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ABSTRACT The cumulative sum (CUSUM) control charts are widely used for measurement control of
continuous processes. However, the quality characteristics of interest in many production processes, follows
a sequence of discrete counts for non-conformities often modeled using a Poisson distribution. This paper
introduces new CUSUM control chart design structure to monitor the location of a Poisson parameter.
The proposed two-sided scheme is based on ranked set sampling, a more well-structured data collection
method than the traditional random sampling. Extensive simulations were used to compute the average,
standard deviation and percentiles of the run-length distribution for the new Poisson CUSUMcharts. Relative
run-length performances achieved were compared with the classical schemes for monitoring improvements
or deteriorations in a Poisson process. Consequently, it turns out that the new scheme has greatly enhanced
the sensitivity of the classical chart in detecting changes in Poisson processes. The practical application of
the new Poisson CUSUM chart is illustrated through a numerical example.

INDEX TERMS Average run length, cumulative sum, poisson processes, ranked set sampling, statistical
process control.

I. INTRODUCTION
Cumulative sum (CUSUM) control charts are effective tools
widely used to monitor various aspects of production pro-
cesses. The scheme was introduced by Page [1] and has
proven to be more efficient in detecting small and moderate
changes in quality characteristics of interest than the classi-
cal control charts, such as the Shewhart control chart. The
CUSUM statistics are based on information from the past
and present data points which gives the scheme a tighter
process control that allows early detection of changes in a
normal process. Besides monitoring of continuous data, the
scheme has found applications in monitoring sequence of
discrete count data often modeled with a Poisson distribution.
The count data CUSUM, popularly known as the Poisson
CUSUM chart, was first suggested by Brook and Evans [2]
to monitor the location of a Poisson parameter. The scheme
is a superior alternative to the traditional Shewhart c-chart
or u-chart for monitoring quality characteristics that take on
attribute data [3]. The c-chart is based on single observation
while the u-chart is applicable to multiple observations [4].

Various approaches on the enhancements of Poisson
CUSUM charts to monitor count data have been pro-
posed. Lucas [5] gave the necessary design structure and

implementation procedures for the development of Poisson
CUSUM chart. Using run-length properties, White et al. [6]
gave a comprehensive comparison between Poisson CUSUM
chart and Shewhart c-chart for monitoring the mean of non-
conforming units. The theoretical foundation of Poisson
CUSUM chart was provided by Hawkins and Olwell [7] and
showed that departures from assumed Poisson distribution
have adverse effects on performance of the Poisson CUSUM
control chart. Chen et al. [8] studied the situation where
the count data follows a compound Poisson distribution by
developing the geometric Poisson CUSUM control scheme.
For more recent studies on the Poisson CUSUM chart, see
Han et al. [9], Ryan and Woodall [10], Jiang et al. [11],
Saghir and Lin [12], and He et al. [13]. The exponentially
weighted moving average (EWMA) control chart introduced
by Roberts [14] and commonly used to monitor contin-
uous data is an alternative to the CUSUM control chart
that may also be used for controlling count data. See, for
example, Gan [15], Borror et al. [16], Zhang et al. [17],
Sparks et al. [18], Shu et al. [19] and Abujiya, et al. [20].

Recently, ranked set sampling (RSS) technique has found
applications in statistical quality control to enhance the effi-
ciency of a production process. Traditionally, the theories of
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control charts are based on simple random sampling (SRS)
which often yields observations with highly skewed distribu-
tion that affect their performance as a result of wide control
limits. To improve the effectiveness of several control chart
procedures, a more well-structured sampling schemes, such
as RSS [21]–[26] and repetitive sampling [27], [28], that give
tighter control limits have been employed to enhance mea-
surement control and reduce manufacturing cost. The RSS
protocol involves the collection of n random observations,
each of size n units, from the target population. Rank the n
units within each set with respect to a quality characteris-
tic of interest by visual inspection or some negligible cost
method. The n measurements are obtained by selecting the
smallest ranked sample X(1:n) in the first set, the second
smallest ranked sample X(2:n) in the second set, and this
process of quantification continues until the largest sample
X(n:n) is selected in the last set. These X(1:n),X(2:n), . . . ,X(n:n)
represents a single cycle of RSS data for subgroup size n. The
cycle may be repeated m times for a total of n2m samples
collected from the population, where only nm observations
have actually been measured [29], [30].

The RSS method introduced by McIntyre [29] is an alter-
native to the traditional SRS technique that offers improve-
ments in parameter estimates in practical applications where
the actual measurements of quality characteristics of inter-
est may be costly, time-consuming or even destructive but
could be ranked by visual inspection or some economi-
cal method without actual measurements [29], [30]. The
scheme is at least as efficient as SRS with the same num-
ber of quantification when there are ranking errors [31].
Although, the concept of RSS first found its application in
estimating mean pasture and forage yields [29], the scheme
has since been applied to several other areas. For exam-
ple, the scheme has found applications in environmental
and ecological studies [31], [32], reliability theories [33],
medical studies [34], marketing and economics [35], and
statistical quality control [21], [23], [24], [36], [37]. Recent
theoretical developments and applications of RSS can be
found in Wolfe [38], and Al-Omari and Bouza [39].
In this article, we propose a new Poisson CUSUM control
chart using RSS methods for efficient monitoring of changes
in a mean of a Poisson process.

The rest of the article is organized as follows. In the next
section, we present an overview of the classical Poisson
CUSUM chart using SRS. Next is the design structure of the
proposed Poisson CUSUM control charts using RSS scheme
to monitor Poisson process location parameter. Section IV
presents, a detail simulation study and the corresponding
statistical performance of the proposed new Poisson CUSUM
chart based on RSS and its variants in terms of the run-length
properties. Furthermore, the numerical comparison of the
proposed Poisson control charts and the classical schemes for
monitoring changes in a Poisson process location parameter
is also presented in Section IV. The effect of imperfectness
in ranking of units on performance of the proposed schemes
is studied in Section V. Numerical examples are provided to

demonstrate the practical application of the proposed Pois-
son CUSUM charts in Section VI. Finally, some concluding
remarks are given in Section VII.

II. OVERVIEW OF CLASSICAL POISSON CUSUM CHART
In classical Poisson CUSUM chart, the quality characteristic
of interest is the mean parameter µ of a Poisson process
obtained via SRS data [5]. To detect changes in µ, the
in-control process mean value µ0 is used to design and oper-
ate a Poisson CUSUM chart either with individual or sub-
group observations. Let x1j, x2j, x3j, . . . , xnj; j = 1, 2, . . . ,m
be independent Poisson random samples of subgroup size n
with mean µ. The Poisson process is deemed out-of-control
if there is a shift from the in-control mean of µ = µ0 to an
unknown mean value µ = µ1 where µ1 6= µ0. The mean
µ̂SRS j = (1/n)

∑n
i=1 xij, of the j

th sample, is an unbiased
estimator of the process parameter µ with variance µ/n.

The classical Poisson CUSUM control statistics for mon-
itoring increases (µ1 > µ0) and decreases (µ1 < µ0) in the
process mean are respectively given by [5]

S+SRS j = max
[
0, µ̂SRS j − k + S

+

SRS j−1

]
S−SRS j = max

[
0, k − µ̂SRS j + S

−

SRS j−1

]
, (1)

where max (a, b) is the maximum of a and b; the constant
k is called the reference value. While µ̂SRS j represents the
current information, the statistics S+SRS j−1 and S

−

SRS j−1 are the
accumulated differences between µ̂SRS j and k representing
the past information. A standard CUSUM chart has a starting
value of S+SRS0 = S−SRS0 = 0. Here, the Poisson CUSUM
control chart gives an out-of-control signal when either S+SRS j
or S−SRS j exceeds the predetermined decision interval h > 0,
called the control limit.

III. DESIGN OF THE NEW POISSON CUSUM CHART
This section presents the design procedure for the construc-
tion of a Poisson CUSUM control chart to monitor the
mean of a Poisson process based on RSS technique. The
new chart is designed with the primary aim of increasing
the sensitivity and overall effectiveness of the basic Poisson
CUSUM chart to detect all kinds of fluctuations in a Poisson
process. RSS has played a significant role in improving the
performance of various control chart schemes at detecting
wide range of shifts in a process, particularly the CUSUM
control charts [22], [25], [26], [40]. Abujiya et al. [41]
also, used RSS to enhance the performance of the classical
Poisson EWMA control chart to monitor the mean of count
data.

Define X(i:n)j, i = 1, 2, . . . , n and j = 1, 2, . . . ,m to be
the ith order statistic for the ith observation from the Poisson
distribution of subgroup size n in jth cycle. The unbiased
estimator for the Poisson process location parameter based
on RSS technique, is given by Barnett and Barreto [42]

µ̂RSS j =
γn

n

∑n

i=1
X(i:n)j, (2)
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where γn = (1/n)
∑n

i=1 γ(i:n) is the correction constant
chosen to minimize

Var
(
µ̂RSS

)
=

λ
(∑n

i=1 α
2
(i:n)/β(i:n)

)
(∑n

i=1 1/β(i:n)
)(∑n

i=1 α
2
(i:n)/β(i:n)

)
−
(∑n

i=1 α(i:n)/β(i:n)
)2
(3)

In this study, γn is found to be approximately unity, while
α(i:n) is the mean and β(i:n) is the variance of reduced ordered
variables η(i:n)j =

(
X(i:n)j − µ0

)
/
√
µ0. In practice, η(i:n)j is

often used to transform the Poisson distribution to approxi-
mately normal.

The problem here is that the transformation η(i:n)j only
changes the values of the location and dispersion parameters
to zero and one, respectively, leaving the shape of the Poisson
distribution intact. To achieve better normal approximation,
Anscombe [43] suggested the square root transformation

Y(i:n)j = 2
√
X(i:n)j + c, (4)

where c is a constant. Y(i:n)j is approximately normal with
mean µY(i:n)j = 2

√
µ+ c − 1/4

√
µ and variance σ 2

Y(i:n)j
=

1 + (3 − 8c)/8µ (cf. Shu et al. [19]). Using the suggested
c = 3/8, we found the square root transformation

ZRSS j =
2
√
µ̂RSS + 3/8− µ0√

Var
(
µ̂RSS

) (5)

to be approximately standard normal for an in-control
Poisson process. This study assumes that µ0 is either known
or estimated while the variance is known and kept constant.
Thus, the new Poisson CUSUM scheme under RSS structure
for monitoring process location parameter is defined by

S+RSS j = max
[
0,ZRSS j − k + S

+

RSS j−1

]
S−RSS j = max

[
0, k − ZRSS j + S

−

RSS j−1

]
, (6)

where S+RSS 0 = S−RSS 0 = 0. The Poisson CUSUM chart
triggers an out-of-control signal when either S+RSS j > h or
S−RSS j > h, the predefined control limit.

IV. PERFORMANCE ANALYSIS
CUSUM control charts are usually evaluated by computing
their average run length (ARL); that is, the average num-
ber of observations plotted on a control chart before the
out-of-control signal. However, in situations where the run-
length distribution is heavily skewed, other measures such as
the standard deviation (SDRL) and percentile points of the
run-length distribution have been suggested. The run-length
properties, ARL, SDRL and percentile points, measures the
response power of a control scheme to detect departures
from the specified requirements. In contrast, such response
may be a false alarm. That is an out-of-control signal when
indeed the process is at a satisfactory level (in-control). The
in-control ARL is denoted by ARL0 and the out-of-control

ARL by ARL1, with the subscripts 0 and 1 corresponding
to the null and alternative hypothesis, respectively. A control
chart with sufficiently large ARL0 to avoid unnecessary false
alarms and small ARL1 to enable quick detection of process
shifts is desirable.

A. PERFORMANCE EVALUATION
This study uses Monte Carlo simulation approach to numer-
ically calculate the ARL, SDRL and percentile points of the
new Poisson CUSUM control charts through an algorithm
developed in R. The structure assumes that the process is
initially at a satisfactory level with a known mean µ= µ0,
and changes to µ= µ1 (µ0 6= µ1) after a certain point in
time. The run-length properties for the proposed Poisson
CUSUM chart for detecting both increases and decreases in
the mean number of Poisson count data are calculated by
simultaneous implementation of the two-sided control charts,
equation (6). Using 105 independent seeded iterations, the
ARL and SDRL values were estimated for the case of perfect
ranking. Furthermore, the P25, P50 and P75 values, which
represents the 25th, 50th and 75th percentiles of the run-
length distribution, respectively, are also computed. P50 is the
median of run-length (MRL). The performances of the new
Poisson CUSUM charts were investigated under sample sizes
of n = 3, 4, 5 and 6 using different combinations of h and k .

The parameter k is the reference value of Poisson CUSUM
chart, which is often chosen between the in-control and the
out-of-control process mean of count data. It is defined by
k = (µ1 − µ0) / ln (µ1/µ0) and lies closer to µ0. Further-
more, for any fixed value of k , an appropriate control limit
h that corresponds to the desired ARL0 value can be deter-
mined, numerically, via trial procedure. In practice, the zero
value of µ0 is usually avoided because a Poisson CUSUM
design structure with µ0 = 0 would have k = 0 and
h = 1, triggering an alarm at every count [5]. In this study,
we set the values of µ0 = 7.0 and for the quick detection of
small changes in the mean of count data while maintaining
relatively good detection performance of large shifts, a small
value of k = 0.5 is used. Each of the Poisson CUSUMcontrol
charts used in this study is designed to have ARL0 = 200 for
fair comparisons.

Outlined below is the stepwise procedure for the calcula-
tions of ARL, SDRL and percentile points of the run-length
distribution. The simulation approach is based on Poisson
CUSUM control chart statistics.

1. Generate pseudo random numbers xij of size n from
Poisson with mean µ0.

2. Apply the RSS procedures and compute the mean
parameter µ̂RSS j.

3. Calculate the variance Var
(
µ̂RSS j

)
via simulations.

4. Perform the normal transformation to obtain
ZRSS j ∼ N (0, 1).

5. Initialize the CUSUM statistics, S+RSS 0 and S
−

RSS 0 equal
to zero.

6. Specify parameter k and update the statistics S+RSS j
and S−RSS j.
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TABLE 1. Run-length properties for two-sided Poisson CUSUM control charts (n = 3,k = 0.5,ARL0 = 200).

TABLE 2. Run-length properties for two-sided Poisson CUSUM control charts (n = 4,k = 0.5,ARL0 = 200).

7. Choose an experimental decision interval, h > 0.
8. Compare the statistics, S+RSS j and S−RSS j, with h and

record run-length.
9. Repeat steps 1 to 8 until the desired ARL0 value of 200

is achieved.
10. Compute the ARL, SDRL, MRL, 1st and 3rd quartile

points of the run-length distribution after each
105 iterations.

These outlined procedures are for the computation of ARL0
when µ = µ0. For shifts in the mean of count data from
µ = µ0 to µ = µ1, the ARL1 may be computed from
the above steps 1 to 9, excluding step 7 since the value h is
pre-determined from the computation of ARL0. Tables 1 – 4
presents the results obtained based on the proposed schemes
using perfect ranking of RSS as well as the classical Poisson
CUSUM charts.

Following are the summary of our findings based on results
in Tables 1 – 4, for the two-sided Poisson CUSUM control
charts.

1. There is no significant difference between the nominal
ARL0 values and its corresponding in-control SDRL
values for both the proposed charts.

2. The out-of-control ARL1 and SDRL values of the
newly developed Poisson CUSUM chart decrease
rapidly with changes in mean level µ1. The decreases
are more evident for changes in downward shifts in
mean rate of a Poisson process.

3. In all out-of-control cases, the run-length properties for
the proposed charts under RSS are uniformly smaller
as compared to the classical charts under SRS scheme.
This is an indication that the new schemes are more
efficient than the classical Poisson CUSUM chart in
detecting all kinds of changes in a Poisson rate.

4. The strong right skewness of the run-length distri-
butions is evident from the MRL values as well as
the lower (25th percentile) and upper (75th percentile)
quartile points of the sampling distribution for both
the proposed and classical Poisson CUSUM control
schemes.

5. As the sample size n increases, the sensitivities of
the two schemes also increased with the new Poisson
CUSUM chart having a better overall performance in
terms of ARLs and SDRLs as compared to the corre-
sponding classical chart.
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TABLE 3. Run-length properties for two-sided Poisson CUSUM control charts (n = 5,k = 0.5,ARL0 = 200).

TABLE 4. Run-length properties for two-sided Poisson CUSUM control charts (n = 6,k = 0.5,ARL0 = 200).

6. The run-length distribution of the RSS based Poisson
CUSUM control chart appeared to be more symmetric
than the classical scheme, particularly, when n > 3.

7. The design structure of the new Poisson CUSUM chart
is a special case of the RSS based Shewhart u-chart
as rightly pointed out by White et al. [6]. As with the
c-chart, this is achievable by setting k = u + 3

√
u

and h = 0 to detect large shifts in mean count
rate.

B. PERFORMANCE COMPARISON WITH OTHER
RSS VARIANTS
It is well-known in the literature that further gain in the effi-
ciency of RSS can be achieved when an appropriate unequal
allocation of units is used instead of equal allocation in RSS
procedure. In this sub-section, we compare the performance
of the design structures for Poisson CUSUM charts based
on unequal allocation of units: median-RSS and extreme-
RSS with the balanced RSS and classical charts to mon-
itor the Poisson process mean of a quality characteristic.
Using the same design parameters for the RSS in the above

sub-section IV-A, the ARLs, SDRLs and MRLs of the new
control charts were computed via simulations, and the results
are displayed in Tables 5 – 8. The upper and lower quartile
points of the run-length distribution of Poisson CUSUM
charts based on median-RSS and extreme-RSS are also pre-
sented in Tables 5 – 8.

C. COMPARISON WITH THE MEDIAN-RSS
The median-RSS procedure [44] involves the collection of n
random samples, each of size n from the target population.
Rank the units within each set with respect to a variable of
interest. Then the median observation is selected for mea-
surement if the set size is odd, otherwise select the two
middlemost observations for even set size. From the run-
length properties summarized in Tables 5 - 8, it is observed
that the Poisson CUSUM chart based onmedian-RSS encom-
passes all the findings in sub-section IV-A. In addition, the
scheme can detect increases in the mean level of a Pois-
son process better than the decreases when 7 < µ1 < 9.
Comparison with the balanced RSS and classical schemes
(cf. Tables 1 - 4) indicates that the median-RSS design
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TABLE 5. Run-length properties for two-sided Poisson CUSUM control charts (n = 3,k = 0.5,ARL0 = 200).

TABLE 6. Run-length properties for two-sided Poisson CUSUM control charts (n = 4,k = 0.5,ARL0 = 200).

TABLE 7. Run-length properties for two-sided Poisson CUSUM control charts (n = 5,k = 0.5,ARL0 = 200).

structure has smaller ARL and SDRL values than the former
two charts when monitoring both the upward and downward
shifts in the Poisson parameter. Thus, the median-RSS based

Poisson CUSUM chart can effectively handle all kinds of
shifts in the mean level of a Poisson process better than its
corresponding RSS and classical control charts.
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TABLE 8. Run-length properties for two-sided Poisson CUSUM control charts (n = 6,k = 0.5,ARL0 = 200).

FIGURE 1. ARL curves for classical Poisson CUSUM chart versus variants
of RSS schemes when n = 3, k = 0.5, µ0 = 7 and ARL0 = 200.

D. COMPARISON WITH THE EXTREME-RSS
In extreme-RSS [45], n random samples each of size n is col-
lected from the target population. Rank the units within each
set with respect to the quality characteristics of interest. Then
the lowest and highest rank units are selected for measure-
ment if the set size is even. For odd subgroup size, the lowest,
median and highest ranked observations are measured. Just
like the median-RSS, this scheme also shares the findings
in sub-section IV-A based on the extreme-RSS run-length
results in Tables 5 – 8. The scheme also outperformed the
classical Poisson CUSUM chart in detecting both the upward
and downward shifts in the mean level of a Poisson process
(cf. Tables 1 - 4). Further comparison shows that the balanced
RSS scheme has smaller ARL1 values than the extreme-RSS
for all shift values and sample sizes.

E. COMPARISON AMONG ALL THE SCHEMES
To get a clearer picture on the performance of the four
schemes in detecting the mean of count data Poisson process,
we present the ARL curves for all the charts with design
parameters k = 0.5, ARL0 = 200 when n = 3 and n = 4 in
Figures 1 and 2, respectively. Statistically, the lower the ARL

FIGURE 2. ARL curves for classical Poisson CUSUM chart versus variants
of RSS schemes when n = 4, k = 0.5, µ0 = 7 and ARL0 = 200.

curve of a control chart, the greater the probability of shorter
ARL1 and quick detection of smaller shifts. As expected,
Figures 1 and 2 shows that the classical Poisson CUSUM
chart has higher ARL1 values than the proposed schemes
based on ranked data. In other words, all the new schemes
have a high tendency to quickly detect small shifts in the
process mean. Furthermore, observe that the median-RSS has
the highest tendency of faster detection of small mean shifts,
closely followed by the balanced RSS for larger sample sizes
(cf. Figure 2). There is no significant difference between the
new charts when n < 4 (cf. Figure 1).

V. THE EFFECT OF IMPERFECT RANKING ON
ARL PERFORMANCE
In practice, ranking of units in a subgroup with respect to the
quality characteristic of interest may not always be perfect as
it largely depends on the operator’s judgment. For instance,
the 2nd smallest unit in a subgroup measured by an operator
may not be the actual 2nd smallest observation in the sub-
group. Hence, in this section, the effects of errors in ranking
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TABLE 9. Run length properties for two-sided Poisson CUSUM charts using IRSS (n = 5,k = 0.5,ARL0 = 200).

of quality characteristic of interest on the performance of
the proposed Poisson CUSUM control charts, is investigated.
In practice, the ranking of units of the main quality charac-
teristic may not be that easy, hence it is often recommended
to use the corresponding auxiliary information for ranking
purposes. This is called ranking with auxiliary variable or
imperfect ranking of units. The run-length performance of the
proposed Poisson CUSUM charts under imperfect ranking
largely depends on the linear relationship between the
so-called auxiliary variable and the main quality character-
istic of interest.

Denote a bivariate Poisson random variable with (X ,Y ),
where X and Y represent the main quality characteristic of
interest and its auxiliary variable, respectively. Also denote
the ith order statistic of X and Y in the ith sample of size
n in the jth cycle by X(i:n)j and Y(i:n)j, respectively, where
i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Suppose that the
regression of X on Y is linear, then the ith judgment order
statistic [46] is given by

X[i:n]j = µx + ρxy
σx

σy

[
X(i:n)j − µy

]
+ εij (7)

where ρxy is the correlation between X and Y ; µx and µy
are the means of X and Y ; σx and σy represent the standard
deviations of X and Y , respectively; and εij is an error term

with a mean of zero and variance σ 2
x

(
1− ρ2xy

)
. Note that εij

which is independent of Y . Themean estimator of the Poisson
imperfect RSS (IRSS) data X[i:n]j based on the judgment
ranking of Y(i:n) can be defined as

µ̂IRSS j =
ζn

n

∑n

i=1
X[i:n] j (8)

where ζn ≈ 1. Also, the variance of µ̂IRSS j can be defined as

Var
(
µ̂IRSS

)
=
σ 2
x

n

[(
1− ρ2xy

)
+
ρ2xy

nσ 2
y

∑n

i=1
σ 2
y(i:n)

]
(9)

where σ 2
y(i:n) is the variance of the ith observation from a

Poisson rate of subgroup size n. In an analogous to Section III,

the standard normalizing transformation of µ̂IRSS j can be
achieved via

ZIRSS j =
2
√
µ̂IRSS + 3/8− µ0√

Var
(
µ̂IRSS

) . (10)

Hence, the proposed Poisson CUSUM chart for monitoring
location parameters under IRSS scheme triggers an out-of-
control signal when either

S+IRSS j = max
[
0,ZIRSS j − k + S

+

IRSS j−1

]
or

S−IRSS j = max
[
0, k − Z IRSS j + S

−

IRSS j−1

]
, (11)

exceeds the decision interval h, with the initial values of
S+IRSS 0 and S

−

IRSS 0 set equal to zero.
Statistically, SRS and RSS are special cases of IRSS with

correlation coefficients of ρxy = 0 and ρxy = 1, respectively.
Setting the subgroup size at n = 5, we follow theMonte Carlo
simulation design procedure outlined in Section IV, using
IRSS data generated from a bivariate Poisson distribution
with a mean of seven and variance of one.We then investigate
the effects of correlation coefficients ρxy on the run-length
performance of the proposed Poisson CUSUM control charts
by setting ρxy = 0.25, 0.50, 0.75 and 0.90. For a fixed
value of ρxy, we also investigated the effect of reference
value k on the proposed charts when the in-control ARL0 is
approximately 200. The performance measures used in this
section include: ARL, SDRL and MRL. The results obtained
for the IRSS based Poisson CUSUM charts are displayed
in Tables 9 and 10. To gain more insight, a graphical display
on the effects of ρxy is presented in Figure 3. Below is the
summary of our findings.

A. EFFECT OF CORRELATION COEFFICIENT ρxy

For a fixed sample size n = 5 and reference value
k = 0.5, Table 9 presents the run-length properties when
ρxy = 0.25, 0.50, 0.75 and 0.90 to study the effect of ρxy
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TABLE 10. Run length properties for two-sided Poisson CUSUM charts using IRSS (n = 5, ρxy = 0.75,ARL0 = 200).

FIGURE 3. ARL curves for classical Poisson CUSUM chart versus IRSS
schemes when n = 5, k = 0.5, µ0 = 7 and ARL0 = 200 for different
values of ρxy .

on the performance of the new Poisson CUSUM control
charts. It is evident from the results that imperfect ranking
does have a negative impact on performance of the proposed
Poisson CUSUM chart. However, the effect is negligible,
particularly as ρxy increases. In other words, the proposed
schemes are still more efficient than the classical charts even
in presence of ranking errors. Furthermore, the IRSS based
control charts maintained all the properties exhibited by the
charts under perfect ranking. Comparison with the classical
Poisson CUSUM chart (cf. Tables 3 and 9) shows that the
new IRSS based charts dominate the former for all the corre-
lation coefficient ρxy values. This point is equally supported
by Figure 3. For example, if µ1 = 6, the ARL of the classical
chart is 11.07 (cf. Table 3) while the IRSS based chart has
9.09, 8.28, 7.11, 6.17 for ρxy = 0.25, 0.50, 0.75 and 0.90,
respectively (cf. Table 9).

B. EFFECT OF REFERENCE VALUE k
To study the effect of reference value k in presence of rank-
ing errors, we fixed the sample size n = 5 and correla-
tion coefficient ρxy = 0.75. Then using different values

of k = 0.25, 0.5, 0.75 and 1.0, we studied the effect of
k on the performance of the proposed Poisson CUSUM
control charts based on IRSS and the results are displayed
in Table 10. It has been observed that k is inversely
proportional to h and directly proportional to the ARL1
values at smaller shift levels. This means that better
run-length performances are achievable for detecting small
process shifts when smaller values of k ≤ 0.75 are used
but reduce the effectiveness of the control chart in detect-
ing moderate to large disturbances. Comparison with the
classical charts (cf. Table 3) reveals that the IRSS based
Poisson CUSUM charts are more sensitive to changes than
the former, for all the shift values, in Poisson count rate
(cf. Table 10, columns 5 and 6). It is also observed that
even in the presence of ranking errors and changes in value
of k , the distributions of the new charts are more symmetric
about µ0 than the classical Poisson CUSUM control chart
when k > 0.25.

VI. ILLUSTRATIVE EXAMPLE
To demonstrate the practical application of the pro-
posed Poisson CUSUM chart based on RSS method, we
revisited the number of non-conformities in samples of
100 printed circuit board example in Zhang et al. [17] and
Abujiya et al. [41]. The data set consist of thirty samples
obtained from two sources. The first twenty data on the
number of non-conformities per board is from Table 7.8 of
Montgomery [3] with an in-control non-conformities rate of
µ0 = 19.67. The last ten samples are simulated Poisson
randomvariables with two different target out-of-control non-
conformities rate of µ1 = 16.0 and µ1 = 23.0, signifying
some improvements and deterioration in a process after the
twentieth observation, respectively.

For illustration, we used the re-sampling approach of
Takahasi andWakimoto [30] to randomly collect thirty obser-
vations using RSS and classical random sampling schemes
based on subgroup size of n = 3. The first twenty subgroup
data points were from the above number of non-conformities

14306 VOLUME 5, 2017



M. R. Abujiya: New CUSUM Control Chart for Monitoring Poisson Processes

FIGURE 4. Means of the thirty re-sampled data points collected using
SRS and RSS schemes.

FIGURE 5. Means of the thirty re-sampled data points collected using SRS
and RSS schemes.

per board [3] and the last ten were from the assumed out-
of-control system whose averages are displayed in Figure 4.
Using the parameters µ0 = 19.67, k = 0.5, ARL0 = 200,
the Poisson CUSUM control chart statistics for all the clas-
sical and RSS based schemes were computed. The control
limit for the classical and RSS Poisson CUSUM chart was
found to be h = 4.189 and h = 4.198, respectively. The
graphical representations of the plotting statistics for the
detection of upward and downward shifts are displayed in
Figures 5 and 6, respectively. Since CUSUM is well-known
for its effectiveness with small shifts, the target here, is to
identify the scheme that is more effective in the detection of
moderate to large downward and upward shifts, the so-called
quality improvements or deteriorations in the Poisson rate.

From Figure 5, we observed that both the classical and
the proposed schemes are not doing badly in the detection of
quality improvements. While the classical Poisson CUSUM
chart signals at the twenty-second sample point, the proposed

FIGURE 6. Classical versus RSS Poisson CUSUM control charts for
monitoring upward shift.

scheme triggers right on the twenty-first sample point giving
all the ten improvement signals. Interestingly, the classical
case appeared not to be doing so well when there is a dete-
rioration in the process (cf. Figure 6). Although the scheme
shows some pattern, it only triggers an out-of-control signal
on the thirtieth sample point. The proposed scheme, on the
other hand, gives a signal on the twenty-sixth sample with
a total of five out-of-control deterioration points. Hence, the
superiority of the proposed Poisson CUSUM chart using RSS
over the classical scheme is once again demonstrated.

VII. CONCLUDING REMARK
Three new Poisson CUSUM control charts based on RSS
technique were developed for effective monitoring the Pois-
son process location parameter. The Poisson CUSUM charts
based on RSS, and its variants are designed to detect both
upward and downward shifts in the process mean of Poisson
count data more effectively. The run-length properties of the
proposed charts, namely ARL, SDRL and percentile points
were computed via simulation approach. The two-sided Pois-
son CUSUM control charts based on RSS are more effective
in detection of both the upward and downward shifts in a Pois-
son process than the existing classical Poisson CUSUM con-
trol charts. Moreover, the presence of ranking errors does not
have much negative impact on performance of the proposed
schemes as they have better symmetric distribution than the
classical charts. Using real data, an application example is
presented to demonstrate how the proposed scheme can be
used in manufacturing industrial setting. The scope of this
study may be extended to other non-symmetric distributions
and variety of control charts design structures.
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