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ABSTRACT The advent of topological data analysis enabled us to extract topological invariants under object
deformations and transformations, such as the number of loops in an image, which was conventionally
unachievable with the filters of analog nature. However, the existing algorithms are mostly off-line or
non-parallel, and therefore not suitable for interactive applications, such as touch sensors. Therefore, we
previously proposed a real-time, distributed algorithm to compute the Euler characteristics as a touch
invariant by summing up the Poincare–Hopf index for each pixel, which is fortunately sparse being zero
for most pixels. However, the previous algorithm was specialized and restricted to plane screens with
triangulated meshes. The explosive growth of the tablet or touch interface technology with super-thin screens
or virtual realities is creating a new demand for software, for example, to detect if or not a touch wraps plastic
bottles, coffee cup handles, or balls. In this paper, we extended the scope of our previous algorithm from
plane to curved screens, including cylinders, toruses, and regular polyhedra, for solving truly topological
sensing problems. We demonstrate that our implementation in processing, in the form of solely local logical
operations and without any time-consuming iterative operations, returns and updates the correct topological
invariants of touches on curved screens in real time.

INDEX TERMS Poincare-Hopf index, topological data analysis, sparse representation, touch screen, sensor
networks, surface mesh, torus, icosahedron, neuromorphic engineering.

I. INTRODUCTION
The advent of topological data analysis [1]–[5] enabled us
to extract topological invariants under object deformations
and translations such as the number of islands (connected
components) or holes in an image [6]–[8]. This recognition
of invariants, conventionally unachievable by ‘‘analogue’’
filters [9]–[12], can provide valuable information in applica-
tions such as hand-written digit discrimination [13]–[18].

However, the inventive algorithms of computational topol-
ogy mostly aimed at off-line computation on serial [19]–[24]
or parallel system computers [25]–[27]. Therefore, the real-
time algorithms, which is possibly distributed to achieve
scalability, for computing topology remain to be developed
for interactive applications such as touch sensors.

In a previous paper [28], we proposed a real-time algo-
rithm to compute the Euler characteristics of a binary touch
image via the graph theoretical or discretized Poincare-Hopf
index [29]. Validated by topology, the proposed algorithm
can accurately count the number of islands or holes in

a touch image, irrespectively of the shapes and positions of
the touches. The key idea is to compute the Poincare-Hopf
index for each point and sum them for all the points to obtain
the Euler characteristics. Among many algorithmic variants
for Euler characteristics [7], [8], [24], [27], we believe that
our fast algorithm uses the least resources. This is because
the indices are non-zero only for (half of) the sparse ‘‘critical’’
points for aMorse or height function based on the topological
as well as combinatorial formulation of the Poincare-Hopf
index [29].

However, the previous algorithm was specialized and
restricted to plane screens [28], although the explosive growth
of the tablet or touch interface technology may generate
new demands. Specifically, there is a potential demand for
computing touch topology on curved screens such as plastic
bottles, swim rings and balls, which are realizable by latest
super-thin touch screens or virtual realities. For example, it is
useful to know if a touch wraps a coffee cup handle or not.
From a mathematical viewpoint, a coffee cup is topologically
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equivalent to a torus. Thus it might suffice for many applica-
tions to extend our previous algorithm from planes to toruses
or, possibly, other typical curved surfaces such as cylinders
or balls.

This type of applications can truly take an advantage of the
topological nature of Poincare-Hopf indices. The background
mathematics of graph theoretical Poincare-Hopf indices [29]
is not necessarily restricted to the triangulated plane and can
actually extend rather straightforwardly to general graphs
(clique complexes) including curved surfaces. Specifically,
the sensor network can easily extend to any complicated
shape in three dimensional space, say, with periodic boundary
conditions like cylinders or balls.

In this paper, we propose a real-time algorithm to compute
the Euler characteristics of a binary touch image on curved
screens via the graph theoretical or discretized Poincare-
Hopf index [28], [29]. Specifically, we extended our previous
algorithm to cylinder-, torus- and ball-type screens with tri-
angulated meshes. We demonstrate that our implementation
in Processing, in the form of solely local logical operations
and without any time-consuming iterative operations, returns
and updates the correct topological invariants of touches in
real time.

Although the background mathematics here is rather
advanced, we tried to keep the paper as accessible as pos-
sible by engineers and designers. One of the goals of this
paper is to import the state-of-the-art idea from mathemat-
ics and explain it as plainly as possible, as in our previous
paper [28]. Our substantial contribution resides in the simpli-
fication of Poincare-Hopf indices for a binary touch image,
especially on triangulated curved surfaces in this paper,
by enumerating all possibilities and its circuit implementa-
tion solely as reduced logical operations to enable real-time
tracking.

In Section II, we introduce the problem setting of a
binary touch image and sketch a fast algorithm to compute
the topology of touch shapes via the Poincare Hopf index.
In Section III-A, we briefly review the mathematical back-
grounds for the Poincare-Hopf index which is commonly
used for plane-, cylinder-, torus-, and ball-type screens.
In Section III-B–III-E, we implement plane-, cylinder-,
torus- and ball-type screens, respectively. We demonstrate
that our simple algorithm, that can be implemented in logical
gates, returns and updates in real time the correct topological
invariants of touches on each curved screen. In Section IV, we
present a summary and discussions.

II. PROBLEM SETTINGS AND PREVIOUS RESULTS FOR
COMPUTING TOUCH TOPOLOGY VIA SPARSE INDICES
Let us begin with a simple example of the eight-shape touch
in Fig. 1 (left) for ease of comprehension. We assume that
the tactile sensors are densely located on a two dimensional
triangular lattice to sense tactile stimulations at each point.
Note that a touch can have an arbitrary shape of finite size
while each point sensor can sense and keep whether each
point is touched so far or not.

FIGURE 1. (left) Problem setting exemplified by a binary touch image
(black) on a two dimensional triangular lattice (gray). We want the Euler
characteristics, #islands − #holes (= 1− 2 = −1, for this example), of an
arbitrarily shaped touch as a topological invariant. The touched point is
colored black. When the neighboring two points are both touched, they
are connected by an edge (black line). When the neighboring three points
are all touched, they are assumed to be ‘‘filled’’, that is, we do not count
local triangles as a hole. (right) Poincare-Hopf index for each lattice point
by color. The red and blue indicate the nonzero indices +1 and −1,
respectively. Otherwise, the indices are zero. The Euler characteristics for
this touch image can be computed as the sum of all the indices
(=#red points − #blue points = 7− 8 = −1).

The goal is to count the topological invariants, such as the
number of islands (=1) or the number of holes (=2) in this
binary image, irrespective of the shapes and positions of the
stimulating touch. Specifically, we are interested in the Euler
characteristics, which is defined as their difference,

χ = #islands− #holes, (1)

because the alternating sum or difference is generally easier to
compute in a real time. It can be useful, for example, to count
the number of marbles (without holes) in a binary image or
to count the number of holes in a single connected touch, as a
clue for pattern recognition. However, it is not easy to directly
compute the numbers of islands and holes for general touches
in an automatic way.

FIGURE 2. Rule for assigning Poincare-Hopf index to each point on plane
screens. It is +1 (red), −1 (blue) or 0 (otherwise), depending on the
downward patterns of connections. That is, a blue point is a point that is
connected to only two side points out of three downward points, and a
red point is not connected to any of three downward points.

Here we overview how to compute the Euler character-
istics (=#islands − #holes) via the Poincare-Hopf indices.
First, we compute the Poincare-Hopf index for each lattice
point, as exemplified by color in Fig. 1 (right). The color-
ing rule (for a plane screen) will be explained later using
Fig. 2, but we briefly mention that a blue point is a saddle
point that is connected to only two side points out of three
downward points, and a red point is a minimum point that
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is not connected to any of three downward points. Finally,
the Euler characteristics is obtained as the sum of Poincare-
Hopf indices for all the points [28], [29]. In the case of
Fig. 1, the Euler characteristics via Poincare-Hopf indices is
given by

χ = #red− #blue = 7− 8 = −1. (2)

As proven for general touches or graphs [29], this is equal to
the ‘‘topological’’ Euler characteristics given as

χ = #islands− #holes = 1− 2 = −1. (3)

Fig. 3 demonstrates that this algorithm also works for other
examples on the plane screen.

FIGURE 3. Additional two examples of Poincare-Hopf indices for plane
screens. The red and blue colors indicate the nonzero indices +1 and −1,
respectively. The Euler characteristics via the Poincare-Hopf index
(=#red points − #blue points) indicated at topleft in each figure is equal
to the ‘‘topological’’ Euler characteristics (=#islands − #holes), which is
0 = 1− 1 (left) or 1 = 2− 1 (right).

III. RESULTS
A. COMMON MATHEMATICAL BACKGROUNDS
FOR PLANE-, CYLINDER-, TORUS-
AND BALL-TYPE SCREENS
Non-curved plane screens were actually assumed in the pre-
vious results of Figs. 1 and 3 with Fig. 2 as a coloring
rule. In order to consider general curved surfaces such as
(triangulated) cylinders, toruses and balls as screens, we need
a first principle definition of the Poincare Hopf index, instead
of Fig. 2. Note that it is a common rule that the Euler charac-
teristics of the touch shape on any triangulated curved surface
can be computed by summing the Poincare-Hopf indices for
all the lattice points. Only the coloring rule differs across
different types of curved screens (eqs. 8, 19 and 20) as we
will explain later subsection by subsection.

The Poincare-Hopf index for a given (i-th) vertex vi in a
GENERAL graph is defined as

mi = 1− χ (exit set for vi), (4)

where the exit set for vi is defined as the ‘‘downstream’’
neighbors of the vertex vi on which a Morse function fMorse ,
typically representing a height, takes smaller values than that
on vi [28], [29]. The condition for vj to be included in the exit
set for vi can be mathematically written as

fMorse (j) < fMorse (i) for i and j neighbors. (5)

FIGURE 4. The rule for Poincare-Hopf index (=1− #islands) for all eight
patterns of downward connections for plane screens. As there are three
downward edges, the existence or absence of each edge results in eight
patterns in total. However, to save space, the symmetric and equivalent
three patterns were omitted. The green points and edges represent the
exit set for each pattern. The green integers denote the numbers of
isolated islands in the exit set. The underlined integers denote the
Poincare-Hopf indices for each black top point. Note that the number of
islands is one and thus the index is zero except for the two patterns
shown in Fig. 2.

To be precise, the exit set is a subgraph. That is, in addition
to the above vertices vj’s in the exit set, the edges connecting
them, if they exist in the original graph, are also included in
the exit set. The examples of exit sets (for the triangulated
plane screen case) are shown in Fig. 4.

At this moment, it is still impossible to derive a general col-
oring rule from the above abstract definition of eq. 4. Instead,
we will restrict ourselves to specific types of screens: plane-,
cylinder-, torus- and ball-types. In those implementations, an
exit set is obtained as a subgraph for each lattice point on a
triangulated screen and you can automatically compute the
Euler characteristic for that exit set as

χ (exit set) = (#vertices in exit set)− (#edges in exit set),

(6)

where we only count the touched vertices and the edges with
two terminal vertices both touched. Note that this value is
equal to the ‘‘topological’’ definition: χ = #islands− #holes.
Regarding the Morse function, which determines an exit

set, arbitrarily-defined any Morse function actually works.
That is, although different Morse functions result in different
exit sets or Poincare-Hopf indices, the sum of the indices for
all lattice points or the Euler characteristics does not depends
on the choice of the Morse function. Nonetheless, we solely
use the height (essentially y- or z-coordinate) as a Morse
function, because it is not only geometrically simple enough
for deriving coloring rules but also the derived indices are
sparse being non-zero only for a few critical points. Thus our
algorithmic contribution is to choose an appropriate Morse
function and write down the resulting coloring rule for each
type of curved screens. We find different but simple coloring
rules for computing the Poincare-Hopf indices for each type
of curved screens, which will be shown in the following
subsections.

B. IMPLEMENTING POINCARE-HOPF INDICES FOR
PLANE-TYPE SCREENS WITHOUT PERIODIC
BOUNDARY CONDITION
To obtain the Poincare-Hopf indices for a plane-type screen
as in Fig. 1, we simply need to count the number of islands
(as there is no hole) in the exit set for each lattice point in eq. 4.
Note that you can equivalently compute the number of
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vertices and edges in the exit set as in eq. 6, leading to
the same results. In Fig. 2, the red case has zero down-
ward island and the blue case has two downward islands.
The cases other than Fig. 2, the entire exit set is connected
(#islands = 1) as enumerated in Fig. 4. Note that although
any generic Morse function actually works for defining exit
sets, here we solely used the y-axis itself or height as a Morse
function for simplicity.

Then, the Poincare-Hopf index for a lattice point, (i, j), on
a plane screen is given as

m[i,j] = 1− (#islands in exit set for (i, j)). (7)

Therefore it is 1 for the red point, −1 for the blue point, and
0 otherwise. As is evident in Figs. 1 and 3, the index detects
the saddle-like (blue) and the minimum points (red) and they
correctly amount to the Euler characteristics (=#islands −
#holes). Note that in the field of topology it is well known
that the difference of the numbers of red and blue points
is an invariant under morphing, because adding an extra
bunch to a camel back only increases one saddle and one
minima together, keeping the difference. That is, even if we
prolong a shape, it simply adds the equal numbers of saddles
(blue points) and minima (red points). Although the above
explanation is just intuitive, it is proven that this definition
correctly computes the Euler characteristics [29]. Although
the conventional Morse theory count both the minima and
maxima, here we count only minima utilizing the symmetry
to save half computational resources.

FIGURE 5. Notation to derive a logical operation for Poincare-Hopf index
for downsampled plane screens. As we downsample from a square lattice
u[i,j ] to obtain a triangular lattice, we only consider the points where i + j
is even and let u[i,j ] = 0 for i + j odd.

Here we show a concrete algorithm to compute the
Poincare Hopf index for each point in a plane screen. As the
image is often given in the form of a square lattice, we first
assume an image consists of tiny square pixels indexed as
u[i,j]. In that case, you can downsample the lattice points
in order to obtain a triangular lattice as in Fig. 5. To be
specific, you can only consider the points where i + j is
even or let u[i,j] = 0 if i + j odd. In the style shown in
Fig. 5, the downsampled graph has the vertical adjacency
and the vertices for u[i,j] and u[i,j+2] are connected. Note that
in the Processing implementation we used logical operations
instead of ‘‘if then’’ branch to gain speed.

Then by using the notation in Fig. 5, the rule to compute
the Poincare-Hopf index in Fig. 2 at the point (x, y) = (i, j)
can be described as

m[i,j] = u[i,j]{(1− u[i−1,j+1])(1− u[i,j+2])(1− u[i+1,j+1])

− u[i−1,j+1](1− u[i,j+2])u[i+1,j+1]}. (8)

Note that m[i,j] can be nonzero only when either of the two
terms in the right hand side is nonzero, corresponding to the
two cases in Fig. 2. That is, the first term corresponds to the
red point while the second to the blue point. Again, the Euler
characteristics of an image is the sum of the Poincare-Hopf
indices for all the points.

FIGURE 6. Real-time implementation of plane screens in Processing. The
number at topleft of each figure indicates the Euler characteristics. The
implementation successfully computes the Euler characteristics of
touches automatically and updates it for newly added points in real time.
For the left example, χ = #islands − #holes = 1− 0 = 1. For the right
example, χ = 1− 1 = 0. Note that the Euler characteristics decreases by
one when the touch forms a loop.

In order to demonstrate the proposed algorithm, we con-
cretely implemented it in Processing, which simulated an
interactive touch screen. Fig. 6 shows that it successfully
computes the Euler characteristics of touches automatically
and updates it for newly added points in real time. Note
that the Euler characteristic change when the touch forms a
loop. To achieve the speed for interactive responsiveness, the
implementation was solely designed as logical operations as
evident in eq. 8. Thus our algorithm is ready to be translated,
say, into Raspberry Pi or Arduino.

C. IMPLEMENTING POINCARE-HOPF INDICES FOR
CYLINDER-TYPE SCREENS WITH PERIODIC
BOUNDARY CONDITION FOR x-AXIS
Here we implement a cylinder-type screen by simply impos-
ing the periodic boundary condition for x-axis to the previous
plane screen.

To obtain the Poincare-Hopf indices for a cylinder-type
screen, we again simply need to count the number of islands
(as there is no hole) in the exit set in eq. 4. Note that although
any generic Morse function works for defining exit sets, here
we again used the y-axis itself or height as a Morse function
for simplicity. Even if you impose the periodic boundary
condition on x-axis as in Fig. 7, the rule in Fig. 2 essentially
does not change at all. That is, the red case has zero down-
ward island and the blue case has two downward islands.
The cases other than Fig. 2, the entire exit set is connected
(#islands = 1) as enumerated in Fig. 4. Then, the
Poincare-Hopf index at a lattice point, (i, j), is again
given as

m[i,j] = 1− (#islands in exit set for (i, j)). (9)

Therefore it is 1 for the red point, −1 for the blue point, and
0 otherwise. The examples in Fig. 8 demonstrate how the
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FIGURE 7. x-axis periodic boundary condition for cylinder-type screens,
where u[N+1,j ] and u[0,j ] that can appear in Fig. 5 or eq. 8, can be
practically read as u[1,j ] and u[N.j ], respectively. The x-width of the
screen, N , is assumed to be even. Again, As we downsample from a
square lattice u[i,j ] to obtain a triangular lattice, we only consider the
points where i + j is even and let u[i,j ] = 0 for i + j odd.

FIGURE 8. Examples of Poincare-Hopf indices for lattice points for
cylinder-type screens. The nonzero indices +1 and −1 were indicated by
red and blue colors, respectively. The Euler characteristics via the
Poincare-Hopf index (=#red points − #blue points) indicated at topleft in
each figure is equal to the ‘‘topological’’ Euler characteristics
(=#islands − #holes), which is 1 = 1− 0 (left) or 0 = 1− 1 (right). Note
that the Euler characteristics decreases by one when the touch wraps the
cylinder and adds an extra loop.

difference of the numbers of red and blue points balances to
amount to the ‘‘topological’’ Euler characteristics under the
periodic boundary condition.

In practice, you can actually reuse eq. 8 (as well
as Figs. 5 and 7) by reading values as

u[0,j] := u[N ,j], and

u[N+1,j] := u[1,j], (10)

for ‘‘virtual’’ external points, whose values are set in order
to satisfy the periodic boundary condition. (We also utilized
these virtual external points in Processing implementation,
when we plot two points on both sides of boundaries if either
of them is touched, emphasizing the periodic boundary condi-
tion for x-axis.) Fig. 9 demonstrates that the implementation
of cylinder-type screen in Processing successfully computes
the Euler characteristics of touches automatically and updates
it for newly added points in real time. Note that the Euler
characteristic changes when the touch wraps the cylinder and
forms a hole.

FIGURE 9. Real-time implementation of cylinder-type screens in
Processing. The top left figures indicate the Euler characteristics. For the
left example, χ = #islands − #holes = 1− 0 = 1. For the right example,
χ = 1− 1 = 0. Note that the Euler characteristics decreases by one when
the touch wraps the cylinder and adds an extra loop.

D. IMPLEMENTING POINCARE-HOPF INDICES FOR
TORUS-TYPE SCREENS WITH PERIODIC BOUNDARY
CONDITIONS FOR x- AND y-AXES
Here we implement a torus-type dual-periodic screen by
adding the virtual x-boundary points as before as well as the
exceptional rules in the y-axis boundary area to the previous
plane screen. Note that although any generic Morse function
works for defining exit sets, here we again used the (inverted)
y-axis itself or height as a Morse function for simplicity,
that is,

fMorse (i, j) = −j. (11)

Although physically we have periodic boundary conditions
for both x- and y-axes, only x-axis boundary condition can
be solved by setting ‘‘virtual’’ boundary points as in eq. 10.
This is because the height function is asymmetric for x and y.
So we need to manage y-axis boundary condition with the
exceptional coloring rules there.

Let us begin with the interior points of a rectangular screen,
to which we impose periodic boundary conditions later.
To obtain the Poincare-Hopf index of an interior point, we
again simply need to count the number of islands (as there
is no hole) in the exit set in eq. 4. Even if you impose the
periodic boundary conditions, the rule in Fig. 2 essentially
does not change at all for the interior points. This is because
the Morse function is simply the y-coordinate and continuous
as far as you only look at the neighbors of an interior point
locally. Then, the Poincare-Hopf index for an interior point,
(i, j), is again given as

m[i,j] = 1− (#islands in exit set for (i, j)), (12)

which is 1 for the red point, −1 for the blue point, and 0
otherwise. So we can again reuse eq. 8 for an interior point.

Next we consider the x-axis boundary points. We simply
impose the periodic boundary condition on x-axis and avoid
the complicated rules. That is, we can again use the virtual
boundary points as in eq. 10, when reading values in eq. 8.

Then the only complication for the coloring rule comes
from the y-axis boundary points. Here we must go back to
the original definition of the Poincare-Hopf index in eq. 4
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FIGURE 10. Possible exit sets (black) for u[i, j ] for boundary j ’s to derive
exceptional rules for torus-type screen. Note that we only consider the
points where i + j is even and let u[i,j ] = 0 for i + j odd as we
downsampled from a square lattice u[i,j ] to obtain a triangular lattice.

and consider all possible cases of exit sets as in Fig. 10. Note
that as the same rule holds for all i’s due to the x-axis periodic
boundary condition, we only need to consider the four cases
for j = N ,N − 1, 2 and 1 separately.

For j = N , there is no exit set because

fMorse (i,N ) = −N (13)

is the lowest, meaning that there is no downstream (or lower)
point for the boundary point, (i,N ), as in Fig. 10. This results
in

m[i,N ] = u[i,N ]. (14)

Equivalently, you can also set the ‘‘virtual’’ points as

u[∗,N+1] = 0, and

u[∗,N+2] = 0, for any ∗ (= 1, 2, 3, . . .), (15)

when reading values in eq. 8. The latter way allows you to
consistently use eq. 8 for evaluation.

For j = N − 1, there are only two possible exit points
because

fMorse (i, 1) = −1 (16)

is actually the highest and the point (i, 1) cannot be in the exit
set for the boundary point (i,N−1), as in Fig. 10. This results
in

m[i,N−1] = u[i,N−1]{(1− u[i−1,N ])(1− u[i+1,N ])

−u[i−1,N ]u[i+1,N ]}.

= u[i,N−1]{1− u[i−1,N ] − u[i+1,N ]}. (17)

Equivalently, you can set the ‘‘virtual’’ points as

u[∗,N+1] = 0, for any ∗ (= 1, 2, 3, . . .), (18)

when reading values in eq. 8. Note that these virtual points
are already included in and consistent with eq. 15. Thus, you
can use solely eq. 8 for all the cases so far.

For j = 2, eq. 4 becomes,

m[i,2] = u[i,2]{(1− u[i−1,3])(1− u[i,4])(1− u[i+1,3])

− u[i−1,3](1− u[i,4])u[i+1,3] − u[i,N ]}. (19)

This is because only the last term −u[i,N ] was added
to the original eq. 8, depending on if the extra exit set
should be counted as an island or not in the bottom left
of Fig. 10.

For j = 1, all the neighbors can be potentially included
in the exit set. To compute eq. 4, here we used eq. 6 as it is
almighty and obtained,

m[i,1] = u[i,1]{1− u[i+1,N ](1− u[i+1,2])

− u[i+1,2](1− u[i,3])

− u[i,3](1− u[i−1,2])

− u[i−1,2](1− u[i−1,N ])

− u[i−1,N ](1− u[i,N−1])

− u[i,N−1](1− u[i+1,N ])}. (20)

Note that u counts the number of vertices and uu counts
the number of edges essentially. Another way to interpret
is that this equation detects the difference of neighboring
u’s to count the beginnings of the islands clockwise. This
equation also happens to work when there is a hole or when
all neighboring u’s are 1.

FIGURE 11. Example of Poincare-Hopf indices assigned on lattice points
for torus-type screen. The nonzero indices +1 and −1 were indicated by
red and blue colors, respectively. The Euler characteristics via the
Poincare-Hopf index (=#red points − #blue points) indicated at topleft in
each figure is equal to the ‘‘topological’’ Euler characteristics
(=#islands − #holes), which is 0 = 1− 1 (left) or −1 = 1− 2 (right). Note
that the Euler characteristics decreases by one when the touch wraps the
torus and adds an extra loop.

The examples in Fig. 11 demonstrate how the difference
of the numbers of red and blue points balances to amount
to the ‘‘topological’’ Euler characteristics even in the torus-
type screen. Practically, we consistently used eq. 8 (with the
help of virtual points) as much as possible, except for eq. 19
when j = 2 and eq. 20 when j = 1. Fig. 12 demonstrates
that the real-time implementation of torus-type screens in
Processing successfully computes the Euler characteristics of
touches automatically and updates it for newly added points
in real time. Note that the Euler characteristic changes when
the touch wraps the torus and adds an extra loop.
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FIGURE 12. Real-time Implementation of torus-type screen in Processing.
The top left figures indicate the Euler characteristics, which decreases by
one when the touch wraps the torus and adds an extra loop. For the
topleft example, χ = #islands − #holes = 1− 1 = 0. For the topright
example, χ = 1− 2 = −1. For the bottomleft example, χ = #islands −
#holes = 1− 0 = 1. For the bottomright example, χ = 1− 1 = 0.

E. IMPLEMENTING POINCARE-HOPF INDICES FOR
BALL-TYPE SCREENS AS ICOSAHEDRON
Herewe implement a ball-type screen as an icosahedron. First
we assign coordinates for the twelve points by using only 0,
1
2 and the golden ratio, φ = ± 1+

√
5

2 as

(x, y, z) = (0,±
1
2
,±
φ

2
), (±

φ

2
, 0,±

1
2
), (±

1
2
,±
φ

2
, 0). (21)

This is based on the fact that the three rectangles with the
golden ration can form an icosahedron [30], [31]. We refer
each point by the number assigned in Fig. 13.

FIGURE 13. The labels and xy-coordinates for each point in icosahedron.
The parentheses indicate the label for the point on the back.

Then, although any generic Morse function works for
defining exit sets, here we use the slightly tilted z-axis or
height as a Morse function for simplicity:

f (x, y, z) = 100z+ 10y+ x. (22)

FIGURE 14. Possible exit sets (green) for each point (black, isolated). The
red numbers indicate the labels assigned to each point in Fig. 13.

This means that the height is basically determined or dom-
inated by z. However, when two points share the same
z-coordinate, the y-coordinate dominates. Similarly, when
two points share the same z- and y-coordinates, the
x-coordinate matters finally. That is, the tilt is necessary to
break the symmetry in positions.

Here we must go back to the original definition of the
Poincare-Hopf index eq. 4 and consider all possible cases of
exit sets as in Fig. 14. We set ui = 0, 1 depending on if the i-
th point was touched or not. Then the Poincare-Hopf indices
for the twelve points end up with

m1 = u1{1− u2(1− u3)− u3(1− u5)

− u5(1− u6)− u6(1− u4)− u4(1− u2)},

m2 = u2{1− u3(1− u7)− u7(1− u8)− u8(1− u4)− u4},

m3 = u3{1− u5(1− u11)− u11(1− u12)

− u12(1− u7)− u7(1− u9)− u9(1− u5)},

m4 = u4{1− u6(1− u11)− u11(1− u12)

− u12(1− u8)− u8(1− u10)− u10(1− u6)},

m5 = u5{1− u6(1− u11)− u11(1− u9)− u9},

m6 = u6{1− u10(1− u11)− u11},

m7 = u7{1− u9(1− u12)− u12(1− u8)− u8},

m8 = u8(1− u12)(1− u10),

m9 = u9(1− u11)(1− u12),

m10 = u10(1− u11)(1− u12),

m11 = u11(1− u12),

m12 = u12. (23)

One interpretation of these equations is that all the rules are
just specific cases of m1, where the possible exit set forms a
loop. That is, fixing some ui’s in the equation form1 to be zero
can recover the rules for other mi. Note that here we ignore
specific labels assigned for the points as they are arbitrary.
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FIGURE 15. An example touch (filled by black) that wraps a ball-type
screen, where u = (1,1,1,1,0,1,1,0,1,1,1,1) and
m = (0,−1,0,0,0,0,0,0,0,0,0,1). The Euler characteristics for the
touch, χ =

∑12
i=1 mi = 0, indicates the existence of a nontrivial loop.

The most general rule for m1 or ring case is already given for
j = 1 of torus-type screens as in Fig. 10.
TheMatlab simulation successfully detected the hole in the

touch in Fig. 15 by correctly returning χ = 0.

IV. SUMMARY AND DISCUSSIONS
In this paper, we proposed a real-time algorithm to compute
the Euler characteristics of a binary touch image on curved
surface via Poincare-Hopf indices. Specifically we extended
our previous algorithms to cylinder-, torus- and ball-type
screens. The proposed algorithm accurately computes the
Euler characteristics (=#islands− #holes) for a touch image,
irrespectively of the shapes and positions of the touches.
To quickly obtain the Euler characteristics, you simply sum
the Poincare-Hopf indices only for a few active points. That
is, the advantage of our implementation resides in the real-
time computation supported by the sparse Poincare-Hopf
indices, which enables interactive applications with (pos-
sibly super-thin) curved touchscreens. Our implementation
in Processing (or Matlab simulations for ball-type screens)
returned and updated the correct topological invariants of
touches in real time, although its solely local logical form
representation, never specialized to our Processing code, is
implementable in any circuits such as FPGAs, Arduino, or
Raspberry Pi.

Although we focused on the typical surfaces like cylinders,
toruses and balls in this paper as concrete examples, the algo-
rithm actually extends to general graphs (clique complexes)
rather straightforwardly, if you do not mind the assistance of
numerical methods. To be precise, with a randomly defined
Morse function, you can automatically compute an exit set
and the numbers of vertices and edges therein in eq. 6, leading
to the Poincare-Hopf indices in eq. 4. Note that although
different Morse functions result in different exit sets, the sum

of the Poincare-Hopf indices or the Euler characteristics does
not change [29]. Specifically, the Morse function need not
to be a height function. The reason that we set our Morse
function as real height in three dimensional space in this paper
was just for geometrical interpretability to avoid complica-
tions. You can generally compute the Poincare-Hopf indices
for any graphs numerically, even if you can not write down
a general rule for the Poincare-Hopf index explicitly. Thus,
with the assistance of numerical computation, you can extend
the scope of the Poincare-Hopf index approach to any graphs,
which may be comfortable for some applications.

Regarding the computational speed, the algorithm pro-
posed in the current paper is much faster than our previous
implementation [27]. This is because the previous one needed
an iterative matrix multiplication, although our previous one
and other offline algorithms can compute not only the Euler
characteristics (=#islands− #holes) but also individual Betti
numbers such as #islands or #holes separately, at the expense
of the computational time. Therefore the previous offline
algorithms can be complementary to the proposed algorithm.
To be concrete, you can utilize the proposed algorithm if you
only need the Euler characteristics but not each component
of its alternating sum. An alternative algorithm for the Euler
characteristics without iterations could be to use the Euler’s
formula: χ = #points − #edges + #faces. However, the
counting the number of triangular faces costs resources as
it requires to confirm whether all the three points for each
triangle (triplets) exist or not. In general, the algorithm that
uses as little (active) points as possible such as the proposed
algorithm that uses the critical points may be resource effi-
cient. Thus our algorithm, which counts only half of the crit-
ical points, can be the fastest among the algorithmic variants
for computing Euler characteristics.
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