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ABSTRACT As one of the signed variants of the diffusion least mean square (DLMS) algorithm over
networks, the diffusion sign error algorithm has been presented in previous reference. In this paper, we
propose two novel signed variants of the DLMS algorithm, i.e., the diffusion signed regressor algorithm
and the diffusion sign-sign algorithm. Moreover, this paper analyzes the performance of these three
signed variants of the DLMS algorithm for cyclostationary white Gaussian inputs which have periodically
time-varying variances. It is assumed that the distributed algorithms are in non-stationary environments.
Specifically, the unknown parameter to be identified is time-varying according to the standard random walk
model. The analysis models in terms of mean weight behavior and mean square performance are provided,
in which, we can find some interesting results. Finally, simulations are carried out to verify the correctness
of the proposed analysis model.

INDEX TERMS Distributed network, adaptive filter, sign algorithm, stochastic model, and cyclostationary
signals.

I. INTRODUCTION
Distributed adaptive signal processing over the network is
an attractive and challenging technique in which the nearby
agents implement network-wide computation and control
objectives through local information exchange [1]–[3]. It has
been applied to a variety of occasions, such as factory
automation, robotics, telecommunications and so on. There
are several distributed strategies for parameters estima-
tion including incremental strategy, diffusion strategy, and
consensus strategy. Using these strategies, researchers have
proposed many distributed algorithms including the incre-
mental least mean square (ILMS) algorithm [4], the incre-
mental affine projection algorithm (IAPA) [5], diffusion LMS
(DLMS) [6], [7], diffusion recursive least square (DRLS) [8],
consensus LMS [9], [10]. In the incremental algorithm, infor-
mation flows from one node to the next in a sequential
fashion [4], thus this algorithm would suffer from the per-
formance degradation when the link failures occur [4], [5].
Two time-scales are required in consensus algorithm [9]. One
is used to gather the measurement values of the network
nodes, and another is used to iterate fully over the gathered

values to obtain agreement till the next repeated process
begins [9]–[12]. However, the implementations of two time-
scales may result in the unstable behavior [12]. In this work,
we mainly study diffusion strategy because it has proven to
be more robust and still has stable performance, even when
there are some unstable underlying nodes [6]–[8], [12]–[26].

Unfortunately, for today’s high data rates, the aforemen-
tioned distributed algorithms includingDLMS algorithmmay
be not practical due to their required multiplications which
need long bit duration. To address this issue, in single-agent
model conditions, the signed algorithms including signed
regressor algorithm (SRA), signed error algorithm (SEA)
and sign-sign algorithm (SSA), have been studied. The SRA
was derived by introducing the signum function for regressor
data [27]. The SEA was obtained by introducing the signum
function for estimate error [28]–[30]. The SSA was derived
by introducing the signum function for both estimate error
and regressor data [32], [33]. The study of the transient
behavior and the steady state performance for these three
algorithms has been provided for the stationary input in the
literature [27], [28], [32].

18876
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017



W. Wang, H. Zhao: Diffusion Signed LMS Algorithms and Their Performance Analyses for Cyclostationary White Gaussian Inputs

In many practical applications, the man-made signals are
typically cyclostationary [34]. Thereby, the cyclostationary
signals are widely used in radar, communication and power
systems [34]–[40]. In [35], the cyclostationary signals were
selected as the quadrature amplitude modulated (QAM) sig-
nals. Nassar et al. [36] studied the narrowband (NB) power
line communication (PLC) in which the additive noises were
cyclostationary. Additionally, in the beamforming algorithms
proposed in [37] and [38], the input signals were also cyclo-
stationary. The stochastic analyses of the adaptive algorithms
for the cyclostationary inputs were also studied in the lit-
erature [41]–[49]. The work [41] studied the convergence
of the mean weight for the LMS algorithm when the input
signal is cyclostationary. In [42]–[45], the mean square per-
formance of the LMS was analyzed for the cyclostation-
ary input when the system was time-variant. In [46], the
behaviors of the least mean fourth (LMF) algorithm were
studied for the cyclostationary input. The work [49] presented
the novel algorithm called time-average LMS (TA-LMS)
to enhance the performance of LMS when the input sig-
nals were cyclostationary. Also, the detail performance
analysis of the TA-LMS algorithm was also provided.
Eweda and Bershad [48] presented the analysis of the signed
LMS algorithms in the nonstationary conditions for cyclo-
stationary Gaussian inputs. However, the analysis of the
distributed algorithms for cyclostationary Gaussian input is
absent in the previous literature.

In the multi-agent condition, one of the signed variants of
diffusion LMS algorithm has been proposed in [20], which is
called diffusion sign error algorithm (DSEA). In addition, the
performance analysis of the DSEA for stationary input was
also given in [20]. In this paper, we propose two other variants
of signed LMS algorithm. The first is diffusion signed regres-
sor algorithm (DSRA). The second is diffusion sign-sign
algorithm (DSSA). The DSRA, DSEA andDSSA constitute a
family of the diffusion signed LMS algorithms. Although the
diffusion signed LMS algorithms may be inferior to DLMS
algorithm in terms of performance, they are not required
multiplications which need long bit duration. Thereby, the
diffusion signed LMS algorithms are suitable for the prac-
tical applications. Then, we provide the statistical analyses
of the three variants of the diffusion signed LMS algorithm
for cyclostationary white Gaussian inputs under nonstation-
ary environments. Compared with mean square error (MSE)
and excess MSE (EMSE), the mean weight behavior and
mean square weight behavior is easy to analyze. In addition,
the MSE and EMSE can be easily derived from the mean
weight behavior and mean square weight behavior [54], [55].
Thereby, we choose mean weight behavior and mean square
weight behavior to analyze the proposed algorithm. From the
results of the analysis, since the effects of the cyclostationary
input at different nodes could be offset, we can get that the
proposed algorithms can suppress the impact of the cyclo-
stationary input. Simulations are also conducted to illustrate
the consistency between the theoretically predicted behaviors
and the simulated results.

The rest of the paper is organized as follows. In section II,
we give the problem formulation. In section III, we propose
two other variants of the diffusion signed LMS algorithm.
In section IV, the analysis of DSEA for cyclostationary inputs
is provided. In section V, we analyze the performance of
the DSRA for cyclostationary inputs. In section VI, we pro-
vide the analysis of the DSSA for cyclostationary inputs.
In section VII, we carry out the simulations to verify the
correctness of the analyses. In section VIII the conclusion of
this paper is drawn.
Notation: Ia (a is a positive integer) denotes identity matrix

of size a×a.⊗ denotes Kronecker product. Ik is a matrix of
sizeM×MN . Averagely partitioning Ik intoN square matri-
ces of sizeM×M , the kth matrix is identity matrix and others
are zero matrices. ◦ denotes the Hadamard product. Tr [•]
denotes the trace operator. [•]T denotes the transposition
for real vectors and matrices. E [•] denotes the expectation
operator. diag {•} formulates a (block) diagonal matrix with
its arguments. 1a (a is a positive integer) is a row vector with
a length of a whose entries are 1. 1′N×N is a square matrix of
size N × N whose entries are 1. I is a square matrix of size
NM ×NM . We partition I into N ×N blocks, and each block
is a square matrix of size M × M . The diagonal blocks of I
are 1′M×M . The others are zero matrices. sgn [•] means the
signum function.

FIGURE 1. Diffusion network with N nodes.

II. PROBLEM FORMULATION
A. PROBLEM FORMULATION
We consider the network with N nodes, which is shown
in Fig.1. The nodes are distributed over a spatial domain to
collectively estimate some interesting parameters which vary
over time. At time instant i, node kin the network attains the
measurement sample dk (i) and the regression data uk,i. The
relationship between the dk (i) and uk,i is given by

dk (i) = uk,iw
o
i + vk (i) (1)

where vk (i) denotes the measurement noise of the node k and
uk,i = [uk,i, uk,i−1, . . . , uk,i−M+1] has the length of M . The
optimal solution, denoted by woi , is time-variant according
to the standard random walk model [52], which is usually
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used in analyzing the adaptive filter under non-stationary
conditions [42], [44], [48], [53], [55]:

woi = woi−1 + qi (2)

where qi is the parameter incremental vector.

B. CYCLOSTATIONARY PROCESSES
The input signal uk,i is the cyclostationary random process
which satisfies

E
[
uk,i1+T

]
= E

[
uk,i1

]
(3)

E
[
uk,i1+T uk,i2+T

]
= E

[
uk,i1uk,i2

]
(4)

for all i1 and i2, where T is the period.
To make the analysis tractable, we assume that uk,i is a

cyclostationary white Gaussian vector with zero mean and
covariance matrix
Ru,k (i) which is expressed as

Ru,k (i) = E
[
uTk,iuk,i

]
= diag

[
σ 2
k,u(i), σ

2
k,u(i− 1), . . . , σ 2

k,u(i−M + 1)
]
(5)

where σ 2
k,u(i) is a periodic function whose period is T . It is

assumed that σ 2
k,u(i) has the following two typical forms in

this paper. The first is a sinusoidal power time variation

σ 2
k,u(i) = βk

[
1+ sin

(
2π i
T
+$k

)]
(6)

where βk is a positive constant which controls the maximum
value of the σ 2

k,u(i) and$k is the phase position for the node k .
The second is a pulsed power time variation

σ 2
k,u(i) =

{
Hk , for qT + ωk < i < qT + αkT + ωk
Lk , for qT + αkT + ωk < i < (q+1)T+ωk

0 < αk < 1, q = 1, 2, . . . (7)

whereHk andLk are the lowest and highest values for σ 2
k,u(i),

respectively, q is a positive integer, and ωk is the delay time
parameter. For tractability, the periods of the cyclostationary
signals are classified into large periods, moderate periods
and small periods. The periods of the cyclostationary signals
can be seen as small periods if T � M . Conversely, the
periods of the cyclostationary signals can be seen as large
periods if T � M . The periods of the cyclostationary signals
can be seen as moderate periods if T ≈ M . Evidently, the
large periods are corresponding to the slow variations of input
power. On the contrary, the small periods are corresponding
to the fast variations of input power. The moderate periods
are matched with the moderate variations of input power.

III. A FAMILY OF THE DIFFUSION SIGNED
LMS ALGORITHMS
Assuming that the speed for variation of woi is very slow,
the centralized LMS algorithm can be used to estimate woi

as follows

wk,i = wk,i−1 + µ
N∑
k=1

uTk,i(dk (i)− uk,iwk,i−1) (8)

where µ is the step size, wk,i denotes the estimate of woi at
node k . To lower the computation complexity of this algo-
rithm, the centralized signed regressor algorithm (SRA) can
be obtained by introducing the signum function for regressor
data, which is multiplication-free,

wk,i = wk,i−1 + µ
N∑
k=1

sgn
[
uTk,i

]
(dk (i)− uk,iwk,i−1). (9)

Inspired by the merits of distributed algorithm, the
DLMS algorithm has been proposed to estimate the woi [7].
Similar to the DLMS algorithm, the proposed adapt-then-
combine (ATC) diffusion SRA (DSRA) without information
exchange is given by

ψk,i = wk,i−1 + µk sgn
[
uTk,i

]
(dk (i)− uk,iwk,i−1)

wk,i =
∑
l∈Nk

al,kψ l,i.
(10)

where µk is the step size for node k . ψk,i is the intermediate
estimate ofwoi ,Nk denotes the set of neighbor nodes of node k
and al,k is the combinationweight between node l and node k ,
which satisfies

al,k > 0,
N∑
l=1

al,k = 1. (11)

Using the same method of deriving DSRA, we can obtain
the diffusion sign-sign algorithm (DSSA) by introducing the
signum function for estimate errors and regressor data
ψk,i = wk,i−1 + µk sgn

[
uTk,i

]
sgn(dk (i)− uk,iwk,i−1)

wk,i =
∑
l∈Nk

al,kψ l,i.
(12)

Moreover, the diffusion signed error algorithm (DSEA)
which has been proposed in [20] is given by

ψk,i = wk,i−1 + µkuTk,i sgn(dk (i)− uk,iwk,i−1)
wk,i =

∑
l∈Nk

al,kψ l,i.
(13)

Then, the DSRA, DSEA and DSSA constitute a family of
the diffusion signed LMS algorithms. In the rest of the paper,
the mathematical models of three variants of the diffusion
signed LMS algorithm are analyzed. Subsequently, the mean
square deviation (MSD) of these three algorithms is derived.

IV. ANALYSIS OF THE DIFFUSION SIGNED
ERROR ALGORITHM
A. MEAN WEIGHT BEHAVIOR
Firstly, the intermediate weight error vector at node k is
defined as

ψ̃k,i = ψk,i − w
o
i , (14)
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and the weight error vector at node k is defined as

w̃k,i = wk,i − woi . (15)

Then, the global vectors are expressed as

ψ̃ i=


ψ̃1,i

ψ̃2,i
...

ψ̃N ,i

, w̃i=


w̃1,i

w̃2,i
...

w̃N ,i

, U i=


uT1,i
uT2,i
...

uTN ,i

, Qi=


qi
qi
...

qi


The diagonal matrixM is also introduced

M = diag [µ1IM , µ2IM , . . . , µN IM ] . (16)

Finally, we introduce the extended weighting matrices

P = P⊗ IM (17)

where P is a matrix whose {l, k} th entry is
{
al,k

}
.

In order to make the performance analysis tractable, the
following assumptions are stated:

A1: All the input signals uk,i are spatially and tempo-
rally independent. The input signals are white Gaussian
cyclostationary processes.

A2: All the measurement noises vk (i) are spatially and tem-
porally independent. In addition, they areGaussian noise
with zero means and variances σ 2

k,v.
A3: The input signals uk,i are independent with all the mea-

surement noises vk (i).
A4: The parameter incremental vectors qi are zero mean

processes with the covariance matrix O = E
[
qiq

T
i

]
=

σ 2
q IM .

A5: For node k , weight error quantities ψ̃k,i and wk,i are
statistically independent of uTk,iuk,i. In addition, wk,iw

T
k,i

is also statistically independent of uTk,iuk,i.
A6: The parameter incremental vectors qi are statistically

independent of uk,i.
These assumptions have been widely used in analyzing the
distributed algorithms.

In addition, we state the following lemma which will be
used in analyzing the performance of DSSA.
Lemma: Assuming that a and b are jointly Gaussian zero

mean random variables, we have

E
[
sgn (a) sgn (b)

]
=

2
π
sin−1

E [ab]√
E
[
a2
]
E
[
b2
] . (18)

The Lemma can be easily obtained by the price
theorem1 [50].

1Assuming that random variables a and b are jointly Gaussian processes
with zero mean, we have

E
[
a sgn (b)

]
=

√
2
π

E [ab]√
E
[
b2
]

Subtracting woi from both sides of (13) and using
equations (14) and (15) result in the following equations

ψ̃k,i = w̃k,i−1 − µkuTk,i sgn
×
(
uk,iw̃k,i−1 − vk (i)− uk,iqi

)
− qi

w̃k,i =
∑
l∈Nk

al,k ψ̃ l,i.
(19)

Using the global vectors and matrices which have been
mentioned in the foregoing paragraphs yields{

ψ̃ i = w̃i−1 −MAiU i − Qi
w̃i = PT ψ̃ i

(20)

where

Ai = diag
{
sgn

(
u1,iw̃1,i−1 − v1(i)− u1,iqi

)
,

sgn
(
u2,iw̃2,i−1 − v2(i)− u2,iqi

)
, . . . ,

sgn
(
uN ,iw̃N ,i−1 − vN (i)− uN ,iqi

)}
⊗ IM . (21)

Combining two equations in (20) results in

w̃i = PT w̃i−1 − PTMAiU i − PTQi. (22)

Applying the stochastic expectation to (22) yields

E
[
w̃i
]
= PTE

[
w̃i−1

]
− PTME [AiU i]− PTE

[
Qi
]
.

(23)

Using Assumption A4, we easily obtain

E
[
Qi
]
= 0. (24)

Then, let

Qi = E [AiU i] . (25)

To make analysis clear, we averagely partition Qi into N
blocks. According to (21), the kth block of Qi is given by

[Qi]k = E
[
sgn

(
uk,iw̃k,i−1 − vk (i)− uk,iqi

)
uTk,i

]
. (26)

Then, the jth element of [Qi]k is expressed as

{[Qi]k}j = E
[
sgn

(
uk,iw̃k,i−1 − vk (i)− uk,iqi

)
uk,i−j+1

]
.

(27)

{[Qi]k}j can be calculated by conditioning the expectation on
w̃k,i−1 and qi, then averaging over w̃k,i−1 for a given qi and
finally averaging over qi as follows

{[Qi]k}j = E
{
E
{
E
[
sgn

(
uk,iw̃k,i−1 − vk (i)− uk,iqi

)
× uk,i−j+1|w̃k,i−1, qi

]
|qi
}}
. (28)

Using the price theorem, Assumptions A3 and A6 leads
to (29), as shown at the top of the next page, where

[
w̃k,i−1

]
j

and
[
qi
]
j denote the jth element of w̃k,i−1 and qi, respectively.

0k (i) in (29) is expressed as

0k (i) = qTi Ru,k (i)w̃k,i−1 + w̃
T
k,i−1Ru,k (i)qi. (30)
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E
[
sgn

(
uk,iw̃k,i−1 − vk (i)− uk,iqi

)
uk,i−j+1

]
=

√
2
π
E

E


[
w̃k,i−1

]
jσ

2
k,u(i− j+ 1)+

[
qi
]
jσ

2
k,u(i− j+ 1)√

σ 2
k,v +

[
w̃Tk,i−1Ru,k (i)w̃k,i−1

]
+ qTi Ru,k (i)qi − 0k (i)

∣∣∣∣∣∣∣∣ qi


(29)

E
[
sgn

(
uk,iw̃k,i−1 − vk (i)− uk,iqi

)
uk,i−j+1

]
=

√
2
π
E


E
[
w̃k,i−1

]
jσ

2
k,u(i− j+ 1)+

[
qi
]
jσ

2
k,u(i− j+ 1)√

σ 2
k,v + E

[
w̃Tk,i−1Ru,k (i)w̃k,i−1

]
+ qTi Ru,k (i)qi − 0

′
k (i)

 . (31)

Assuming that the approximation w̃Tk,i−1Ru,k (i)w̃k,i−1 ≈

E
[
w̃Tk,i−1Ru,k (i)w̃k,i−1

]
holds, we obtain (31), as shown at

the top of this page, where

0′k (i) = qTi Ru,k (i)E
[
w̃k,i−1

]
+ E

[
w̃Tk,i−1

]
Ru,k (i)qi. (32)

Assuming that the approximation qTi Ru,k (i)qi ≈ E
[
qTi Ru,k (i)

qi
]
holds and using Assumption A4, we have

E
[
sgn

(
uk,iw̃k,i−1 − uk,iqi − vk (i)

)
uk,i−j+1

]
=

√
2
π

E
[
w̃k,i−1

]
jσ

2
k,u(i− j+ 1)√

σ 2
k,v + E

[
w̃Tk,i−1Ru,k (i)w̃k,i−1

]
+ E

[
qTi Ru,k (i)qi

] .
(33)

After some algebraic manipulations, we obtain

[Qi]k

=

√
2
π

Ru,k (i)E
[
w̃k,i−1

]√
σ 2
k,v + E

[
w̃Tk,i−1Ru,k (i)w̃k,i−1

]
+ E

[
qTi Ru,k (i)qi

] .
(34)

Using the Assumptions A1, A5 and A6 yields

E
[
w̃Tk,i−1Ru,k (i)w̃k,i−1

]
≈ Tr

[
IkK (i−1)IT

k Ru,k (i)
]
, (35)

E
[
qTi Ru,k (i)qi

]
≈ Tr

[
ORu,k (i)

]
(36)

where K(i− 1) = E
[
w̃i−1w̃Ti−1

]
.

Combining the results ofN nodes and using some algebraic
operations, yield

Qi =

√
2
π
2(i)diag{Ru,1(i),Ru,2(i), . . . ,Ru,N (i)}E[w̃i−1]

(37)

where

2(i) = diag {41(i), 42(i), . . . , 4N (i)} ⊗ IM (38)

with

4k (i) =
1√

σ 2
k,v+Tr

[
IkK(i−1)IT

k Ru,k (i)
]
+Tr

[
ORu,k (i)

] .
(39)

Substituting (24) and (37) into (23) results in the recursive
expression for E

[
w̃i
]
of DSEA

E
[
w̃i
]
= PT

{
IMN −M

√
2
π
2(i)

× diag
{
Ru,1(i), Ru,2(i), . . . , Ru,N (i)

}}
E
[
w̃i−1

]
(40)

B. MEAN SQUARE WEIGHT BEHAVIOR
Post-multiplying (22) by its transpose, averaging the result
and using Assumption A4 lead to the following expression
for K(i)

K(i) = PTK(i− 1)P − PTMT1P
−PTT2MP + PTMT3MP + PTT4P (41)

where

T1 = E
[
AiU iw̃Ti−1

]
, (42)

T2 = E
[
w̃i−1UT

i A
T
i

]
, (43)

T3 = E
[
AiU iUT

i A
T
i

]
, (44)

T4 = E
[
QiQ

T
i

]
. (45)

The expected values are computed for cyclostationary
input as follows.

1) EXPECTATION VALUES T1 AND T2
Firstly, we averagely partition T1 into N × N blocks where
each block is a matrix of size M × M . The {s, t} th block of
T1 is given by

(T1)s,t = E
[
sgn

(
us,iw̃s,i−1 − vs(i)− us,iqi

)
uTs,iw̃

T
t,i−1

]
.

(46)

Obviously, the {j, k} th element of (T1)s,t is expressed as[
(T1)s,t

]
j,k

= E
{
sgn

(
us,iw̃s,i−1 − vs(i)− us,iqi

)
us,i−j+1

[
w̃t,i−1

]
k

}
.

(47)
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[
(T1)s,t

]
j,k = E

{
E
{
E
{
sgn

(
us,iw̃s,i−1 − vs(i)− us,iqi

)
us,i−j+1

[
w̃t,i−1

]
k

∣∣∣ w̃s,i−1, qi}∣∣∣ qi}} . (48)

[
(T1)s,t

]
j,k =

√
2
π
E

E


{[
w̃s,i−1

]
j +

[
qi
]
j

} [
w̃t,i−1

]
kσ

2
s,u(i− j+ 1)√

σ 2
s,v +

[
w̃Ts,i−1Ru,s(i)w̃s,i−1

]
+ qTi Ru,s(i)qi − 0s(i)

∣∣∣∣∣∣∣∣ qi

 . (49)

[
(T1)s,t

]
j,k =

√
2
π
E


{[
w̃s,i−1

]
j +

[
qi
]
j

} [
w̃t,i−1

]
kσ

2
s,u(i− j+ 1)√

σ 2
s,v + E

[
w̃Ts,i−1Ru,s(i)w̃s,i−1

]
+ qTi Ru,s(i)qi − 0

′
s(i)

 . (50)

Conditioning the expectation on w̃s,i−1 and qi, averaging
over w̃s,i−1 for a given qi, and finally averaging over qi, we
have (48), as shown at the top of the next page.

Using price theorem and Assumption A1 yields (49), as
shown at the top of this page. Assuming that the approxi-

mation w̃Ts,i−1Ru,s(i)w̃s,i−1 ≈ E
[
w̃Ts,i−1Ru,s(i)w̃s,i−1

]
, (49)

implies (50), as shown at the top of this page. Assuming that
the approximation qTi Ru,s(i)qi ≈ E

[
qTi Ru,s(i)qi

]
holds and

using Assumption A4, we have[
(T1)s,t

]
j,k

=

√
2
π

E
{[
w̃s,i−1

]
j

[
w̃t,i−1

]
k

}
σ 2
s,u(i− j+ 1)√

σ 2
s,v + E

[
w̃Ts,i−1Ru,s(i)w̃s,i−1

]
+ E

[
qTi Ru,s(i)qi

] .
(51)

Using (39) leads to[
(T1)s,t

]
j,k=

√
2
π
4s(i)σ 2

s,u(i−j+1)E
[[
w̃s,i−1

]
j

[
w̃t,i−1

]
k

]
.

(52)

Using matrix theory, we have

T1 =

√
2
π
Ai ◦ K(i− 1) (53)

where

Ai = {2(i)col {B1,B2, . . . ,BN }} ⊗ 1MN (54)

with

Bk (i) = col
{
σ 2
k,u(i), σ

2
k,u(i− 1), . . . , σ 2

k,u(i−M + 1)
}
.

(55)

According to (42) and (43), we easily obtain

T2 = TT
1 (56)

2) EXPECTATION VALUE T3
We averagely partition T3 into N × N blocks where each
block is a matrix of size M × M . The {s, t} th block of T3
is given by

(T3)s,t = E
[
sgn

(
us,iw̃s,i−1 − vs(i)− us,iqi

)
uTs,i

• ut,i sgn
(
ut,iw̃t,i−1 − vt (i)− ut,iqi

)]
(57)

If s = t , we have

(T3)s,t = E
[
uTs,ius,i

]
. (58)

Then, if s 6= t , using Assumption A1 yields

(T3)s,t = 0. (59)

Combining (58) and (59), we have

T3 = diag
{
Ru,1(i), Ru,2(i), . . . , Ru,N (i)

}
(60)

Using Assumption A1 results in

T3 = E
[
U iUT

i

]
. (61)

3) EXPECTATION VALUE T4
Using the definition of global vector Qi, the property of the
Kronecker product and the Assumption A4 yields

T4 = E
{[

1TN ⊗ qi
] [

1TN ⊗ qi
]T}

=
[
1′N×N

]
⊗ E

[
qiq

T
i

]
= σ 2

q
(
1′N×N ⊗ IM

)
(62)

Substituting (53), (56), (61) and (62) into (41), we can
easily get the recursive equation for K(i) of the DSEA.
According to [7], the instantaneousMSD of the coefficients

at node k is defined as

MSDk (i) = E
[
w̃Tk,iw̃k,i

]
. (63)

Using the algebra theorem yields

MSDk (i) = Tr
{
E
[
w̃k,iw̃Tk,i

]}
= Tr

{
IkK(i)IT

k

}
. (64)

Similarly, the instantaneous network MSD of the coeffi-
cients is defined as

MSDnetwork (i) =
1
N

N∑
k=1

MSDk (i) (65)

Using the relationship between MSDk (i) and
MSDnetwork (i), we have

MSDnetwork (i) =
1
N
Tr {K(i)} (66)
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C. BEHAVIOR FOR SLOW VARYING INPUT POWER
According to [45] and [47], the adaptive filter algorithms
are usually influenced by cyclostationary input signal with
slow variant power. Thereby, it is necessary to investigate this
special case in distributed algorithm. For this case, the period
of input power is so large that the length of the filter can be
omitted. Then, we can get

σ 2
k,u(i) = σ

2
k,u(i− 1) = . . . = σ 2

k,u(i−M + 1) (67)

Substituting (67) into (40) yields

E
[
w̃i
]

=PT

{
IMN−

√
2
π
M2sl(i)

(
diag

{
σ 2
1,u(i), σ

2
2,u(i), . . . , σ

2
N ,u(i)

}
⊗ IM

)}
E
[
w̃i−1

]
(68)

where

2sl(i) = diag
{
4sl,1(i), 4sl,2(i), . . . , 4sl,N (i)

}
⊗ IM (69)

with

4sl,k (i)=
1√

σ 2
k,v+σ

2
k,u(i)Tr

[
IkK(i−1)IT

k

]
+σ 2

k,u(i)Tr [O]
.

(70)

Then, plugging (67) into (41) results in

K(i) = PTK(i− 1)P − PTMTsl,1P − PTTT
sl,1MP

+PTMTsl,3MP + PTT4P (71)

where

Tsl,1 =

√
2
π
×

{[
2sl(i)

{
col

{
σ 2
1,u(i), σ

2
2,u(i), . . . ,

σ 2
N ,u(i)

}
⊗ 1TM

}]
⊗1NM

}
◦ K(i− 1) (72)

Tsl,3 = diag
{
σ 2
1,u(i), σ

2
2,u(i), . . . , σ

2
N ,u(i)

}
⊗ IM . (73)

Remark: When the variations of σ 2
k,u(i) for all nodes are

synchronous, i.e. $1 = $2 = . . . = $N and ω1 = ω2 =

. . . = ωN for sinusoidal power time variation and pulsed
power time variation, respectively, change trends of the MSD
curves for all nodes are same. Moreover, from (71), (72)
and (73), we get that the MSD curves for all nodes have rip-
ples. Thereby, the network MSD has ripples. On the contrary,
when the variations of power for all nodes are asynchronous,
i.e. $1 6= $2 6= . . . 6= $N and ω1 6= ω2 6= . . . 6= ωN
for sinusoidal power time variation and pulsed power time
variation, the variations of the entries of the Tsl,1 and Tsl,3
are asynchronous. In the other word, σ 2

k1,u
(i) and σ 2

k2,u
(i) for

k1 6= k2 would not reach the maximum or minimum at
the same time. Thus, the ripples of the instantaneous MSD

of the coefficients at node k1 and k2would be offset. Then,
the curve of network MSD would have no ripples or little
ripples. In summary, the diffusion algorithms can eliminate
the influence of the cyclostationary signal by appropriately
adjusting {$k} or {ωk}.

V. ANALYSIS OF THE DIFFUSION SIGNED
REGRESSOR ALGORITHM
A. MEAN WEIGHT BEHAVIOR
Plugging (14) and (15) into (10) and using the global vectors
in previous section yields{

ψ̃ i = w̃i−1 −M
[
Diw̃i−1 − Gi −DiQi

]
− Qi

w̃i = PTψi
(74)

where

Di = diag
{
sgn

[
uT1,i
]
u1,i, sgn

[
uT2,i
]
u2,i, . . . , sgn

[
uTN ,i

]
uN ,i

}
(75)

Gi = col
{
sgn

[
uT1,i
]
v1,i, sgn

[
uT2,i
]
v2,i, . . . , sgn

[
uTN ,i

]
vN ,i

}
(76)

Combining two equations of (74), we have

w̃i = PT w̃i−1−PTM
[
Diw̃i−1−Gi−DiQi

]
−PTQi (77)

Averaging both sides of (77) and using Assumption A4
result in

E
[
w̃i
]
= PTE

[
w̃i−1

]
− PTME [Di]E

[
w̃i−1

]
. (78)

Let

Di = E [Di] . (79)

Then, we averagely partition Di into N × N blocks of size
M ×M . Obviously, the {j, j} th block of Di can be expressed
as

[Di]j,j = E
[
sgn

[
uTj,i
]
uj,i
]
. (80)

Using Assumption A1, we have

E
[
sgn

(
uTj,i
)
uj,i
]

= diag
{
E
[
sgn

(
uj,i
)
uj,i
]
,E
[
sgn

(
uj,i−1

)
uj,i−1

]
, . . . ,

E
[
sgn

(
uj,i−M+1

)
uj,i−M+1

]}
. (81)

Using the algebraic theory yields

E
[
sgn

(
uj,i
)
uj,i
]
= E

[∣∣∣uj,i∣∣∣] = √ 2
π
σj,u(i). (82)

Plugging back into (81), we obtain

E
[
sgn

[
uTj,i
]
uj,i
]

=

√
2
π
diag

{
σj,u(i), σj,u(i− 1), . . . , σj,u(i−M + 1)

}
.

(83)

Using Assumption A1, [Di]j,m = 0 for j 6= m. Thereby,
substituting (83) into (79) leads to the expression for Di

Di = diag {Z1(i),Z2(i), . . . ,ZN (i)} (84)
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where

Zj(i) =

√
2
π
diag

{
σj,u(i), σj,u(i−1), . . . , σj,u(i−M+1)

}
.

(85)

Plugging (84) into (78) results in the expression for E
[
w̃i
]

E
[
w̃i
]
= PT

{IMN −Mdiag {Z1(i),Z2(i), . . . ,

ZN (i)}}E
[
w̃i−1

]
. (86)

B. MEAN SQUARE WEIGHT BEHAVIOR
Post-multiplying (77) by its transpose, taking expectation of
the result and using Assumption A4 yield

K(i) = PTK(i− 1)P + PTMY1MP
−PTMY2P − PTY3MP
+PTMY4MP + PTMY5MP
−PTT4DT

i MP−PTMDiT4
TP+PTT4P. (87)

where

Y1 = E
[
Diw̃i−1w̃Ti−1DT

i

]
, (88)

Y2 = E
[
Diw̃i−1w̃Ti−1

]
, (89)

Y3 = E
[
w̃i−1w̃Ti−1DT

i

]
, (90)

Y4 = E
[
GiGTi

]
. (91)

Y5 = E
[
DiQiQ

T
i D

T
i

]
. (92)

Then, we compute these expected values for
cyclostationary input.

1) EXPECTATION VALUE Y1
Similar to the method of estimating T1, Y1 can be averagely
partitioned into N × N blocks of sizeM ×M . Evidently, the
{s, t} th block of Y1 is given by

[Y1]s,t = E
{
sgn

[
uTs,i
]
us,iw̃s,i−1w̃

T
t,i−1

[
sgn

[
uTt,i
]
ut,i
]T}

.

(93)

Then, to calculate the expectation value, we consider the
following two cases.
Case 1: s = t
Using Assumption A1 and algebraic theory, (93) implies

(See Appendix A for detail)

[Y1]s,t = 2Zs(i)E
[
w̃s,i−1w̃Ts,i−1

]
Zs(i)

+Tr
[
E
[
w̃s,i−1w̃Ts,i−1

]
Zs(i)

]
IM .

(94)

Case 2: s 6= t
Using Assumption A1 and A5 results in

[Y1]s,t = E
[
sgn

(
uTs,i
)
us,i
]
E
[
w̃s,i−1w̃Tt,i−1

]
× E

[
sgn

(
uTt,i
)
ut,i
]T
. (95)

Substituting (83) into (95) yields

[Y1]s,t = Zs(i)IsK(i− 1)IT
t Zt (i). (96)

Combining the results of two cases, we obtain

Y1 = DiK(i− 1)Di + Di [K(i− 1) ◦ I]Di + T ′(i) (97)

where

I = diag
{
1′M×M , 1′M×M , .., 1′M×M

}︸ ︷︷ ︸
N

(98)

and

T ′(i) = diag
{
Tr
[
I1K(i− 1)I1Z1(i)

]
,

Tr
[
I2K(i− 1)I2Z2(i)

]
, . . . ,

Tr
[
INK(i− 1)INZN (i)

]}
⊗ IM . (99)

2) EXPECTATION VALUES Y2 AND Y3
According to Assumption A5, (89) implies

Y2 = E [Di]E
[
w̃i−1w̃Ti−1

]
. (100)

Substituting (84) into (100) results in

Y2 = diag {Z1(i),Z2(i), . . . ,ZN (i)}K(i− 1). (101)

Comparing (89) and (90) yields

Y3 = YT
2 . (102)

3) EXPECTATION VALUE Y4
Substituting (76) into (91) and using Assumption A2
yields

Y4 = diag
{
σ 2
1,v, σ

2
2,v, σ

2
3,v, . . . , σ

2
N ,v

}
⊗ IM . (103)

4) EXPECTATION VALUE Y5
Y5 can be averagely partitioned into N ×N blocks which are
square matrices with the length of M . The {s, t} th block of
Y5 is expressed as

[Y5]s,t = E
[
sgn

[
uTs,i
]
us,iqiq

T
i u

T
t,i sgn

[
ut,i
]]
. (104)

Then, to calculate the expectation value, we consider the
following two cases.
Case 1: s = t
In this case, (104) implies

[Y5]s,t = E
[
sgn

[
uTs,i
]
us,iqiq

T
i u

T
s,i sgn

[
us,i
]]
. (105)

[Y5]s,t can be calculated by conditioning the expectation on
us,i, then averaging over qi as follows

[Y5]s,t = E
[
E
[
sgn

[
uTs,i
]
us,iqiq

T
i u

T
s,i sgn

[
us,i
] ∣∣us,i ]]

= E
[
sgn

[
uTs,i
]
us,iE

[
qiq

T
i

]
uTs,i sgn

[
us,i
]]
. (106)

Using assumption A3, (106) implies

[Y5]s,t = σ
2
qE

[
sgn

[
uTs,i
]
us,iu

T
s,i sgn

[
us,i
]]
. (107)
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FIGURE 2. The topology of network.

FIGURE 3. Noise variances σ2
k,v for 20 nodes.

FIGURE 4. The amplitudes of square roots of Hk and Lk , (a) Hk , (b) Lk .

Using (83) and (A.11), we have (See Appendix B for detail)

[Y5]s,t = σ
2
q
4
π
Ru,s(i)+ σ 2

q Tr
[
Ru,s(i)

]
IM (108)

Case 2: s 6= t
Using Assumption A1 and A5 results in

[Y5]s,t = σ
2
qE

[
sgn

(
uTs,i
)
us,i
]
E
[
sgn

(
uTt,i
)
ut,i
]T
. (109)

FIGURE 5. The network MSD curves of DSEA for synchronous pulsed
variations, (a) slow variation: T = 400 (b) fast variation: T = 2, (c)
moderate variation: T = 32.

Substituting (83) and (85) into (109) yields

[Y5]s,t = σ
2
qZs(i)Zt (i). (110)

Combining the results of two cases, we obtain

Y5 = σ
2
qDiϒDi + σ

2
q
4
π
diag

{
Ru,1(i), Ru,2(i), . . . , Ru,N (i)

}
+ σ 2

q S
′(i) (111)

where

ϒ =


0 I · · · I
I 0 · · · I
...

...
. . .

...

I I · · · 0

 (112)

and

S ′(i)=diag
{
Tr
[
Ru,1(i)

]
,Tr

[
Ru,2(i)

]
, . . . ,Tr

[
Ru,N (i)

]}
⊗IM
(113)

Combining (87), (97), (101), (102), (103) and (111), we
can get the recursion of K(i) for the DSRA.
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FIGURE 6. The network MSD curves of DSRA for synchronous pulsed
variations, (a) slow variation: T = 400, (b) fast variation: T = 2,
(c) moderate variation: T = 32.

C. BEHAVIOR FOR SLOW VARYING INPUT POWER
According to [45], when cyclostationary input signals have
slow varying input power, equation (67) holds. Then, substi-
tuting (67) into (86) yields

E
[
w̃i
]
= PT

[
IMN −

√
2
π
M
{
diag

{
σ1,u(i), σ2,u(i), . . . ,

σN ,u(i)
}
⊗ IM

}]
E
[
w̃i−1

]
.

(114)

Plugging (67) into (87) yields

K(i) = PTK(i− 1)P + PTMYsl,1MP
−PTMYsl,2P − PTYT

sl,2MP
+PTMY4MP + PTMYsl,5MP
−PTT4YT

sl,2MP − PTMYsl,2T4
TP + PTT4P

(115)

FIGURE 7. The network MSD curves of DSSA for synchronous pulsed
variations, (a) slow variation: T = 400, (b) fast variation: T = 2,
(c) moderate variation: T = 32.

FIGURE 8. The magnitudes of square roots of βk .

where

Ysl,2 =
√

2
π
h(i)K(i− 1) (116)

Ysl,1 =
2
π
h(i)K(i−1)h(i)+

2
π
h(i)

[
K(i−1) ◦ IM2N 2

]
h(i)

+ diag {H(i)} ⊗ IM , (117)

Ysl,5 = σ 2
q h(i)ϒh(i)+ σ

2
q
4
π
h2(i)+ σ 2

qMh2(i) (118)
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FIGURE 9. The network MSD curves of DSEA for synchronous sinusoidal
variation, (a) slow variation: T = 400 (b) fast variation: T = 2,
(c) moderate variation: T = 32.

with

h(i) = diag
{
σ1,u(i), σ2,u(i), . . . , σN ,u(i)

}
⊗ IM (119)

and

H(i) =

√
2
π

{
σ1,u(i)Tr

[
I1K(i− 1)I1

]
,

σ2,u(i)Tr
[
I2K(i− 1)I2

]
,

. . . , σN ,u(i)Tr
[
INK(i− 1)IN

]}
. (120)

Then, combining (64), (66) and (115), we can get the
MSDk (i) and MSDnetwork (i). From (115), we can also obtain
that the diffusion algorithms can eliminate the influence of
the cyclostationary signal.

VI. ANALYSIS OF THE DIFFUSION SIGN-SIGN
ERROR ALGORITHM
Subtracting woi from both sides of (12) yields

ψ̃k,i = w̃k,i−1 − µk sgn
(
uTk,i

)
sgn

(
uk,iw̃k,i−1 − vk (i)− uk,iqi

)
− qi

w̃k,i =
∑
l∈Nk

al,k ψ̃ l,i.

(121)

FIGURE 10. The network MSD curves of DSRA for synchronous sinusoidal
variations, (a) slow variation: T = 400 (b) fast variation: T = 2,
(c) moderate variation: T = 32.

Using the definitions of global quantities, we obtain{
ψ̃ i = w̃i−1 −MAiBi − Qi
w̃i = PT ψ̃ i

(122)

where

Bi = sgn [U i] . (123)

Equivalently,

w̃i = PT w̃i−1 − PTMAiBi − PTQi. (124)

A. MEAN WEIGHT BEHAVIOR
Taking expectation of both sides of (124) and using Assump-
tion A4 yield

E
[
w̃i
]
= PTE

[
w̃i−1

]
− PTME [AiBi] . (125)

Let

Qi = E [AiBi] . (126)
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FIGURE 11. The network MSD curves of DSRA for synchronous sinusoidal
variations, (a) slow variation: T = 400 (b) fast variation: T = 2,
(c) moderate variation: T = 32.

Then, we averagely partitionQi into N blocks. Subsequently,
the kth block of Qi is given by

[Qi]k = E
[
sgn

(
uk,iw̃k,i−1 − vk (i)− uk,iqi

)
sgn

(
uTk,i

)]
.

(127)

Evidently, the jth block element of [Qi]k is computed as

{[Qi]k}j=E
[
sgn

(
uk,iw̃k,i−1−vk (i)−uk,iqi

)
sgn

(
uk,i−j+1

)]
.

(128)

In the sequel, conditioning the expectation on w̃k,i−1 and
qi, then averaging over w̃k,i−1 for a given qi and finally
averaging over qi, we can get (129), as shown at the top of
the next page. Using Assumption A3 and Lemma, and letting
a = uk,iw̃k,i−1 − vk (i) − uk,iqi and b = uk,i−j+1 in (18),
equation (129) becomes (130), as shown at the top of the next
page.

Since the terms w̃Tk,i−1Ru,k (i)w̃k,i−1 and qTi Ru,k (i)qi are
both the sum of the M terms which are on the order of the
square of the numerator, the magnitude of the argument of the

FIGURE 12. The network MSD curves of DSEA for asynchronous pulsed
variations, (a) slow variation: T = 400 (b) fast variation: T = 2,
(c) moderate variation: T = 32.

function sin−1 is on the order of
√
1/2M . Thereby, it is much

less than 1. Assuming that the approximation sin−1x ≈ x
holds, (130) implies (131), as shown at the top of the next
page. In the sequel, using Assumption A4 and the approxi-

mations w̃Tk,i−1Ru,k (i)w̃k,i−1 ≈ E
[
w̃Tk,i−1Ru,k (i)w̃k,i−1

]
and

qTi Ru,k (i)qi ≈ E
[
qTi Ru,k (i)qi

]
, (131) implies that

{[Qi]k}j

=
2
π

[
w̃k,i−1

]
jσk,u(i− j+ 1)√

σ 2
k,v + Tr

[
IkK(i− 1)IT

k Ru,k (i)
]
+ Tr

[
ORu,k (i)

] .
(132)

Using some algebraic manipulations leads to the expres-
sion for [Qi]k

[Qi]k

=
2
π

Ak (i)E
[
w̃k,i−1

]√
σ 2
k,v + Tr

[
IkK(i− 1)IT

k Ru,k (i)
]
+ Tr

[
ORu,k (i)

]
(133)
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{[Qi]k}j = E
{
E
{
E
[
sgn

(
uk,iw̃k,i−1 − vk (i)− uk,iqi

)
sgn

(
uk,i−j+1

)∣∣∣ w̃k,i−1, qi]∣∣∣ qi}} . (129)

{[Qi]k}j =
2
π
E

E
 sin−1

[
w̃k,i−1

]
jE
[
u2k,i−j+1

]
+
[
qi
]
jE
[
u2k,i−j+1

]
√
E
[
u2k,i−j+1

]√
σ 2
k,v + w̃

T
k,i−1Ru,k (i)w̃k,i−1 + q

T
i Ru,k (i)qi − 0k (i)

∣∣∣∣∣∣∣∣ qi



=
2
π
E

E
 sin−1

[
w̃k,i−1

]
jσ

2
k,u(i− j+ 1)+

[
qi
]
jσ

2
k,u(i− j+ 1)

σk,u(i− j+ 1)
√
σ 2
k,v + w̃

T
k,i−1Ru,k (i)w̃k,i−1 + q

T
i Ru,k (i)qi − 0k (i)

∣∣∣∣∣∣ qi



=
2
π
E

E
 sin−1

[
w̃k,i−1

]
jσk,u(i− j+ 1)+

[
qi
]
jσk,u(i− j+ 1)√

σ 2
k,v + w̃

T
k,i−1Ru,k (i)w̃k,i−1 + q

T
i Ru,k (i)qi − 0k (i)

∣∣∣∣∣∣ qi

 . (130)

{[Qi]k}j =
2
π
E

E
 [

w̃k,i−1
]
jσk,u(i− j+ 1)+

[
qi
]
jσk,u(i− j+ 1)√

σ 2
k,v + w̃

T
k,i−1Ru,k (i)w̃k,i−1 + q

T
i Ru,k (i)qi − 0k (i)

∣∣∣∣∣∣ qi
 . (131)

where

Ak (i) = diag
{
σk,u(i), σk,u(i− 1), . . . , σk,u(i−M + 1)

}
.

(134)

After some algebraic manipulations, (133) implies that

Qi =
2
π
2(i)diag {A1(i), A2(i), . . . , AN (i)}E

[
w̃i−1

]
.

(135)

Substituting (135) into (125) leads to the expression for
E
[
w̃i−1

]
of DSSA

E
[
w̃i
]

= PT
{
IMN −M

2
π
2(i)diag {A1(i), A2(i), . . . , AN (i)}

}
×E

[
w̃i−1

]
. (136)

B. MEAN SQUARE WEIGHT BEHAVIOR
Post-multiplying (124) by its transpose, taking expectation of
the result and using Assumption A4, we have

K(i) = PTK(i− 1)P − PTMT1P
−PTT2MP + PTMT3MP + PTT4P. (137)

where

T1 = E
[
AiBiw̃Ti−1

]
, (138)

T2 = E
[
w̃i−1BTi A

T
i

]
, (139)

T3 = E
[
AiBiBTi A

T
i

]
. (140)

To analyze the mean square weight behavior, we calculate
the expected values as follows

1) EXPECTATION VALUES T1 AND T2
T1 can be averagely partitioned into N ×N blocks which are
square matrices with the length of M . The {s, t} th block of

T1 is expressed as

(T1)s,t=E
{
sgn

(
us,iw̃s,i−1−vs(i)−us,iqi

)
sgn

(
uTs,i
)
w̃Tt,i−1

}
.

(141)

The {j, k} th entry of (T1)s,t is given by[
(T1)s,t

]
j,k

= E
{
sgn

(
us,iw̃s,i−1−us,iqi−vs(i)

)
sgn

[
us,i−j+1

] [
w̃t,i−1

]
k

}
.

(142)

Conditioning the expectation on w̃k,i−1 and qi, then aver-
aging over w̃k,i−1 for a given qi and finally averaging
over qi yield (143), as shown at the top of the next page.
Using the Lemma, Assumption A4 and the approximations
sin−1x ≈ x, w̃Ts,i−1Ru,s(i)w̃s,i−1 ≈ E

[
w̃Ts,i−1Ru,s(i)w̃s,i−1

]
and qTi Ru,s(i)qi ≈ E

[
qTi Ru,s(i)qi

]
, we have (144), as shown

at the top of the next page, where the first equality in (144)
follows from the Lemma, the fourth equality in (144) follows
from the approximation sin−1x ≈ x and the fifth equal-
ity in (144) follows from Assumption A4 and the approx-

imations w̃Ts,i−1Ru,s(i)w̃s,i−1 ≈ E
[
w̃Ts,i−1Ru,s(i)w̃s,i−1

]
and

qTi Ru,s(i)qi ≈ E
[
qTi Ru,s(i)qi

]
.

Then, combining the results of all nodes over network
results in

T1 =
2
π
X i ◦ K(i− 1) (145)

where

X i = 2(i)col {B1,B2, . . . ,BN } ⊗ 1MN (146)

with

Bk (i) = col
{
σk,u(i), σk,u(i−1), . . . , σk,u(i−M+1)

}
(147)

Comparing equations (138) and (139), we easily have

T2 = TT1 . (148)
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[
(T1)s,t

]
j,k = E

{
E

{
E

{
sgn

(
us,iw̃s,i−1 − vs(i)− us,iqi

)
× sgn

[
us,i−j+1

] [
w̃t,i−1

]
k

∣∣∣∣∣ w̃Tt,i−1, qi
}∣∣∣∣∣ qi

}}
. (143)

[
(T1)s,t

]
j,k =

2
π
E

E

[
w̃t,i−1

]
ksin
−1

[
w̃s,i−1

]
jE
[
u2s,i−j+1

]
+
[
qi
]
jE
[
u2s,i−j+1

]
√
E
[
u2s,i−j+1

]√
σ 2
s,v + w̃

T
s,i−1Ru,sw̃s,i−1 + q

T
i Ru,sqi − 0s(i)

∣∣∣∣∣∣∣∣ qi



=
2
π
E

E
[w̃t,i−1]ksin−1 σ 2

s,u(i− j+ 1)
[
w̃s,i−1

]
j + σ

2
s,u(i− j+ 1)

[
qi
]
j

σs,u(i− j+ 1)
√
σ 2
s,v + w̃

T
s,i−1Ru,sw̃s,i−1 + q

T
i Ru,sqi − 0s(i)

∣∣∣∣∣∣ qi



=
2
π
E

E
[w̃t,i−1]ksin−1 σs,u(i− j+ 1)

[
w̃s,i−1

]
j + σs,u(i− j+ 1)

[
qi
]
j√

σ 2
s,v + w̃

T
s,i−1Ru,sw̃s,i−1 + q

T
i Ru,sqi − 0s(i)

∣∣∣∣∣∣ qi



=
2
π
E

E
[w̃t,i−1]k

[
w̃s,i−1

]
jσs,u(i− j+ 1)+

[
qi
]
jσs,u(i− j+ 1)√

σ 2
s,v + w̃

T
s,i−1Ru,sw̃s,i−1 + q

T
i Ru,sqi − 0s(i)

∣∣∣∣∣∣ qi



=
2
π

E
{[
w̃s,i−1

]
j

[
w̃t,i−1

]
k

}
σs,u(i− j+ 1)√

σ 2
s,v + E

[
w̃Ts,i−1Ru,sw̃s,i−1

]
+ E

[
qTi Ru,sqi

] = 2
π

E
{[
w̃s,i−1

]
j

[
w̃t,i−1

]
k

}
σs,u(i− j+ 1)√

σ 2
s,v + Tr(IkK(i− 1)IT

k Ru,k (i))+ Tr(ORu,s)
. (144)

2) EXPECTATION VALUE T3
Using the algebraic theory, (140) implies

T3 = E
[
BiBTi

]
. (149)

Using Assumption A1, we obtain

T3 = IMN . (150)

Substituting (145), (148) and (150) into (137), the recursion
of K(i) of the DSSA can be obtained.

C. BEHAVIOR FOR SLOW VARYING INPUT POWER
When cyclostationary input signals have slow varying input
power, equation (67) holds. Then, Substituting (67) into (136)
leads to the recursion of E

[
w̃i
]

E
[
w̃i
]
= PT

(
I −

2
π
M2sl(i)

(
diag

{
σ1,u(i), σ2,u(i), . . . ,

σN ,u(i)
}
⊗ IM

) )
E
[
w̃i−1

]
.

(151)

In the sequel, plugging (67) into (137) results in the expres-
sion for K(i)

K(i) = PTK(i− 1)P − PTMTsl,1P
−PTTTsl,1MP+PTMTsl,3MP+PTT4P (152)

where

Tsl,1 =
2
π

{[
2sl(i)

{
col
{
σ1,u(i), σ2,u(i), . . . , σN ,u(i)

}
⊗1TM

}]
⊗1NM

}
◦ K(i− 1), (153)

Tsl,3 = diag
{
σ1,u(i), σ2,u(i), . . . , σN ,u(i)

}
⊗ IM . (154)

Then, combining (64), (66) and (152), the MSDk (i)
and MSDnetwork (i) can be obtained. From (152), we
can also draw the conclusion that the diffusion algo-
rithms can suppress the influence of the cyclostationary
signal.

VII. SIMULATION
In this section, the computer simulations are carried out to
demonstrate the performance of proposed algorithms and
verify the theoretical results. It is assumed that the length of
the unknown vector woi is 5, which is the same as the length
of the input vector. The parameter vector woi to be estimated
varies with time according to the first order random walk
model with incremental variance σ 2

q = 10−6. In this paper,
the simulated network topology contains 20 nodes, which is
depicted in Fig. 2. The background noise of each node is
the white Gaussian process with power σ 2

v,k which is shown
in Fig. 3. The initialization of woi is generated by Gaussian
process. The combination matrix P is computed according
to uniform rule. The results of simulations are obtained by
averaging over 100 independent runs.

A. RESULTS FOR INPUT POWER WITH SYNCHRONOUS
PULSED VARIATIONS
In this subsection, the input signals have synchronous pulsed
power time variations. The magnitudes of square roots ofHk
andLk are plotted in Fig.4 (a) and Fig.4 (b), respectively. {ωk}
are set to 0. Fig. 5 compares Monte Carlo (MC) simulations
and theory of DSEA for slow, fast and moderate cases. The
step sizes {µk} are all set to 0.004. It is found that there is
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FIGURE 13. The network MSD curves of DSRA for asynchronous pulsed
variations, (a) slow variation: T = 400 (b) fast variation: T = 2,
(c) moderate variation: T = 32.

an excellent agreement between the simulation results and
the theoretical results. There are several ripples in the curves
for slow pulsed input power variations. However, the curves
for fast and moderate pulsed input power variations have no
ripples. Fig. 6 depicts the theoretical and simulated curves
of the transient network MSD for DSRA. The step sizes
{µk} are all set to 0.004. We observed that the curves of
simulation are in line with their corresponding theoretical
results. We also found that the curves have ripples for slow
pulsed input power variations and have no ripples or little
ripples for moderate and fast pulsed input power variations.
Fig. 7 depicts the theoretical and simulated curves of the
transient network MSD of DSSA for slow, fast and moderate
sinusoidal input power variations. The step sizes {µk} are all
set to 0.004. The results in Fig.7 illustrate an excellent match
between simulations and theory.

B. RESULTS FOR INPUT POWER WITH SYNCHRONOUS
SINUSOIDAL VARIATIONS
In this subsection, the input signals have the synchronous
sinusoidal power variations. The magnitudes of square roots

FIGURE 14. The network MSD curves of DSSA for asynchronous pulsed
variations, (a) slow variation: T = 400 (b) fast variation: T = 2,
(c) moderate variation: T = 32.

of βk are plotted in Fig.8. {$k} are set to 0. Fig. 9 gives the
transient MSDs of simulations and theory of DSEA for slow,
fast and moderate cases. The step sizes {µk} are all set to
0.004. It is seen that there is a good match between MC sim-
ulation and the theory. Fig. 10 illustrates the theoretical and
simulated curves of the transient network MSD for DSRA.
The step sizes {µk} are all set to 0.004. We can see the results
of simulation match that of theory. We also present the results
of simulation and theory of DSSA for slow, fast and moderate
sinusoidal input power variations in Fig. 11. The step sizes
{µk} are all set to 0.004. Once again, one notes a very good
match between the results obtained through MC simulation
and theory. From Figs. 9-11, we can also observe that there
are ripples for the slow case and there are no or little ripples
for moderate and fast cases.

C. RESULTS FOR INPUT POWER WITH ASYNCHRONOUS
PULSED VARIATIONS
We study the performance of three signed variants of the
DLMS algorithm over the network when the input signals
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FIGURE 15. The network MSD curves of DSEA for asynchronous
sinusoidal variations, (a) slow variation: T = 400 (b) fast variation: T = 2,
(c) moderate variation: T = 32.

have asynchronous pulsed power variation. The magnitudes
of square roots of Hk and Lk are plotted in Fig.4 (a) and
Fig.4 (b), respectively. We set the delay time parameters ωk
for each node as follows

ωk = ωk−1 + τ (155)

where τ is constant depending on the period of variations of
the input power. In this simulation, τ is set to 1, 2 and 10
for slow, fast and moderate cases, respectively. The step
sizes {µk} are all set to 0.004 for DSEA, DSRA and DSSA.
Fig. 12 shows the results of simulation and theory of DSEA
for slow, fast and moderate pulsed input power variations.
Fig. 13 provides the theoretical and simulated curves of the
transient network MSD for DSRA. Fig. 14 illustrates the
theoretical and simulated curves of the transient network
MSD for DSRA. From these figures, we can see that all
these simulation results are in line with their corresponding
theoretical results. In addition, we observed that the curves
have no ripples regardless of the speed of the input power
variations, which corresponds to the discussion of analytic
theory.

FIGURE 16. The network MSD curves of DSRA for asynchronous
sinusoidal variations, (a) slow variation: T = 400 (b) fast variation: T = 2,
(c) moderate variation: T = 32.

D. RESULTS FOR INPUT POWER WITH ASYNCHRONOUS
SINUSOIDAL VARIATIONS
The performance of three signed variants of the DLMS algo-
rithm over the network is considered for the input signals
which have asynchronous sinusoidal power variation. The
magnitudes of square roots of βk are plotted in Fig.8. We set
the delay time parameters$k for each node as follows

$k = $k−1 + τ
′ (156)

where τ ′ is constant depending on the period of variations of
the input power. In this simulation, τ ′ is set to 1, 2 and 10
for slow, fast and moderate cases, respectively. The step sizes
{µk} are all set to 0.004 for DSEA, DSRA and DSSA. Fig.
15 compares simulations with theory of DSEA for slow,
fast and moderate sinusoidal input power variations. Fig. 16
illustrates the theoretical and simulated curves of the transient
networkMSD for DSRA. Fig. 17 provides the theoretical and
simulated curves of the transient network MSD for DSRA.
It is also found that there an excellent agreement between the
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FIGURE 17. The network MSD curves of DSSA for asynchronous
sinusoidal variations, (a) slow variation: T = 400 (b) fast variation: T = 2,
(c) moderate variation: T = 32.

simulation results and the theoretical results. Also, there are
no ripples in curves regardless of the speed of the input power
variation.

VIII. CONCLUSION
As one of the signed variants of the DLMS algorithm, the
DSEA has been presented in the previous reference. This
paper presents two other signed variants of DLMS algorithm,
i.e. DSRA and DSSA. Then, we study the performance of
three signed variants of DLMS algorithm while the cyclosta-
tionary white Gaussian signals are selected as input signals
and the unknown system is generated by the random walk
model. Specifically, the mean weight behavior and mean
square weight behavior of the algorithms are derived. Finally,
the simulation experiments are carried out to verify the cor-
rectness of the analytic model. It is clearly seen that there
is an excellent agreement between theory and the simulation
results. It is also found that fast and moderate variation for
both synchronous and the asynchronous case would cause
very little magnitude ripples. However, when the input signals
have synchronous slow variation power, the curves would
have ripple. It is worth noted that when the input signals

have asynchronous variation power, the curves don’t have
ripples or have little magnitude ripples. Thus, we obtain
that the distributed algorithm can suppress the effects of the
cyclostationary input.

APPENDIX A
PROOF OF (94)
For (93), conditioning the expectation on w̃s,i−1 and then
averaging over w̃s,i−1 yield

[Y1]s,s = E
{
E
{
sgn

[
uTs,i
]
us,iw̃s,i−1w̃

T
s,i−1

×

[
sgn

[
uTs,i
]
us,i
]T ∣∣w̃s,i−1}} (A.1)

Let

C(i) = sgn
[
uTs,i
]
us,iw̃s,i−1w̃

T
s,i−1

[
sgn

[
uTs,i
]
us,i
]T

(A.2)

The {j, k} th element of C(i) is expressed as

cj,k (i) =
M∑
l=1

M∑
p=1

{
sgn

[
uTs,i
]
us,i
}
j,l

{
w̃s,i−1w̃Ts,i−1

}
l,p

×

{[
sgn

[
uTs,i
]
us,i
]T}

p,k
(A.3)

where{
sgn

[
uTs,i
]
us,i
}
j,l
= sgn

[
us,i−j+1

]
us,i−l+1 (A.4){

w̃s,i−1w̃Ts,i−1
}
l,p
=
[
w̃s,i−1

]
l

[
w̃s,i−1

]
p (A.5){[

sgn
[
uTs,i
]
us,i
]T}

p,k
= us,i−p+1 sgn

[
us,i−k+1

]
(A.6)

Using Assumption A1, we have

E
{
cj,k (i)

∣∣w̃s,i−1 }
=

M∑
l=1

M∑
p=1

E
{
sgn

[
us,i−j+1

]
us,i−l+1us,i−p+1 sgn

[
us,i−k+1

]}
×
[
w̃s,i−1

]
l

[
w̃s,i−1

]
p (A.7)

Using the moment factoring [51] results in

E
{
sgn

[
us,i−j+1

]
us,i−l+1us,i−p+1 sgn

[
us,i−k+1

]}
= E

{
sgn

[
us,i−j+1

]
us,i−l+1

}
E
{
us,i−p+1 sgn

[
us,i−k+1

]}
+E

{
sgn

[
us,i−j+1

]
sgn

[
us,i−k+1

]}
E
{
us,i−l+1us,i−p+1

}
+E

{
us,i−l+1 sgn

[
us,i−k+1

]}
E
{
sgn

[
us,i−j+1

]
us,i−p+1

}
(A.8)

Plugging back into (A.7) yields (A.9), as shown at the top
of the next page. Equivalently,

E
{
C(i)

∣∣w̃s,i−1 }
= 2E

{
sgn

[
uTs,i
]
us,i
}
w̃s,i−1w̃Ts,i−1E

[
sgn

[
uTs,i
]
us,i
]T

+ w̃Ts,i−1E
[
uTs,ius,i

]
w̃s,i−1E

{
sgn

[
uTs,i
]
sgn

[
us,i
]}
(A.10)
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E
{
cj,k (i)

∣∣w̃s,i−1 } = M∑
l=1

M∑
p=1

E
{
sgn

[
us,i−j+1

]
us,i−l+1

} [
w̃s,i−1

]
l

[
w̃s,i−1

]
pE
{
us,i−p+1 sgn

[
us,i−k+1

]}
+

M∑
p=1

M∑
l=1

E
{
sgn

[
us,i−j+1

]
us,i−p+1

} [
w̃s,i−1

]
p

[
w̃s,i−1

]
lE
{
us,i−l+1 sgn

[
us,i−k+1

]}
+E

{
sgn

[
us,i−j+1

]
sgn

[
us,i−k+1

]}
E


M∑
l=1

us,i−l+1
[
w̃s,i−1

]
l

M∑
p=1

us,i−p+1
[
w̃s,i−1

]
p

 (A.9)

For white Gaussian input,

E
{
sgn

[
uTs,i
]
sgn

[
us,i
]}
= IM (A.11)

Then, after some algebraic manipulations, we can get

[Y1]s,s = 2Zs(i)E
[
w̃s,i−1w̃Ts,i−1

]
Zs(i)

+Tr
[
E
[
w̃s,i−1w̃Ts,i−1

]
Zs(i)

]
IM (A.12)

APPENDIX B
PROOF OF (108)
Obviously, according to (107), when s = t , the {j, k} th
element of [Y5]s,t is expressed as[
[Y5]s,t

]
j,k

= σ 2
q

M∑
l=1

{
sgn

[
uTs,i
]
us,i
}
j,l

{[
sgn

[
uTs,i
]
us,i
]T}

l,k

= σ 2
q

M∑
l=1

E
{
sgn

[
us,i−j+1

]
us,i−l+1us,i−l+1 sgn

[
us,i−k+1

]}
(B.1)

Using the moment factoring [51] results in

E
{
sgn

[
us,i−j+1

]
us,i−l+1us,i−l+1 sgn

[
us,i−k+1

]}
= E

{
sgn

[
us,i−j+1

]
us,i−l+1

}
E
{
us,i−l+1 sgn

[
us,i−k+1

]}
+E

{
sgn

[
us,i−j+1

]
sgn

[
us,i−k+1

]}
E
{
us,i−l+1us,i−l+1

}
+E

{
us,i−l+1 sgn

[
us,i−k+1

]}
E
{
sgn

[
us,i−j+1

]
us,i−l+1

}
(B.2)

Plugging back into (B.1) yields

[
[Y5]s,t

]
j,k = σ

2
q

M∑
l=1

E
{
sgn

[
us,i−j+1

]
us,i−l+1

}
×E

{
us,i−l+1 sgn

[
us,i−k+1

]}
+ σ 2

q

M∑
l=1

E
{
sgn

[
us,i−j+1

]
us,i−l+1

}
×E

{
us,i−l+1 sgn

[
us,i−k+1

]}
+ σ 2

qE
{
sgn

[
us,i−j+1

]
sgn

[
us,i−k+1

]}
×E

{
M∑
l=1

us,i−l+1us,i−l+1

}
(B.3)

Equivalently,

[Y5]s,t = 2σ 2
qE

{
sgn

[
uTs,i
]
us,i
}
E
[
sgn

[
uTs,i
]
us,i
]T

+ σ 2
q Tr

{
E
[
uTs,ius,i

]}
E
{
sgn

[
uTs,i
]
sgn

[
us,i
]}
(B.4)

Substituting (83) and (A.11) into (B.4), we have

[Y5]s,t = σ
2
q
4
π
Ru,s(i)+ σ 2

q Tr
[
Ru,s(i)

]
IM (B.5)
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