Fig. 1(c) are 41

= {p4, p5} and 42
=

{p9, p10}. The presence of tokens in the active places of
process I with any passive place in process II would derive
the states in the Petri net model to violate the specification
requirements. Similarly, this is the same case to active places
in process II with any passive place in process I.

IV. DERIVING GMECS FROM AN αn-S3PR
Generalized mutual exclusion constraints (GMECs) can be
implemented through control places by using the marking-
invariant law of Petri nets [53], [65] to form a place invariant
associated with the activity places. Generally, a place invari-
ant in a supervisor implementing a GMEC takes the form of
α1λ1 + α2λ2 + · · · + αnλn ≤ β, where αi, a non-negative
integer, is called the control coefficient of the characteristic
activity place in χ jci, β ∈ {1, 2, · · · } is called the weighted
token constant, λi is the marking of a characteristic activity
place in χ jci, and n is the number of activity places, i.e., |PA|.
The proposed method derives one GMEC for each process of
a Petri net model with an αn-S3PR structure, which reduces

the complexity of the supervisory structure. The objective
function of the GMEC in the proposedmethod takes the form:

αAj λ
A
j +6i∈Nα

j
iλ
j
i ≤ β (1)

where αAj is the control coefficient of a corresponding active

place belonging to process I, and αji is the control coefficient
of a corresponding passive place in process II. With objec-
tive (1) for the GMEC, the constraints can be formulated by
the combination of active places from the l ′-th process with
the places in the set of passive places from the l ′′-th process.
The proposed method designs a global control place for each
process in the Petri net model regardless of the number of
resource places in it. To simplify the computational overhead
of the proposed method, we consider two processes at a time
to implement the GMECs. Suppose that process I is taken into
account before process II in the Petri net model shown in Fig.
1(a). The GMEC on process I can be implemented as

αAl′λ
A
l′ + α

A
l′′λ

A
l′′ +6i∈Nα

l′′
i λ

l′′
i ≤ β (2)

satisfying the following constraints:

αAl′ + α
A
l′′ ≤ β + 1

αAl′ + α
l′′
2 ≤ β + 1

αAl′ + α
l′′
3 ≤ β + 1

...

αAl′ + α
l′′
n ≤ β + 1

Similarly, when we consider process II after implementing
the GMEC on process I in the Petri net model shown in
Fig. 1(a), the GMEC takes this form:

αAl′′λ
A
l′′ +6i∈Nα

l′
i λ

l′
i ≤ β (3)

satisfying the following constraints:

αAl′′ + α
l′
1 ≤ β + 1

αAl′′ + α
l′
2 ≤ β + 1

...

αAl′′ + α
l′
n ≤ β + 1

Note that, the proposed approach in this paper considers
two concurrent processes at a time to implement GMECs.
Therefore, we have j ∈ {1, 2}. To deal with the general cases,
let l ′ denote a process and l ′′ denote another process.

A. PETRI NET MODEL WITH AN α1-S3PR
Take as an example the Petri net model shown in Fig. 1(a)
with two concurrent processes, i.e., processes I and II. Imple-
menting the GMEC on process I before process II takes the
form of Eq. (2) while implementing the GMEC on process II
after implementing the GMEC on process I takes the form of
Eq. (3). Suppose that process I is considered before process II.
The objective function of the GMEC is

αA1 λ
A
1 + α

A
2 λ

A
2 + α

2
7λ

2
7 + α

2
8λ

2
8 + α

2
9λ

2
9 ≤ β (4)
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TABLE 1. Summary of parameters for the Petri net model shown in Fig. 1(a).

satisfying the following constraints:

αA1 + α
A
2 ≤ β + 1

αA1 + α
2
7 ≤ β + 1

αA1 + α
2
8 ≤ β + 1

αA1 + α
2
9 ≤ β + 1

On the other hand, whenwe consider process II after imple-
menting the GMEC on process I, the GMEC on process II can
be implemented as follows:

αA2 λ
A
2 + α

1
2λ

1
2 + α

1
3λ

1
3 + α

1
4λ

1
4 ≤ β (5)

satisfying the following constraints:

αA2 + α
1
2 ≤ β + 1

αA2 + α
1
3 ≤ β + 1

αA2 + α
1
4 ≤ β + 1

The unknown control coefficients in both Eqs. (4) and (5)
can be evaluated using an integer linear programming prob-
lem (ILPP) solver. Table 1 presents the summary of the
relationship among the parameters for the Petri net model
shown in Fig. 1(a).

B. PETRI NET MODEL WITH AN α2-S4PR
The GMECs for a Petri net model with an α2-S4PR structure
are obtained by splitting the Petri net model into several
sub-net models of N = ©i=mN S

i = (PAi ∪{P
0
}∪PRi ,T ,Fi),

such that each sub-net can be treated in Eqs. (2) and (3) to
derive their GMECs. Finally, the computedGMECs for all the
sub-nets are the total GMECs for the whole Petri net model.

Let us deal with a sub-net model (N S
1 , MS

0 ) shown in
Fig. 2(a). If we consider process I before process II, the
objective function of the GMEC is:

αA1 λ
A
1 + α

A
2 λ

A
2 + α

2
6λ

2
6 + α

2
7λ

2
7 ≤ β (6)

satisfying the following constraints:

αA1 + α
A
2 ≤ β + 1

αA1 + α
2
6 ≤ β + 1

αA1 + α
2
7 ≤ β + 1

Similarly, when we consider process II after implementing
the GMEC on process I of the sub-net (N S

1 , M
S
0 ) shown in

Fig. 2(a), the GMEC on process II is expressed as:

αA2 λ
A
2 + α

1
2λ

1
2 + α

1
3λ

1
3 ≤ β (7)

satisfying the following constraints:

αA2 + α
1
2 ≤ β + 1

αA2 + α
1
3 ≤ β + 1

Similarly, the same procedure can be applied to sub-net
(N S

2 , M
S
0 ) as shown in Fig. 2(b). The GMECs derived from

sub-net (N S
1 , M

S
0 ) and (N

S
2 , M

S
0 ) are the total GMECs for the

whole Petri net model shown in Fig. 1(b). The summary of
the relationship among the parameters in the Petri net model
shown in Fig. 2(a) is provided in Table 2.

C. PETRI NET MODEL WITH AN α3-S3PR
When deriving GMECs for a Petri net model with more than
two concurrent processes, we first split-up the Petri net model
into several sub-net models of N = ©i=mN S

i = (PAi ∪
{P0} ∪ PRi ,T ,Fi), such that each sub-net has two concurrent
processes that satisfy Definition 9. Eqs. (2) and (3) are used
to derive their GMECs for each sub-net. The GMECs for the
whole Petri net model are those GMECs of all the sub-nets.

Let us consider a Petri net model shown in Fig. 1(c).
To implement the GMEC on process I before process II, the
objective function of the GMEC on process I is

αA1 λ
A
1 + α

A
2 λ

A
2 + α

2
5λ

2
5 ≤ β (8)

satisfying the following constraints:

αA1 + α
A
2 ≤ β + 1

αA1 + α
2
5 ≤ β + 1

To implement the GMEC on process II after implementing
the GMEC on process I of the Petri net model shown in
Fig. 1(c), the GMEC on process II is expressed as

αA2 λ
A
2 + α

1
2λ

1
2 ≤ β (9)

satisfying the following constraints:

αA2 + α
1
2 ≤ β + 1
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TABLE 2. Summary of parameters for the Petri net model shown in Fig. 2(a).

TABLE 3. Summary of parameters for the Petri net model shown in Fig. 1(c).

The control coefficients remain unknown and are to be
found using a method developed in this paper. Table 3 sum-
marizes the relationships among the parameters of the Petri
net model shown in Fig. 1(c).

V. FROM ILPP TO LINEAR INEQUALITIES
The solution to the control coefficients is usually done using
ILPP solver. However, many variables need to be gener-
ated in the process of solving ILPP, which makes the com-
putation difficult. This section presents a new method to
compute the control coefficients from the GMECs without
solving an ILPP. Firstly, Eq. (1) is modified. The modi-
fied Eq. (1) provides an efficient way to compute the con-
trol coefficients using structural properties of the Petri net
model.

A. PETRI NET MODEL WITH AN α1-S3PR
The modified Eq. (10) that greatly simplifies the computation
of control coefficients in the GMECs can be expressed as

αAj λ
A
j +6i∈Nλ

j
i ≤ β (10)

where

αAj = |1
j
| + x, β = αAj and x ∈ N

Generally, the modified GMEC on process I before pro-
cess II in a Petri net model with an α1-S3PR structure is

αAl′λ
A
l′ + λ

A
l′′ +6i∈Nλ

l′′
i ≤ β (11)

with

αAl′ = |1
l′′
| + 1 and β = αAl′

Similarly, the modified GMEC on process II after imple-
menting the GMECs on process I is

αAl′′λ
A
l′′ +6i∈Nλ

l′
i ≤ β (12)

with

αAl′ = |1
l′
| and β = αAl′

B. PETRI NET MODEL WITH AN α2-S4PR
For a Petri net model with an α2-S4PR structure, the modified
GMEC can be expressed in the form of Eq. (10):

αAj λ
A
j +6i∈Nλ

j
i ≤ β (13)

where

αAj =
|1j
| + z
x

, β = αAj and x, z ∈ N

Implementing the GMEC on process I of a sub-net
(N S

i , M
S
0 ) shown in Fig. 2(a) before implementing the GMEC

on process II is

αAl′λ
A
l′ + λ

A
l′′ +6i∈Nλ

l′′
i ≤ β (14)

with

αAl′ =
(|1l′
| + 2)
2

and β = αAl′

Similarly, the modified GMEC on process II after imple-
menting the GMEC on process I is

αAl′′λ
A
l′′ +6i∈Nλ

A
l′ ≤ β (15)

with

αAl′′ =
|1l′
|

2
and β = αAl′′
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C. PETRI NET MODEL WITH AN α3-S3PR
Finally, let us consider a Petri net model with an α3-S3PR
structure. The modified GMEC is

αAj λ
A
j +6i∈Nλ

j
i ≤ β (16)

where

αAj =
|1j
| + z
x

, β = 2αAj + 1 and x, z ∈ N

Implementing the modified GMEC on process I before
implementing the GMEC on process II is

αAl′λ
A
l′ + λ

A
l′′ +6i∈Nλ

l′′
i ≤ β (17)

with

αAl′ =
(|1l′
| + 2)
2

and β = 2αAl′ + 1

Similarly, the modified GMEC on process II after imple-
menting the GMEC on process I is

αAl′′λ
A
l′′ +6i∈Nλ

A
l′ ≤ β (18)

with

αAl′′ =
|1l′
|

2
and β = 2αAl′′ + 1

The modified versions of GMECs ease the computa-
tional overhead as it greatly simplifies the evaluation of the
unknown control coefficients in the modified GMECs.

D. FROM GMECs TO CONTROL PLACES
This section presents a method to design control places from
the computed GMECs. For each computed GMEC from the
uncontrolled Petri net model, a control place is designed to
prohibit the reachability of the unsafe states.

The study carried out by [53] developed an efficient
method to construct a supervisor based on the concept of
place invariants. The supervisor consists of all necessary
control places that would enforce the constraints of the Petri
net model to follow the desired system specification. Let [Np]
be the incidence matrix of a plant net. The control places
together with the arcs connecting these places and transitions
of the plant net can be represented by a matrix [Nc]. The
incidence matrix [N ] of the controlled net is

[N ] =
[
Np
Nc

]
Control places are designed after computing all the neces-

sary GMECs from a Petri net model. Let LD be the incidence
matrix of the GMEC and D be the row matrix of the places in
the GMEC. The control place (Vi) is computed as follows:

Vi = −DLD (19)

whereD is a rowmatrix with a dimension of 1×|Pi| and LD is
a matrix with the dimension of |Pi|×|Ti|while the dimension
of Vi is 1 × |Ti| with Pi being the places in the GMEC and
Ti representing the transitions associated with the places in
the GMEC. After including all the computed control places

to the uncontrolled Petri net model, the liveness property of
the Petri net model is enforced.

Suppose that 5λA1 + λ25 + λ26 + λ27 + λ28 + λ29 ≤ 5
is the GMEC from a Petri net model shown in Fig. 1(a).
The places associated with the markings of the GMEC are
p2, p6, p7, p8, p9 and p10 and the corresponding transitions to
those places are t1, t2, t6, t7, t8, t9, t10 and t11. Using Eq. (19),
the control place is computed as follows:

Vi = −


5
1
1
1
1
1



T 
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1


Vi =

[
−5 5 −1 0 0 0 0 1

]
VI. DEADLOCK PREVENTION POLICY
This section presents two algorithms to compute a Petri net
supervisor. The first computes the active uncontrolled tran-
sitions in a Petri net model. The second designs a Petri net
supervisor that enforces the uncontrolled Petri net model to
satisfy system specification requirements.

Algorithm 1 Computation of Active Uncontrolled
Transitions
Input: A Petri net (N ,M0) with N = (P0 ∪ PA ∪ PR,T ,F)

prone to deadlocks
Output: Set of active uncontrolled transitions 5
1: 5 = ∅; j = 1, 2, · · · , n. /∗j is the number of concurrent

process in the net ∗/
2: while j ≤ n do
3: Identify (p0j ) and PAj = {pi, pi+1, pi+2, · · · , pn}
4: 5∗ = ∅

5: Compute (p0j )
••; let pi be the activity place in (p0j )

••;
choose a resource place r such that pi ∈ ||Ir ||, and
compute ||χi(A)|| ∪ ||χi(r)|| = ||χ(r,pi)|| = {r, p|r ∈
PR, p ∈ PA}

6: for (i = 1, |PAj |, i++) do
7: if ||χ(r,pi)|| 6= ||Ir || then
8: Choose an activity place pi+1 from p••i ; find

a resource place r such that pi+1 ∈ ||Ir ||; compute
||χ(r,pi+1)|| = {r, pi+1|r ∈ PR, pi+1 ∈ PA, pi+1 ∈ ||Ir ||}

9: else
10: 5∗ = 5∗ ∪ •pi
11: end
12: end
13: j = j+ 1,5 = 5 ∪5∗

14: end
15: Output the set of active uncontrolled transitions 5.

Algorithm 1 definitely computes all the active uncontrolled
transitions from an uncontrolled Petri net model or sub-net
model if such transitions exist. As aforementioned, firing an

15740 VOLUME 5, 2017



M. Bashir et al.: Minimal Supervisory Structure to Optimally Enforce Liveness on Petri Net Models for FMSs

FIGURE 3. (a) The layout of an FMS and (b) its production routes.

active uncontrolled transition at some specific states of a Petri
net model leads the system to the deadlock zone.
Theorem 1: Algorithm 1 can compute active uncontrolled

transitions from an uncontrolled Petri net or sub-net model
under consideration if such transitions exist.
Proof 1: Suppose that t ji ∈ T exists in a Petri net model

N = (P, T , F) or sub-net model. It implies that there exists
a minimal semi-flow ||Irs || formed by shared resource places
rs in the Petri net model or sub-net model. Since each process
has a single idle place, the decision on the first-met ||Irs ||
along the directional flow of tokens for an idle place in the
j-th process would result in ||χi(A)|| ∪ ||χi(r)|| = {r, pi|r ∈
PR, pi ∈ PA}. Therefore, pi ∈ PA is an active place in the
j-th process. Hence, each active place corresponds to an active
uncontrolled transition in the Petri net model (i.e., the preset
of pi contains the active uncontrolled transition t

j
i ). �

Algorithm 2 can compute all the necessary GMECs in a
Petri net model or a sub-net model. Furthermore, it provides
a method to design a control place for each computed GMEC.
The computed control places enforce liveness of the Petri net
model when they are included in the uncontrolled Petri net
model.
Theorem 2: The computed control places by Algorithm 2

enforce liveness to an uncontrolled Petri net model.
Proof 2: Each GMEC generated from Algorithm 2 corre-

sponds to an active uncontrolled transition computed from
Algorithm 1. Since all the transitions in (N ,M0) are control-
lable, the control places derived from the GMECs in the Petri
net model N = (P,T ,F) would make the active uncontrolled
transitions controlled. Hence, liveness is assured. �
Example 1: Let us consider an FMS shown in Fig. 3. The

FMS consists of four machines M1–M4, each of which can
process only one part at a time, and three robots R1–R3, each
of which can hold one part at a time. Parts enter the system
through input/output buffers I1/O1 and I2/O2. Two part types
P1 and P2 are considered in the production sequence. Initially
it is assumed that there are no parts in the system.

Its equivalent representation of the FMS shown in Fig. 3
is depicted in Fig. 4 using Petri nets. The places in the
Petri net model are represented as P = P0 ∪ PA ∪ PR,

Algorithm 2 Computation of Control Places

Input: Petri net model (N ,M0) of an FMS with N = (P0 ∪
PA ∪ PR,T ,F) prone to deadlocks

Output: Controlled Petri net model
1: Compute the set of active uncontrolled transitions using

Algorithm 1.
2: Compute the set of active places using Definition 14.
3: Compute the set of null places using Definition 13.
4: Compute the set of passive places for each process using

Definition 15.
5: Identify each process j in (N ,M0), j = 1, 2.
6: Compute the GMEC using,

GMEC =

{
αAl′λ

A
l′ + λ

A
l′′ +6p∈Pλ

l′′
i ≤ β, j = 1;

αAl′′λ
A
l′′ +6p∈Pλ

A
l′ ≤ β, j = 2.

7: Design control place Vi,

Vi = −DLD

8: Add all computed control places to the uncontrolled Petri
net model.

9: Output a controlled Petri net model with liveness.

where P0 = {p1, p16}, PR = {p17, · · · , p23} and PA =
{p2, · · · , p15}. Places p2, p3, p4, p5, p6, p7 and p8 represent
the operations of M1, R1, M2, R2, M3, R3 and M4 for
the production sequence of part type P1, respectively. Sim-
ilarly, for the production sequence of part type P2, places
p9, p10, p11, p12, p13, p14 and p15 represents the operations of
M4, R3, M3, R2, M2, R1 and M1, respectively. Places p1
and p16 represent the I1/O1 and I2/O2 buffers, respectively.
While places p17, p18, p19, p20, p21, p22 and p23 represent the
shared resources of M1, R1, M2, R2, M3, R3 and M4,
respectively.

To demonstrate Algorithm 2, let us consider the Petri net
model of Example 1 shown in Fig. 4. As aforementioned, the
set of active uncontrolled transitions is5 = {t1, t9}with t11 =
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FIGURE 4. The Petri net model with an α1-S3PR for Example 1.

TABLE 4. Summary of the parameters for the supervisory structure of the
Petri net model shown in Fig. 4.

t1 and t22 = t9. The sets of active place are S(h̄A1 ) = {p2}
and S(h̄A2 ) = {p9} and the sets of null place are S(h̄N1 ) =
{p8} and S(h̄N2 ) = {p15}, while the sets of passive places are
11
= {p3, p4, p5, p6, p7} and 12

= {p10, p11, p12, p13, p14}.
The GMECs are λA1 +λ

A
2 +λ

2
7+λ

2
8+λ

2
9+λ

2
10+λ

2
11 ≤ 6 with

its associated places being p2, p9, p10, p11, p12, p13, and p14
and λA2+λ

1
2+λ

1
3+λ

1
4+λ

1
5+λ

1
6 ≤ 5 with its associated places

being p9, p3, p4, p5, p6, and p7. The transitions corresponding
to the places in the GMECs are t1, t2, t9, t10, t11, t12, t13, t14,
and t15; and t2, t3, t4, t5, t6, t7, t9, and t10, respectively. The
control places corresponding to GMECs are, respectively,

V1 = −



6
1
1
1
1
1
1



T 

1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0 0
0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 −1


V1 =

[
−6 6 −1 0 0 0 0 0 1

]

V2 = −


1
1
1
1
1
5



T 
1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


V2 =

[
−1 0 0 0 0 1 −5 5

]
When the two control places are added to the uncontrolled

Petri net model shown in Fig. 4, the resulting Petri net model
is live with maximally permissive behavior of 255 states.
Table 4 provides the detailed parameters of the computed
control places, while Table 5 presents the performance com-
parison with some deadlock control policies available in the
literature in terms of control places, control arcs and the
number of reachable states.

TABLE 5. Performance comparison of the proposed method with some of
the existing policies for a Petri net model shown in Fig. 4.

VII. EXPERIMENTAL EXAMPLES
This section presents an experimental result to expose the
applicability of the proposed method. All the computation of
the supervisors is done without computing the reachability
graph or siphons of a Petri net model. The proposed method
utilizes the resource transition circuits to compute a supervi-
sor that enforces liveness on a Petri net model.
Example 2: Let us consider the Petri net model of a

flexible manufacturing system shown in Fig. 5. There are
31 places and 22 transitions. The places have the set partition:
P0 = {p1, p22}, PR = {p23 − p31} and PA = {p2 − p21}. The
Petri net model has 564 reachable states, with 287 and 277
states being in the live zone and deadlock zone, respectively.

The Petri net model shown in Fig. 5 (Example 2) has an
α2-S4PR structure. It is decomposed into two sub-nets
denoted by N = N S

1 ◦ N
S
2 . The control places of each sub-

net can be computed via Algorithm 2. First, let us consider
(N S

1 ,M
S
0 ) shown in Fig. 6(a). The places in (N

S
1 ,M

S
0 ) have the

set partition: P0 = {p1, p22}, PR1 = {p23, p25, p27, p29, p31}
and PA = {p2 − p21}. When the uncontrolled sub-net
(N S

1 ,M
S
0 ) is simulated using integrated net analyzer (INA),

the sub-net has 1053 reachable states among which 485 states
are in the live zone and 568 states are in the deadlock zone.

Using Algorithm 2, the set of active uncontrolled transi-
tions is 5 = {t1, t12} with t11 = t1 and t22 = t12. The sets of
active places are S(h̄A1 ) = {p2, p3} and S(h̄

A
2 ) = {p12, p13}.

The sets of null places are S(h̄N1 ) = {p10, p11} and
S(h̄N2 ) = {p20, p21}. The sets of passive places are 11

=

{p4, p5, p6, p7, p8, p9} and12
={p14, p15, p16, p17, p18, p19}.

The GMECs associated with processes I and II are,
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FIGURE 5. The Petri net model with an α2-S4PR structure for Example 2.

FIGURE 6. (a) The sub-net model (NS
1 , MS

0 ), and (b) The sub-net
model (NS

2 , MS
0 ).

respectively, 4λ11+λ
2
2+λ

2
7+λ

2
8+λ

2
9 ≤ 4with its places associ-

ated with the GMEC being p2, p3, p12, p13, p14, p15, p16, p17,
p18, p19 and 3λ22 + λ12 + λ13 + λ14 ≤ 2 with its places

associated with the GMEC being p4, p5, p6, p7, p8, p9,
p12, p13. The transitions corresponding to the places in
the GMECs are t1, t2, t3, t12, t13, t14, t15, t16, t17, t18, t19, t20
and t3, t4, t5, t6, t7, t8, t9, t12, t13, t14, respectively. The corre-
sponding control places for the GMECs respectively are:

V1 = −



4
4
1
1
1
1
1
1
1
1



T

×



1 −1 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 1 −1


V1 =

[
−4 0 4 −1 0 0 0 0 0 0 0 1

]

V2 = −



1
1
1
1
1
1
3
3



T

1 −1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 1 −1


V2 =

[
−1 0 0 0 0 0 1 −3 0 3

]
When the two control places are added to the uncontrolled

sub-net (N S
1 ,M

S
0 ), the sub-net model is live with maximally

permissive behavior of 485 good states.
Similarly, let us consider the uncontrolled sub-net

(N S
2 ,M

S
0 ) shown in Fig. 6(b). The places in the Petri net

model (N S
2 ,M

S
0 ) have the set partition: P0 = {p1, p22},

PR2 = {p24, p26, p28, p30} and PA = {p3 − p10, p13 − p20}.
When the sub-net model is simulated using INA, the sub-net
model has 297 reachable states among which 161 states are
in the live zone and 136 states are in the deadlock zone.

Applying Algorithm 2 to the sub-net (N S
2 , M

S
0 ), the set of

active uncontrolled transitions is 5 = {t2, t13} with t11 = t2
and t22 = t13. The sets of active places are S(h̄A1 ) = {p3, p4}
and S(h̄A2 ) = {p13, p14}. The sets of null places are S(h̄

N
1 ) =

{p9, p10} and S(h̄N2 ) = {p19, p20}. The sets of passive places
are 11

= {p5, p6, p7, p8} and 12
= {p15, p16, p17, p18}.

The GMECs of processes I and II are, respectively, 3λA1 +
λA2 + λ

2
7 + λ

2
8 ≤ 3 with the places corresponding to the
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GMEC being p3, p4, p13, p14, p15, p16, p17, p18 and 2λA2 +
λ12+λ

1
3 ≤ 1 with the places associated with the GMEC being

p5, p6, p7, p8, p13, p14. The corresponding control places of
the GMECs respectively are:

V1 = −



3
3
1
1
1
1
1
1



T

×



1 −1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 1 0 1 −1 0
0 0 0 0 0 0 1 0 1 −1


V1 =

[
−3 0 3 −1 0 0 0 0 0 1

]

V2 = −


1
1
1
1
2
2



T 
1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 1 0 0 1 −1 0
0 0 0 1 0 0 1 −1


V2 =

[
−1 0 0 0 1 −2 0 2

]
When the two control places are included in the sub-net

(N S
2 , M

S
0 ) shown in Fig. 6(b), the sub-net model (N S

2 , M
S
0 )

is live with maximally permissive behavior of 161 states.
The computed control places for the sub-nets (N S

1 ,M
S
0 )

and (N S
2 ,M

S
0 ) are included in the Petri net model shown in

Fig. 5. The resulting Petri net model is live with maximally
permissive behavior of 485 good states. Table 6 provides the
detailed parameters of the computed control places. While
Table 7 compares the performance of the proposed method
with some deadlock control policies available in the literature
in terms of the number of control places, control arcs and
reachable states.

TABLE 6. Summary of the supervisory structure parameters for the Petri
net model shown in Fig. 5.

Example 3: Consider the Petri net model of an FMS
shown in Fig. 7. It has 33 places and 21 transitions. The
places have the set partition: P0 = {p1, p20, p21}, PR =
{p22 − p33} and PA = {p2 − p19}. The Petri net model has
42880 reachable states with 39800 and 3080 states being in
the live and deadlock zones, respectively.

TABLE 7. Performance comparison between the proposed method and
some existing policies for the Petri net model shown in Fig. 5.

FIGURE 7. The Petri net model of an FMS with α3-S3PR for Example 3.

The Petri net model shown in Fig. 7 is an α3-S3PR struc-
ture. Firstly, we decompose the Petri net model into (N S

1 , M
S
0 )

and (N S
2 , M

S
0 ). Secondly, the control places are obtained via

Algorithm 2. The control places of all the sub-nets are the
total control places in the supervisory structure for the Petri
net model shown in Fig 7.

Consider sub-net (N S
1 , M

S
0 ) shown in Fig. 8(a). By Algo-

rithm 2, the set of active uncontrolled transitions is 5 =
{t2, t8} with t11 = t2 and t22 = t8. The sets of active places are
S(h̄A1 ) = {p3, p4} and S(h̄

A
2 ) = {p8, p9}. The sets of null places

are S(h̄N1 ) = {p7} and S(h̄
N
2 ) = {p12, p13}. The sets of passive

places in processes I and II are 11
= {p5, p6} and 12

=

{p10, p11}, respectively. The GMECs of processes I and II
are, respectively, 2λA1 + λA2 + λ24 ≤ 5 with its places
associated with the GMEC being p3, p4, p8, p9, p10, p11 and
λA2 +λ

1
2 ≤ 3 with its places associated with the GMEC being

p5, p6, p8, p9 respectively. The corresponding control places
for the GMECs are respectively:

V1 =


2
2
1
1
1
1



T 
1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1


V1 =

[
−2 0 2 −1 0 0 0 1

]
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FIGURE 8. (a) The sub-net model (NS
1 , MS

0 ) of Petri net model shown in
Fig. 7, and (b) The sub-net model (NS

2 , MS
0 ) of Petri net model shown

in Fig. 7.

V2 =


1
1
1
1


T 

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1


V2 =

[
−1 0 1 −1 0 1

]
By including the two control places in the sub-net

(N S
1 , M

S
0 ) shown in Fig. 8(a), the sub-net model is live with

1408 good states.
Now let us consider the sub-net (N S

2 , MS
0 ) shown in

Fig. 8(b). By Algorithm 2, the set of active uncontrolled
transitions is5 = {t9, t15}with t11 = t9 and t22 = t15. The sets
of active places are S(h̄A1 ) = {p9, p10} and S(h̄

A
2 ) = {p14, p15}.

The sets of null places are S(h̄N1 ) = {p13} and S(h̄N2 ) =
{p18, p19}. The sets of passive places are 11

= {p11, p12}
and 12

= {p16, p17}. The GMECs of processes I and II
are, respectively, 2λA1 + λ

A
2 + λ

2
4 ≤ 5 with its places asso-

ciated with the GMEC being p9, p10, p14, p15, p16, p17 and
λA2 + λ

1
2 ≤ 3 with its places associated with the GMEC

being p11, p12, p14, p15, respectively. The corresponding con-
trol places for the GMECs are:

V1 =


2
2
1
1
1
1



T 
1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1


V1 =

[
−2 0 2 −1 0 0 0 1

]
V2 =


1
1
1
1


T 

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1


V2 =

[
−1 0 1 −1 0 1

]
If the two control places are included in the uncontrolled

sub-net model (N S
2 , M

S
0 ) shown in Fig. 8(b), the sub-net

TABLE 8. Summary of the supervisory structure parameters for the Petri
net model shown in Fig. 7.

TABLE 9. Performance comparison between the proposed method and
some existing policies for the Petri net model shown in Fig. 7.

model is live with 1408 states. When the four computed
control places of the sub-nets are included in the Petri net
model shown in Fig. 7, the controlled Petri net model is
live with 36192 good states. Table 8 presents the detailed
parameters in the supervisory structure for the Petri net model
shown in Fig. 7. Table 9 compares the performance results
of the proposed method with some available policies in the
literature.

VIII. DISCUSSION
Suppose that there are n concurrent processes in (N ,M0)
with N = (PA ∪ P0 ∪ PR,T ,F). Obviously, n is less than
the structural size of net N . We have two nested loops in
Algorithm 1 to search the active uncontrolled transitions
in (N ,M0). The first while-loop is executed n times such that
it can visit each process in (N ,M0), while in the worst case the
for-loop is executed |PA| times to find the active uncontrolled
transitions (i.e., when |Ir | = |PA|, where r ∈ PR is a resource
place). Note that |PA| < |P|. The overall computational
complexity of Algorithm 1 (finding active uncontrolled tran-
sitions in (N ,M0)) isO(n|P|). However, in general, the worst
case is almost unlikely to occur, since the active uncontrolled
transitions can be usually found at the first iteration.

Next we analyze the computational complexity of
Algorithm 2. We first deal with the problem of solving
αAl′λ

A
l′ + λAl′′ + 6n

i=1λ
i
l′′ ≤ β. We aim to find its integer

solutions for this equation. Branch-and-bound search algo-
rithms can be used to achieve this purpose. We assume
that there are n GMECs in a Petri net model (N ,M0) with
N = (PA ∪ P0 ∪ PR,T ,F) (Note that the number of GMECs
is equal to that of concurrent processes, which is a main
contribution of this research). The weighted token constant
is denoted by β. In αAl′λ

A
l′ + λ

A
l′′ + 6

n
i=1λ

i
l′′ ≤ β, we have at

most |PA| + 1 variables, i.e., α1, α2, . . ., α|PA|, and β. The
lower bound of variable αi (i ∈ {1, 2, . . . , |PA|}) is 1 and
its upper bound is

∑n
i=1 βi. For variable β, it falls into the
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interval [1, n
∑n

i=1 βi]. As the bounds of each variable are
known, the branch-and-bound algorithm to find an integer
solution to αAl′λ

A
l′ + λ

A
l′′ + 6

n
i=1λ

i
l′′ ≤ β is of polynomial

complexity [12].
Finally, we analyze the computational complexity of con-

trol place design viaVi = −DLD.Vi is the product ofmatrices
D and LD. As aforementioned, matrix D is a row matrix with
a dimension of 1×|Pi| and LD is a matrix with the dimension
of |Pi| × |Ti|. The computational complexity of multiplying
the two matrices is O(|Pi| × |Ti|). By considering that there
are n GMECs, the computational complexity of Algorithm 2
is O(n × |P| × |T |)=O(n|P||T |). In summary, the proposed
method in this paper has polynomial time complexity. Note
that n is the number of concurrent processes in a system. It is
less than the number of places, i.e., n < |P| is definitely
true.

However, a reachability graph based method is usually
computationally prohibitive since a complete state enumer-
ation is required. Such a method can be briefly presented as
follows. Let G(N ,M0) be the reachability graph of a Petri net
model (N ,M0). G(N ,M0) consists of a live zone (LZ) and a
deadlock zone (DZ). Usually LZ and DZ are used to denote
the sets of markings (states) in LZ and DZ, respectively.
Formally, markings (states) in LZ (DZ ) are expressed as
LZ = {M |M ∈ R(N ,M0), ∃σ ∈ T ∗,M [σ 〉M0} (DZ =
{M |M ∈ R(N ,M0),@σ ∈ T ∗,M [σ 〉M0}).
Let (N ,M0) be a net system with N = (P,T ,F,W ).

A marking M ∈ DZ is said to be an FBM (first-met bad
marking) in G(N ,M0) if M ′[t〉M , where M ′ ∈ LZ , t ∈ T .
The set of FBMs is represented by MFBM = {M ∈ DZ |
∃M ′ ∈ LZ , t ∈ T , s.t. M ′[t〉M} [10].

FIGURE 9. The reachability graph of a Petri net model.

Fig. 9 shows the two regions of the reachability graph,
where the inner circle represents the DZ in the reachability
graph while the rest of the region represents the LZ. From
the reachability graph shown in Fig. 9, the set of FBMs is
MFBM = {M8, M10,M11, M12,M13}. The main ideas of a
reachability graph based deadlock control policy of FMSs is
to eliminate all the FBMs in the reachability graph. However,
the number of FBMs increases exponentially with the size of
the Petri net model, making the problem intractable.

IX. CONCLUSIONS
This paper presents a newmethod of computing a supervisory
structure for a safe Petri net model with an αn-S3PR structure.
The proposed method utilizes resource transition circuits in
a Petri net model of a flexible manufacturing system to
avoid the computation of the reachability graph (or siphons).
The paper proposes two algorithms. The first one is used
to compute active uncontrolled transitions from (N , M0)
and the second algorithm is used to compute the GMECs
for each process of the Petri net model or sub-net model.
Furthermore, a method is presented to design a control place
for each computed GMEC. The proposed method is efficient
as it provides minimal supervisory structure with sub-optimal
(near-optimal) behavior. The major advantage derived from
the proposed method is as follows. It designs a single control
place at each concurrent process in the Petri net model or
sub-net model, which significantly reduces the supervisory
structure. Furthermore, it provides the constant number of
control places in the supervisory structure that depends on the
number of concurrent processes in the Petri net model or sub-
net model regardless of the number of resources used. Finally,
it can reduce huge costs at the stage of implementation and
maintenance due to its minimal supervisory structure. The
limitation of the proposed method is that it works for safe
Petri net models with an αn-S3PR or αn-S4PR structure. Our
future workwould focus on extending thework to generalized
S3PR models.
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