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ABSTRACT In this paper, we consider hardware limitation at the secondary user, which makes multiband
(wideband) spectrum sensing more challenging. Under secondary user (SU) hardware limitation, the SU can
only sense a small portion of the multiband spectrum for a given time period, which introduces a design issue
of selecting subchannels to sense at a given time. A random spectrum sensing strategy (RSSS) is presented
to select the subchannels to sense in a totally random fashion. With the Markov assumption of the primary
user (PU) behavior, a persistent spectrum sensing strategy (PSSS) is proposed to take advantage of the PU
traffic patterns in determining the channels to sense. Theoretical and simulation results show that RSSS
and PSSS display different performance in different ranges of PU traffic parameters. We finally propose an
adaptive spectrum sensing strategy (ASSS), which determines whether to use RSSS or PSSS for spectrum
sensing at a given time based on the estimated PU traffic parameters. Numerical results under various system
parameters are presented to evaluate the performance of RSSS, PSSS, and ASSS. The ASSS is shown to
gain the advantages of both RSSS and PSSS in different ranges of PU traffic parameters and provide more
available subchannels for SU.

INDEX TERMS Adaptive spectrum sensing, cognitive radio, subchannel selection, wideband spectrum
sensing, Markov model.

I. INTRODUCTION
The amount of wireless devices and services has grown
explosively during past decade, which makes the limited
frequency spectrum resources becomes increasingly scarce
and valuable. The current spectrum allocation policies reg-
ulate the wireless network to operate in certain time frames,
over certain frequency bands, and within certain geograph-
ical regions. While the entire radio spectrum from 6 kHz to
300 GHz has been allocated [1], the traditional spectrum poli-
cies has been shown to be highly inefficient that some radio
bands are overcrowdedwhile others are underutilized [2]–[4].
In fact, this statical spectrum allocation policy, in many fre-
quency bands, is a more significant problem than the physical
scarcity of spectrum itself [5], [6]. Cognitive radio (CR)
proposed by Mitola in 1999 [7], which allows secondary
users (SUs) to opportunistically access unused spectrum

bands, has been widely considered as a promising solution
to the above problem [6], [8], [9]. One of the fundamental
functions of CR is spectrum sensing conducted by secondary
user (SU) that involves monitoring the spectrum usage and
locating the unused spectrum bands [10]–[14]. In the field
of spectrum sensing, multiband spectrum sensing and access
are regarded as a great promise for future CR networks for its
potential of providing more access opportunities and higher
aggregate throughput [15]–[18].

Multiband spectrum sensing techniques include serial
sensing, parallel sensing and wideband sensing [15]. In serial
sensing, SUs deal with only one channel at one time while in
parallel sensing, SUs are assumed to detect all the channels
at the same time by using filter banks. Wideband sensing
captures a wideband spectrum using high-speed analog-to-
digital converters and high-performance signal processing
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components. In this paper, we consider a practical scenario in
multiband sensing in which the spectrum sensing conducted
by SUs is constrained by hardware limitation. SU hardware
limitation can be summarized as two categories [19]–[21]:
(1) Sensing capability limitation: given a wide multiband
spectrum, a SU can only sense a small portion of the
whole range of spectrum bands during a given time period;
(2) Access capability limitation: a SU can not access all of the
available channels simultaneously. In this paper, we address
the spectrum sensing problem under SU sensing capability
limitation.

With limited sensing capability, a design issue for SU is
to determine the specific subchannels to sense at a given
time. The problem of channel selection for multiband sensing
in cognitive radio networks has been studied in a multitude
of literatures. In [20], a single user-single channel access
problem is considered as a bandit problem and an asymp-
totically optimal strategy is presented. Wu et al. [21], [22]
model spectrum sensing under sensing capability limitation
as a Partial Observable Markov Decision Process (POMDP)
problem which is known to be P-Space hard to solve or even
to approximate [23]. Both [21] and [22] search the optimal
sensing policy using dynamic programming which is compu-
tationally expensive. If the PU traffic parameters change, it
may take a long time to find a new optimal sensing policy.
The multiband spectrum sensing problem is formulated as an
optimal stopping problem to determine the channel sensing
order in advance in both [24] and [25]. The complexity of
the dynamic programming method and backward induction
method used in these two papers, respectively, is relatively
high when the number of the channels grows large. The work
in [26] aims at finding the most likely available channels to
sense by employing an estimated channel availability proba-
bility.

In this paper, we study the multiband spectrum sensing
problem with limited sensing capability, where SU can only
sense a small portion of the given multiband spectrum dur-
ing a given time period. Our research differs from previ-
ous work in the following aspects. First, unlike the afore-
mentioned studies, most of which only consider the chan-
nel stationary availability rather than the PU state transition
property, we model the PU traffic of a channel as a dis-
crete time Markov chain (DTMC) model [27] and investi-
gate the impact of both stationary availability of channels
and PU state dynamic transition on the spectrum sensing
performance. Second, while [21], [22], [24]–[26] treat the
channels to be independent from each other, we consider
the correlation of the channels and it is often seen in the
presence of wideband PU signals, e.g., broadcast television
or wireless local area networks systems [28]. By channel
correlation, it means that several consecutive channels could
be occupied by one PU. We define a performance metric in
terms of normalized available channel quantity (NACQ) and
present two spectrum sensing strategies referred to as random
spectrum sensing strategy (RSSS) and persistent spectrum
sensing strategy (PSSS). Third, based on theoretical and

simulation results, we find that PSSS outperforms RSSS in
a certain range of PU traffic parameters, while for other PU
traffic parameter values, the contrary is true. Therefore, an
adaptive spectrum sensing strategy (ASSS) is proposed to
combine the advantages of both PSSS and RSSS, i.e., one of
the two strategies is adaptively selected to perform spectrum
sensing according to the PU traffic parameters, which can be
estimated during the process of spectrum sensing.

The rest of this paper is organized as follows. Section II
describes the system model of multiband spectrum sensing
under SU hardware limitation. The random spectrum sensing
strategy and persistent spectrum sensing strategy are pre-
sented in Section III. The adaptive spectrum sensing strat-
egy is proposed in Section IV and the PU traffic parameter
estimation is also studied in this section. Section V presents
numerical results and discussions on the performance of the
proposed algorithms. Conclusions are drawn in Section VI.

FIGURE 1. Multiband spectrum sensing under hardware limitation.

II. SYSTEM MODEL AND PROBLEM FORMULATION
The problem of multiband spectrum sensing with SU hard-
ware limitation is depicted in Fig. 1. A given wide frequency
band is divided into K subchannels, which are assigned to Np
PUs. As is shown in Fig. 1, the correlation of subchannels is
considered asNc consecutive subchannels are assigned to one
PU, which is called a PU block and thus we have K = NpNc.
Both PU and SU are assumed to function in a time-slotted
fashion. The Np PUs are assumed to be independent from
each other and the state of each PU follows a discrete time
Markov chain (DTMC) with identical parameters as depicted
in Fig. 2(a). The transition process of PU blocks is illustrated
in Fig. 2(b). A PU block transits from an inactive state to an
active state with probability P01 and from an active state to an
inactive state with probability P10. We assume that if a PU is
in an active state, it occupies all the Nc subchannels assigned.
As a result, the stationary distribution of the DTMC can be

computed as

P0 =
P10

P01 + P10
, (1a)

P1 =
P01

P01 + P10
, (1b)

where P0 and P1 are the stationary probabilities of PU inac-
tive and active state respectively, whichmeasure the availabil-
ity of a given PU block.

An SU performs spectrum sensing in each time slot. We
denote the sensing capability (i.e, the number of consecutive
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FIGURE 2. Statistic model of PU. (a) Markov model of PU; (b) PU state
transition.

subchannels that can be sensed at a given time) of the SU
as L as shown in Fig. 1. The L subchannels covered by SU
at a given time slot is called a sensing block. Notice that the
length of the sensing block L can be either L < Nc or L ≥ Nc,
which will be treated as Case 1 and Case 2, respectively, in
the following sections.

For convenience, a state vector S = (s0, s2, . . . , sL−1) is
used to represent the state of subchannels in a sensing block
for a time slot, where sk = 1, k = 0, 1, 2, . . . ,L − 1,
if the corresponding subchannel is detected in an inactive
state; Otherwise sk = 0 as the corresponding subchannel
is detected in an active state. For a given limited sensing
capability L, the objective of SU is to perform spectrum
sensing to obtain a larger number of available subchannels
under the systemmodel described above. To bemore specific,
we construct a metric Y , which is referred to as normalized
available channel quantity(NACQ), to evaluate any proposed
spectrum sensing algorithms.

Y =
1
LP0

L−1∑
k=0

sk . (2)

Note that the summation term in (2) is the total number of
available subchannels detected by SU in a time slot. However,
the number of the available subchannels for SU is also greatly
related to howmany subchannels are checked and the number
of available subchannels in the wideband range, which are
represented by L and P0, respectively. Therefore, it is more

reasonable to normalize the absolute value of the available
subchannels with L and P0. Further, Eq. (2) measures a single
realization of random variable Y . Therefore, we will investi-
gate E[Y ], instead of Y , in the following sections, where E[·]
denotes the mathematical expectation operator.

III. RANDOM AND PERSISTENT SPECTRUM SENSING
STRATEGIES
As discussed above, given a wide frequency band with a total
of K subchannels and limited SU sensing capability L, it is
necessary to determine which subchannels (total L consecu-
tive subchannels) to sense for each time slot. One straightfor-
ward approach is to select the subchannels randomly, which
is referred to as random spectrum sensing strategy (RSSS).
The other approach, whichwill be introduced in Section III.B,
is called persistent spectrum sensing strategy (PSSS). In this
section, we will present these two spectrum sensing strategies
and derive the corresponding NACQ E[Y ] under both Case 1
and Case 2 as mentioned in the last section.

FIGURE 3. (a) Event A of Case 1; (b) Event B of Case 1; (c) Case 2.

A. RANDOM SPECTRUM SENSING STRATEGY
In the random spectrum sensing strategy (RSSS), for each
time slot, SU randomly selects a sensing block (L con-
secutive subchannels) in the range of the wide frequency
band. We will derive the performance of RSSS under
two cases.
Case 1: L < Nc
In this case, the sensing block of SU for a particular time

slot can be within the range of one PU block or crosses over
two PUblocks (see Fig. 3(a) and Fig. 3(b)). Let’s refer to these
two events as Event A and Event B respectively. When a SU
randomly selects the sensing block, the probabilities of these
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two events are given by

PA = Pr(A) =
K (Nc − L + 1)
Nc (K − L + 1)

, (3a)

PB = Pr(B) =
(L − 1) (K/Nc − 1)

(K − L + 1)
. (3b)

For Event A, the elements sk , k = 0, 1, . . . ,L − 1, of the
state vector S are either all 1 or all 0, following the Bernoulli
distribution with parameter P0. Therefore, the expectation of
Y under Event A is given by

E [Y |A] = E

[
1
LP0

L−1∑
k=0

sk

]

=
1
LP0

E

[
L−1∑
k=0

sk

]
= 1. (4)

Event B consists of L − 1 equiprobable subcases each
corresponding to the L − 1 possible locations of a sensing
block considering two adjacent PU blocks. For the sens-
ing block, the number of subchannels in the first PU block
(n subchannels) can be 1, 2, . . . ,L − 1 and, accordingly, the
number of subchannels in the second PU block is L−n. Thus
the expectation of Y under Event B can be computed as

E [Y |B] = E

[
1
LP0

L−1∑
k=0

sk

]
=

1
LP0

E

[
L−1∑
k=0

sk

]

=
1
LP0

1
L − 1

L−1∑
n=1

(
nP0P1 + (L − n)P0P1 + LP20

)
= 1. (5)

Consequently, the expectation of Y , the NACQmetric, can
be obtained as

E [Y ] = PAE [Y |A]+ PBE [Y |B]

= 1. (6)

Case 2: L = qNc, q ∈ Z+
Under Case 2, we assume that sensing block length L is

an integral multiple of PU block length Nc and the sensing
block aligns with the boundaries of PU blocks, which implies
that the SU sensing block covers exactly q PU blocks (see
Fig. 3(c)). The number of inactive PUs in the sensing block
follows the Binomial distribution with parameters q and P0.
Therefore, the expectation of Y is given as

E [Y ] = E

[
1
LP0

L−1∑
k=0

sk

]
=

1
LP0

E

[
L−1∑
k=0

sk

]

=
1
LP0

qP0Nc, (7)

where qNc = L. Therefore E [Y ] = 1 under Case 2.
Based on the derivations for Case 1 and Case 2, we con-

clude that RSSS ensures SU to achieve a spectrum sensing
result at a level of the average number of available subchan-
nels in a sensing block.

B. PERSISTENT SPECTRUM SENSING STRATEGY
Considering the PU state transition probability, it is possible
to devise a spectrum sensing strategy to achieve improved
NACQcompared to RSSS. Basically, we intend tomove away
from the total random approach in selecting a sensing block.
Instead, if the SU finds the number of the available subchan-
nels to be equal or larger than the average number of available
subchannels in a sensing block, it stays in the current sensing
block for the next time slot; Otherwise SU randomly selects
a sensing block in the next time slot. This is the idea of
proposed persistent spectrum sensing strategy (PSSS). Notice
that the average number of available subchannels in a sensing
block can be found as γ = bLP0c, where b·c denotes the floor
operator. We thus have the policy of PSSS,

Selection of next sensing block

=

{
Stay in the current sensing block, x ≥ γ
Randomly select a sensing block, x < γ,

(8)

where x is a value of random variable X , which is the number
of available subchannels found by SU for current time slot.
Note that, the value of x for a time slot equals to

∑L−1
k=0 sk ,

where sk is the kth element of the state vector S. In the
following, we study the NACQ metric under both Case 1 and
Case 2.
Case 1: L < Nc
Since the sensing capability of SU is L, the number of

available subchannels found by SU at time slot t is a ran-
dom variable denoted as Xt which draws from set S1 =
{0, 1, 2, . . . ,L}. In other words, there are |S1| = L + 1 states
that Xt could possibly achieve. According to the PSSS policy
in (8), SU will either stay in the current sensing block or
randomly select another sensing block in time slot t + 1,
depending on the value of Xt in time slot t . Notice that,
Xt+1 only depends on Xt but not earlier states {Xt ′ , t ′ <
t}. It is easy to see that the sequence of random variables
{X1,X2, . . . ,Xt , . . .} follows a stationary Markov chain and
the state space is S1, which implies that

Pr {Xt+1 = xt+1|X1 = x1,X2 = x2, . . . ,Xt = xt }

= Pr {Xt+1 = xt+1|Xt = xt }

= Pr {Xt+m+1 = xt+1|Xt+m = xt } , (9)

where xt ∈ S1, t = 1, 2, . . . and m is an arbitrary time shift.
Thus the NACQ can be computed by

E [Y ] =
1
LP0

L∑
i=0

iPc1i , (10)

wherePc1i , i ∈ S1, is the ith entry of the stationary distribution
ofX defined asPc1 1

= (Pc10 ,P
c1
1 , . . . ,P

c1
L ), with each entryP

c1
i

being the stationary probability of i availabele subchannels
that can be found by SU in a sensing block. The superscript c1
represents Case 1 for short.

Eq. (10) shows that it requires the stationary distribution
of X to compute E [Y ]. To this end, following the theorem of
DTMC,we construct an (L+1)×(L+1) probability transition
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matrix Tc1 to characterize the transition from current state
to the next state. The element T c1ij in the ith row and jth
column, i, j = 0, 1, 2, . . . ,L, of Tc1 represents the transition
probability from state i to state j, i.e., the probability that there
are j available subchannels in the next time slot under the
condition that there are i available subchannels in current time
slot. To obtain the stationary distribution Pc1 of X , we first
provide the following theorem.
Theorem 1: The transition matrix Tc1 for Case 1 is given

as follows.
For 0 ≤ i < γ ,

T c1ij =


PAP1 + PBP21, j = 0

2
(K/Nc − 1)
(K − L + 1)

P1P0, 1 ≤ j ≤ L − 1

PAP0 + PBP20, j = L.

(11)

For γ ≤ i ≤ L − 1,

T c1ij =



P01(1− P10), j = 0
(1− P01)(1− P10), j = i
P01P10, j = L − i
(1− P01)P10, j = L
0, others.

(12)

For i = L,

T c1ij =



P01 + Pr (B|i = L)P201, j = 0

2
Pr (B|i = L)
(L − 1)

P01 (1−P01) , 1 ≤ j ≤ L−1

Pr (A|i = L) (1− P01)
+Pr (B|i = L) (1− P01)2, j = L,

(13)

where the posterior probabilities are given as

Pr(A|i = L) =
K (Nc − L + 1)

K (Nc − L + 1)+ (L − 1) (K − Nc)P0
,

(14a)

Pr(B|i = L) =
(L − 1) (K − Nc)P0

K (Nc − L + 1)+ (L − 1) (K − Nc)P0
.

(14b)
Proof: See Appendix A.

With Theorem 1, we obtained the state transition matrix
of the Markov chain constructed by the sequence of random
variables {X1,X2, . . . ,Xt , . . .}. It can be verified that Tc1
meets the property of a transition matrix that

∑L
j=0 T

c1
ij = 1

for an arbitrary i. The process of computing Tc1 is summa-
rized in Table 1.

To find the stationary distribution of X , we define
the probability vector of the tth time slot as Pc1t =

(Pc1t,0,P
c1
t,1, . . . ,P

c1
t,L) with each element Pc1t,i, i=0,1,2, . . . ,L,

representing the probability that there are i available sub-
channels in the sensing block in the tth time slot. Therefore,
the probability vector Pc1t+1 of the (t + 1)th time slot can be
expressed as

Pc1t+1 = Pc1t T
c1 . (15)

TABLE 1. Compute transition matrix for case 1.

Applying (15) recursively yields

Pc1t+1 = Pc10 (T c1 )t+1. (16)

where Pc10 = (Pc10,0,P
c1
0,1, . . . ,P

c1
0,L) is the initial probability

vector for the first sensing time slot of SU. Particularly under
the system model described earlier, SU has no prior knowl-
edge to make decision in the first time slot and randomly
selects a sensing block and then follows the policy of PSSS
(eq.(8)) in the subsequent time slots. Therefore, Pc10,i can be
computed as

Pc10,i =


PAP1 + PBP21, i = 0

2
(K/Nc − 1)
(K − L + 1)

P1P0, i = 1, 2, . . .L − 1

PAP0 + PBP20, i = L.

(17)
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With (16) and (17), the probability vector Pc1t at any time
slot t can be computed. The stationary distribution can be
obtained by the following limit

Pc1 = lim
t→∞

Pc1t = Pc10 lim
t→∞

(T c1 )t . (18)

And according to the stationary property ofMarkov chain, we
have lim

t→∞
(Tc1 )t = T̃c1 , which implies that (Tc1 )t converges

to a constant matrix T̃c1 with increasing t . Therefore, the
stationary distribution Pc1 of X can be computed as

Pc1 = Pc10 T̃c1 . (19)

In practice, computing the limit in (18) can be realized
using an iterative approach that taking (Tc1 )t as the true T̃c1
if the following condition has been met

max
i,j

∣∣∣∣((Tc1)t+1 − (Tc1)t)ij
∣∣∣∣ ≤ ε1, (20)

where the (·)ij represents the element in the ith row and jth
column of a matrix and ε1 is a preset error precision factor.
Finally, the NACQ under Case 1 can be obtained by (10) with
the stationary distribution of X .
Case 2: L = qNc, q ∈ Z+ Under this case, the assumption

of L is the same as that in Section III.A. The sensing block
is assumed to be aligned with the boundaries of PU blocks.
For simplicity, we can consider the number of inactive PUs
in the sensing block rather than the number of available
subchannels.

As the sensing block covers q PU blocks, the number
of inactive PUs denoted by Z in a particular time slot is
a discrete random variable which draws value from the set
S2 = {0, 1, 2, . . . , q}. In other words, there are |S2| = q+ 1
states for the value of Z . Similar to Case 1, the sequence
of random variables {Z1,Z2, . . . ,Zt , . . .} can be treated as a
stationary Markov chain and the state space is S2, where Zt
represents the number of inactive PUs in the sensing block of
SU in time slot t .
To obtain NACQ under Case 2, we proceed to find the

stationary distribution of Z which is defined as Pc2 1
=

(Pc20 ,P
c2
1 , . . . ,P

c2
L ) and compute E [Y ] with

E[Y ] =
1
qP0

q∑
i=0

iPc2i , (21)

where Pc2i , i ∈ S2, is the ith element of Pc2 .
To find the stationary distribution of Z , we construct a

probability transition matrix Tc2 for Case 2 with dimension
of (q + 1) × (q + 1), where superscript c2 represents Case
2 for short. The element T c2ij in the ith row and jth column,
i, j = 0, 1, 2, . . . , q, represents the probability that there are
j inactive PUs in the next time slot under the condition that
there are i inactive PUs in the current time slot. The elements
of Tc2 can be obtained using the following theorem.
Theorem 2: The transition matrix Tc2 for Case 2 is given

as follows.

TABLE 2. Compute transition matrix for case 2.

For i < γ ′,

T c2ij =
(
q
j

)
P0j(1− P0)q−j, (22)

where 0 ≤ i < γ ′ and 0 ≤ j ≤ q.
For γ ′ ≤ i ≤ q,

T c2ij =
q−u∑
l=v

(
i
l

)
Pl01(1− P01)

i−l
(

q− i
l − i+ j

)
×P(l−i+j)10 (1− P10)(q−l−j) (23)

where γ ′ =
⌊
γ
Nc

⌋
, 0 ≤ j ≤ q, u = max (j, q− i) and v =

max (0, i− j).
Proof: See Appendix B.

Theorem 2 provides the state transition matrix of the
Markov chain constructed by {Z1,Z2, . . . ,Zt , . . .} in Case 2.
The process of computing Tc2 is summarized in Table 2.

Furthermore, we define the probability vector Pc2t =

(Pc2t,0,P
c2
t,1, . . . ,P

c2
t,L) for Case 2, where P

c2
t,i, i = 0, 1, . . . ,L,

is the probability that there are i inactive PUs in the sensing
block in the tth time slot. Then we have

Pc2t+1 = Pc2t T
c2 . (24)

Pc2t+1 can be computed recursively

Pc2t+1 = Pc20 (T c2 )t+1, (25)

where Pc20 = (Pc20,0,P
c2
0,1, . . . ,P

c2
0,L) is the initial probability

vector for Case 2. For the first time slot, SU randomly selects
a sensing block and the number of inactive PUs in the sensing
block follows the binomial distribution with parameter q and
P0. The elements of Pc20 can be expressed as

Pc20,i =
(
q
i

)
Pi0 (1− P0)

q−i , (26)
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where 0 ≤ i ≤ q. With (26) and (25), the probability
vector Pc2t of any time slot t can be calculated. Therefore,
the stationary distribution of the Markov chain satisfies the
following limits

Pc2 = lim
t→∞

Pc2t = Pc20 lim
t→∞

(T c2 )t , (27)

where lim
t→∞

(T c2 )t = T̃c2 . Thus the stationary distribution of
Z is finally obtained as

Pc2 = Pc20 T̃c2 . (28)

Substituting Pc2 in (21) yields the NACQ for Case 2. Notice
that the computation of the limit in (27) can be implemented
using an iterative approach as for Case 1.

In summary, for a given PU statistic model and sensing
capability of SU, the NACQ of RSSS and PSSS can be
obtained using (6), (7), (10) and (21) for both Case 1 and
Case 2.

IV. ADAPTIVE SPECTRUM SENSING STRATEGY
A. RSSS VERSUS PSSS
RSSS and PSSS have been described in Section III. Their
performance results will be presented in Section V. It is clear
that RSSS NACQ is a constant value (see (6) and (7)), which
is independent of the PU traffic statistics, while PSSS perfor-
mance results depend on PU traffic statistics (e.g., parameters
of the PU traffic model). Considering PSSS, there are two
interesting traffic scenarios, a stable PU traffic scenario and
a highly dynamic PU traffic scenario.

In the stable PU traffic scenario, parameters P01 and P10
are relatively small and the state of PU (active or inactive)
changes slowly. There is a high probability that PU will keep
the same state in the next time slot. Consequently, if SU stays
in the current sensing block in the next time slot, following the
policy of PSSS given by (8), there will be a high probability
for SU to obtain/find a similar level of available subchannels
in the next time slot, which is above the average level (i.e.,
RSSS performance). Therefore, on average, SU will obtain
a higher NACQ in PSSS than that in RSSS. In dynamic PU
traffic scenario, parameters P01 and P10 are relatively large
and PU tends to change its state more frequently between
adjacent time slots. Following the policy in PSSS, SU will
stay in the same sensing block in the next time slot if meeting
the stated condition. However, PU will likely transit to its
opposite traffic state with a high probability, which means
that SU will obtain/find the number of available subchannels
below the average level in the next time slot. Thus, on aver-
age, SU will obtain a NACQ lower than than in RSSS.

B. ADAPTIVE SPECTRUM SENSING STRATEGY
Based on the considerations in Section IV.A, we conclude that
the proposed PSSS outperforms RSSS in a certain range of
the PU traffic parameters, while for other PU traffic parameter
values, the contrary is true. Therefore, we are able to develop
an adaptive spectrum sensing strategy (ASSS) based on PSSS

and RSSS using PU traffic parameters for adaptation. Basi-
cally, in ASSS, PSSS or RSSS is selected adaptively to con-
duct spectrum sensing at a given time according to PU traffic
parameter values. Thus, the challenge is to determine the PU
traffic parameter range for selecting PSSS operation and that
for RSSS operation.

To this end, it is helpful to find the values of the PU traffic
parameters at the intersection point of the PSSS and RSSS
performance. We first let the NACQ of PSSS ((10) and (21))
equal to 1 (i.e., the RSSS NACQ) for both Case 1 and Case 2
respectively,

1
LP0

L∑
i=0

iPc1i = 1. (29)

1
LP0

q∑
i=0

iPc2i = 1. (30)

Notice that the left hand side of (29) and (30) is related
to K , Nc and L besides the PU traffic parameters. For given
K , Nc and L, finding the values of PU traffic parameters
at the intersection point of the performance of RSSS and
PSSS for both Case 1 and Case 2 is equivalent to solving
(29) and (30) respectively. In (29) and (30), there are four
PU traffic parameters (i.e., P01, P10, P0 and P1). Accord-
ing to (1), we only need P01 and P0 to fully describe the
PU model.

FIGURE 4. Numerical results of intersection point for Case 1 and Case 2.

As shown in Section III, P01 and P0 are contained in
the transition matrix (Tc1 and Tc2 ), which are on the left
side of (29) and (30). Both (29) and (30) are difficult to
derive analytically in closed forms. Instead, we use numer-
ical methods to search P01 and P0 values that satisfy
(29) and (30). Based on numerical solutions (see results in
Fig. 4), we observe that, the values of PU traffic parame-

ters, (P̂c101, P̂
c1
0 ) and (P̂c201, P̂

c2
0 ), for Case 1 and Case 2 at the
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FIGURE 5. The flow chart of ASSS algorithm.

intersection point of the NACQ of PSSS and RSSS match the
function P01 = 1− P0 very well, i.e.,

P̂c101 = 1− P̂c10 , (31)

P̂c201 = 1− P̂c20 . (32)

Eq. (31) and (32) imply that, for both Case 1 and Case 2, if
P01 is smaller than 1−P0, PSSS outperforms RSSS and PSSS
is selected for spectrum sensing; otherwise, RSSS is selected.

C. ESTIMATION OF PU TRAFFIC PARAMETERS
From the descriptions above, it requires the knowledge of
real-time PU traffic statistics (i.e., P01 and P0) to implement
ASSS. Therefore, we present a simple and effective method
for estimating P01 and P0. The estimates of (P01,P0) under
Case 1 and Case 2, denoted as (P̃c101, P̃

c1
0 ) and (P̃c201, P̃

c2
0 ), can

be obtained by monitoring the state transition of PUs. In
Case 1, SU is able to sense the state transition of one PU and,
in Case 2, SU is able to sense the state transition of q PUs.
As a result, the estimates of PU traffic parameters for Case 1
and Case 2 can be expressed as follows.

For Case 1, P̃c101 and P̃
c1
0 are given by

P̃c101 =
N c1
01

N c1
01 + N

c1
00
, (33a)

P̃c10 =
N c1
0

N c1
, (33b)

FIGURE 6. Spectrum sensing efficiency of PSSS with P0 = 0.4. (a) Fixed β
with different α; (b) Fixed α with different β.

where N c1
01 and N c1

00 are the number of PU inactive-to-
active state transitions and inactive-to-inactive state transi-
tions between adjacent time slots, respectively, and N c1

0 is the
total number of time slots that PU is in an inactive state and
N c1 is total number of monitored time slots.

For Case 2, P̃c201 and P̃
c2
0 are given by

P̃c201 =

q∑
i=1

N c2
01 (i)

q∑
i=1

N c2
01 (i)+

q∑
i=1

N c2
00 (i)

, (34a)

P̃c20 =

q∑
i=1

N c2
0 (i)

qN c2
, (34b)
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FIGURE 7. Spectrum sensing efficiency of PSSS under different P0 with
α = 0.005 and β = 0.005.

where N c2
01 (i) and N c2

00 (i) are the number of inactive-to-
active state transitions and inactive-to-inactive state transi-
tions between adjacent time slots, respectively, of the ith PU
in the sensing block, N c2

0 (i) is the number of time slots that
the ith PU is in an inactive state, andN c2 is the total number of
monitored slots. With (33) and (34), the PU traffic parameters
are estimated and the impact of the estimation accuracy on
ASSS performance will be discussed in the next section.

With the estimates ofP01 andP0, we can follow the process
depicted in Fig. 5 to perform ASSS. To consider the potential
changes of the PU traffic parameters, periodic estimations of
the PU traffic parameters are included in Fig. 5

V. NUMERICAL RESULTS AND DISCUSSIONS
In this section, theoretical and simulation results are pre-
sented to evaluate the performance of RSSS, PSSS andASSS.
We introduce two factors, α = Nc/K , PU block length
normalized to the total number of subchannels, and β = L/K ,
SU sensing block length normalized to the total number of
subchannels. During the following simulations, K is set to
be 1000 and P01 is set as 0.05 : 0.05 : 0.95. Also, in the
following simulations, we assume perfect spectrum sensing
which means the sensing error is ignored in order to focus on
designing subchannel selection strategies.

Fig. 6 illustrates the NACQ of PSSS versus P01 under
different parameter settings, and the stationary probability of
PU inactive state P0 is fixed as 0.4. In Fig. 6(a), the factor
β is fixed while in Fig. 6(b) the factor α is fixed. Based
on the values of α and β in Fig. 6(a) and Fig. 6(b), both
performance results for Case 1 and Case 2 are presented.
As shown in Fig. 6, both theoretical and simulation are pre-
sented and they match very well. It is seen that, in PSSS,
the NACQ drops with increased P01, which agrees with the
discussions in Section IV.A.

FIGURE 8. Performance comparison between RSSS and PSSS. (a) Case 1,
α = 0.01 and β = 0.005; (b) Case 2, α = 0.005 and β = 0.025.

The performance of PSSS under various values of P0 are
illustrated in Fig. 7 with both α and β being fixed as 0.005.
Notice that the parameters in the PU traffic model P01, P10,
P0 and P1 follow the relationship in (1). The maximum value
that P01 can achieve is max(1, (1 − P0)/P0). Therefore, for
P0 <= 0.5, P01 can be set from 0 to 1. On the other hand,
for P0 > 0.5, the value of P01 is set from 0 to (1 − P0)/P0.
Fig. 7 shows that the theoretical analysis matches well with
the simulation results under various values of P01 and P0.
Further, the NACQE [Y ] is a value normalized by the average
number of available subchannels that can be found in a sens-
ing block. Therefore, as shown in Fig. 7, larger P0 implies
more available subchannels and it reduces the percentage of
the available subchannels found by SU.
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FIGURE 9. Performance of ASSS with different estimation length with
P0 = 0.4. (a) Case 1, α = 0.01 and β = 0.005; (b) Case 2, α = 0.005 and
β = 0.01.

The performance comparisons of PSSS and RSSS under
Case 1 and Case 2 are given by Fig. 8(a) and Fig. 8(b)
respectively. In Case 1, the factors α and β are set as 0.01
and 0.005, respectively, and in Case 2, they are set as 0.005
and 0.01, respectively. As shown in Fig. 8(a) and Fig. 8(b)
(and (6) and (7)), the NACQ of RSSS is 1. Additionally, PSSS
outperforms RSSS when P01 is relatively small while the
contrary is true if P01 is relatively large, which agrees with
the discussions presented in Section IV.A. The location of
the intersection point of PSSS and RSSS varies with different
values of P0, which is consistent with (31), (32) and Fig. 4.
In Fig. 9, simulation results are presented to show the

performance of ASSS and its comparison with PSSS and

RSSS for both Case 1 and Case 2. As described in
Section IV.C, the PU traffic parameter estimation method
((33) and (34)) is utilized in implementing ASSS. With the
estimated values of P̃c101, P̃

c1
0 , P̃c201 and P̃c20 , ASSS adaptively

selects RSSS or PSSS to perform spectrum sensing according
to the process shown in Fig. 5. It is observed that ASSS
performance approaches PSSS performance when P01 is rel-
atively small and it approaches RSSS performance when P01
is relatively large. Further, it is seen that the performance of
ASSS is influenced by the PU traffic parameter estimation
duration (N c1 and N c2 ), which determines the parameter esti-
mation accuracy. According to the ASSS policy described in
Section IV.B, ASSS uses the estimated parameters to decide
which spectrum sensing strategy to select. If the parameter
estimation is not accurate enough, there exists a chance that
the ASSS algorithm selects a wrong spectrum sensing strat-
egy in a particular range of PU traffic parameters, leading to
the performance loss as compared to the ideal situation (PSSS
in lower P01 region or RSSS in higher P01 region). However,
as long as N c1 and N c2 are sufficiently large, the performance
of ASSS approaches the ideal results. From Fig. 9, we also
show that with a stronger SU sensing capability (Case 2),
ASSS requires fewer estimation slots to achieve the ideal
results.

VI. CONCLUSION
In this paper, we have considered the multiband spectrum
sensing problem under SU hardware limitation, where an SU
can only sense a small portion of the total frequency band
for a given time period. We defined a performance metric in
terms of NACQ and two spectrum sensing strategies, RSSS
and PSSS, are presented. The expressions of the NACQ
of RSSS and PSSS are derived. Theoretical and simulation
results reveal the performance difference between RSSS and
PSSS in various ranges of PU traffic parameters. An ASSS
algorithm is then proposed to adaptively select a spectrum
sensing strategy (RSSS or PSSS) according to the values of
PU traffic parameters. An effective and simple method is
provided to estimate the PU traffic parameters. The proposed
ASSS algorithm is shown to take the advantages of both
RSSS and PSSS and it achieves a good NACQ performance
under a wide range of PU traffic scenarios.

APPENDIX A
THE PROOF OF THEOREM 1
Notice that SU will take one of the two actions in (8) depend-
ing on the value of i which represents the available subchan-
nels in the current time slot. Corresponding to different values
of i, the following three subcases are considered.
Subcase 1-1: 0 ≤ i < γ

For 0 ≤ i < γ , i.e., x < γ , SU will randomly select a
sensing block in the next time slot and the random variable
X will reach to state j, j ∈ S1. Since the sensing block of SU
in the next time slot can be within the range of one PU block
(i.e., Event A) or crosses over two PU blocks (i.e., Event B),
T c1ij can be computed by considering different values of j.
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If j = 0, which implies no available subchannels in the
sensing block in the next time slot, the PU block (or the two
PU blocks) involved in the sensing block is (are) in an active
state. Thus the transition probability T c1ij , j = 0, is

T c1ij = PAP1 + PBP21, (35)

where PA and PB are given in (3a) and (3b), respectively.
For a specific value of j ∈ {1, 2, . . . ,L − 1}, which only

occurs in Event B with the probability of PB/ (L − 1), the
sensing block crosses over two PU blocks and the two PUs are
in opposite states. Therefore, the transition probability T c1ij is
computed as

T c1ij = 2
(K/Nc − 1)
(K − L + 1)

P1P0. (36)

For j = L, the computation is similar to that for j = 0
except that the PU block (or the two PU blocks) involved
in the sensing block is (are) in an inactive state. Thus the
transition probability T c1ij , j = L, is

T c1ij = PAP0 + PBP20 (37)

With (35), (36) and (37), T c1ij for 0 ≤ i < γ in (11) is
obtained.
Subcase 1-2: γ ≤ i ≤ L − 1
For γ ≤ i < L − 1, SU will stay in the same sensing

block for the next time slot. Notice that, under this subcase,
the sensing block in current time slot must cross over two PU
blocks (Event B only). For a specific value of i, the sensing
block covers i subchannels of one PU block, which is in an
inactive state, and covers L − i subchannels of an adjacent
PU block, which is in an active state. Thus, there will be four
possible values of j, j ∈ {0, i,L− i,L}, the available subchan-
nels in the next time slot, depending on the state transitions
of the two PU blocks involved. The conditional probabilities
of these four possible values of j can be calculated as

Pr(j = 0|i) = P01(1− P10), (38a)

Pr (j = i|i) = (1− P01)(1− P10), (38b)

Pr(j = L − i|i) = P01P10, (38c)

Pr(j = L|i) = (1− P01)P10. (38d)

Therefore, the transition probability T c1ij for γ ≤ i < L−1
can be obtained as (12) .
Subcase 1-3: i = L
When i = L, both Event A and Event B need to be

considered. Clearly, SU will stay in the same sensing block
and the number of available subchannels, j, in the next time
slot depends on whether the sensing block involves one PU
block or two PU blocks in the current time slot. Therefore,
we first study the posterior probabilities Pr(A|i = L) and
Pr(B|i = L), which can be obtained by using the Bayes
theorem

Pr (A|i = L) =
Pr (i = L|A)Pr (A)

Pr (i = L)
, (39a)

Pr (B|i = L) =
Pr (i = L|B)Pr (B)

Pr (i = L)
. (39b)

For (39a), Pr(A) is given by (3a). The conditional proba-
bility Pr (i = L|A) is P0 and the probability Pr(i = L) can be
expressed as

Pr (i = L) = PAP0 + PBP02. (40)

Similarly, Pr(B|i = L) can be found. As a result, the final
expressions of Pr(A|i = L) and Pr(B|i = L) given in (14a)
and (14b) can be derived.

Afterwards, the transition probability T c1ij can be computed
by considering different values of j. For j = 0, the involved
PU should transit from inactive state to active state under
Event A and the two PUs should transit from inactive state
to active state under Event B. Therefore, the transition prob-
ability T c1ij , j = 0, is

T c1ij = Pr (A|i = L)P01 + Pr (B|i = L)P201. (41)

For a specific value of j ∈ {1, 2, . . . ,L − 1}, which only
occurs in Event B with probability Pr(B|i = L)/(L − 1), the
two PU blocks involved in the sensing block are in opposite
states. The transition probability T c1ij , j = 1, 2, . . . ,L − 1, is
computed as

T c1ij = 2
Pr (B|i = L)
(L − 1)

P01 (1− P01) . (42)

For j = L, the analysis is similar to that of j = 0 except
that the involved PU (or PU blocks) stays inactive state in the
next time slot. Thus the transition probability T c1ij , j = L, is
given by

T c1ij = Pr (A|i = L) (1− P01)+ Pr (B|i = L) (1− P01)2.

(43)

With (41), (42) and (43), the expression of transition prob-
ability for i = L in (13) is obtained.

APPENDIX B
THE PROOF OF THEOREM 2
To find Tc2 , we follow the decision rule in (8) while the
threshold used in Case 2 can be equivalently replaced as
γ ′ = bγ /Ncc as we only consider the number of inactive PUs
in the sensing block. Considering the two possible actions
taken by SU, we split the process of computing Tc2 into two
subcases.
Subcase 2-1: i < γ ′

In this subcase, SU will randomly select another sensing
block in the next time slot. It is easy to show that the number
of an inactive PUs j in a new sensing block follows the bino-
mial distribution with parameter q and P0, i.e., j ∼ B(q,P0),
where P0 is the stationary probability of inactive state for
a given PU block. Therefore, transition probability T c2ij is
calculated as

T c2ij =
(
q
j

)
P0j(1− P0)q−j, (44)

where 0 ≤ i < γ ′ and 0 ≤ j ≤ q.
Subcase 2-2: γ ′ ≤ i ≤ q
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In this subcase, SU stays in the current sensing block in
the next time slot and there are i inactive PUs and q− i active
PUs in current time slot. Notice that the number of inactive
PUs, j, in the next time slot is a result of various combinations
of transition patterns of all the PUs in current time slot. For
convenience, we denote the number of PUs that transit from
an inactive state to an active state as l. The number of PUs
that transit from an active state to an inactive state is l ′, which
equals j+ l− i. Also notice that l ∼ B(i,P01) and l ′ ∼ B(q−
i,P10). In computing T c2ij , j = 0, 1, 2, . . . , q, for a particular
i, we consider two separate parts of the value of j, 0 ≤ j ≤ i
and i < j ≤ q.
• Part 1: 0 ≤ j ≤ i
If j ≤ q− i, to obtain the number of inactive PUs, j, in the

next time slot, the possible value of l is from {i − j, i − j +
1, . . . , i}. Correspondingly, the possible value of l ′ is from
{0, 1, . . . , j}. The total probability that these combinations
of transition patterns for the next time slot is the transition
probability T c2ij which is given by

T c2ij =
i∑

l=i−j

(
i
l

)
Pl01(1− P01)

i−l
(

q− i
l − i+ j

)
×P(l−i+j)10 (1− P10)(q−l−j). (45)

If j > q − i, l ∈ {i − j, i − j + 1, . . . , q − j} and l ′ ∈
{0, 1, . . . , q − i}, the transition probability T c2ij is computed
as

T c2ij =
q−j∑
l=i−j

(
i
l

)
Pl01(1− P01)

i−l
(

q− i
l − i+ j

)
×P(l−i+j)10 (1− P10)(q−l−j). (46)

• Part 2: i < j ≤ q
If j ≤ q− i, l ∈ {0, 1, . . . , i} and l ′ ∈ {j− i, j− i+1, . . . , j},

the transition probability T c2ij is derived as

T c2ij =
i∑

l=0

(
i
l

)
Pl01(1− P01)

i−l
(

q− i
l − i+ j

)
×P(l−i+j)10 (1− P10)(q−l−j). (47)

If j > q − i, l ∈ {0, 1, . . . , q − j} and l ′ ∈ {j − i, j − i +
1, . . . , q− i}, T c2ij is given by

T c2ij =
q−j∑
l=0

(
i
l

)
Pl01(1− P01)

i−l
(

q− i
l − i+ j

)
×P(l−i+j)10 (1− P10)(q−l−j). (48)

Combining (45)∼(48), the state transition probability T c2ij
for Subcase 2-2 can be written in a more compact form,

T c2ij =
q−u∑
l=v

(
i
l

)
Pl01(1− P01)

i−l
(

q− i
l − i+ j

)
×P(l−i+j)10 (1− P10)(q−l−j), (49)

where γ ′ ≤ i ≤ q, 0 ≤ j ≤ q, u = max (j, q− i) and v =
max (0, i− j).
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