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ABSTRACT Model-based reliability analysis and assessment methods rely on models, which are assumed
to be precise, to predict reliability. In practice, however, the precision of the model cannot be guaranteed
due to the presence of epistemic uncertainty. In this paper, a new reliability metric, called belief reliability,
is defined to explicitly account for epistemic uncertainty in model-based reliability analysis and assessment.
A new method is developed to explicitly quantify epistemic uncertainty by measuring the effectiveness
of the engineering analysis and assessment activities related to reliability. To evaluate belief reliability,
an integrated framework is presented where the contributions of design margin, aleatory uncertainty, and
epistemic uncertainty are integrated to yield a comprehensive and systematic description of reliability. The
developed methods are demonstrated by two case studies.

INDEX TERMS Reliability, physics-of-failure, epistemic uncertainty, model uncertainty, belief reliability.

ACRONYMS
AUF Aleatory Uncertainty Factor
ESV Electrohydraulic Servo Valve
EU Epistemic Uncertainty
EUF Epistemic Uncertainty Factor
FMECA Failure Mode, Effect and Criticality Analysis
FRACAS Failure Report, Analysis, and Corrective

Action System
HC Hydraulic Cylinder
HSA Hydraulic Servo Actuator
LTB Larger-the-better
NTB Nominal-the-better
RGT Reliability Growth Test
RET Reliability Enhancement Test
RST Reliability Simulation Test
SBC Single Board Computer
STB Smaller-the-better

NOTATIONS
m Performance margin
p Performance parameter
pth Functional threshold
RB Belief reliability
Rp Probabilistic reliability
md Design margin

σm Aleatory uncertainty factor
σe Epistemic uncertainty factor
y Effectiveness of the EU-related engineering activities

I. INTRODUCTION
Reliability refers to the ability of a component or system
to perform a required function for a given period of time
when used under stated operating conditions [1]. Tradition-
ally, reliability is measured by the probability that functional
failure does not occur in the considered period of time and
failure data are used for its estimation based on statistical
methods [2]. In practice, however, failure data are often
scarce (if available at all), which defies the use of classical
statistical methods and challenges Bayesian methods with
respect to the assumption of subjective prior distributions [3].
Due to the problem of limited failure data, model-based
methods (cf. physics-of-failure (PoF) methods [4], structural
reliability methods [5], etc.) are widely applied to predict reli-
ability, by deterministically describing the degradation and
failure processes using deterministic failure behavior models.
More specifically, it is assumed that:

1) the failure behavior of a component or a system can be
described by a deterministic model;

2) random variations in the variables of the deterministic
model are the sole source of uncertainty.
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The probabilistic quantification of reliability is, then,
obtained by propagating uncertainties through the
model analytically or numerically, e.g., by Monte Carlo
simulation [6]–[8].

The random variations represent the uncertainty inher-
ent in the physical behavior of the system and are referred
to as aleatory uncertainty [9]. However, the model-based
methods are also subject to epistemic uncertainty due
to incomplete knowledge on the degradation and failure
processes [10], [11]. According to Aven and Zio [12] and
Bjerga et al. [13], epistemic uncertainty may arise because:
1) the deterministic model cannot exactly describe the

failure process, e.g., due to incomplete understanding
of the failure causes and mechanisms (model uncer-
tainty, also known as structural uncertainty);

2) the precise values of the model parameters might not
be accurately estimated due to lack of data in the actual
operational and environmental conditions (parameter
uncertainty).

In this paper, we introduce a new reliability metric, belief
reliability, to explicitly consider the effect of epistemic uncer-
tainty on the model-based methods. For illustrative purposes,
we consider only model uncertainty in this paper. However,
the framework can be easily extended to deal with parameter
uncertainty.

In literature, various approaches have been developed to
consider model uncertainty. Mosleh and Droguett reviewed
a number of approaches for model uncertainty assessment
and compared them in terms of theoretical foundations and
domains of application [14], [15]. Among them, the alternate
hypotheses approach and the adjustment factor approach are
two most widely applied ones [16]. The alternate hypothe-
ses approach identifies a family of possible alternate mod-
els and probabilistically combines the predictions of them
based on Bayesian model averaging, where the probability
of each model is evaluated from experimental data or expert
judgements [17], [18]. Apostolakis [19] addressed the issue
of model uncertainty in probabilistic risk assessment using
the alternate hypotheses approach. Park and Grandhi [20]
quantified the model probability in the alternate hypotheses
approach by the measured deviations between experimen-
tal data and model predictions. In [21], two crack models
were probabilistically combined using the alternate hypothe-
ses approach to estimate the failure probability of a butt
weld. Other applications of the alternate hypotheses approach
include sediment transport models [22], identification of
benchmark doses [23], precipitation modeling [24], etc.

In the adjustment factor approach, the model uncertainty
is addressed by modifying a benchmark model (the one
that we have highest confidence in) with an adjustment
factor, which is assumed to be uncertain, and is either
added to or multiplied by the prediction results of the
model [16], [25]. In [26], the adjustment factor approach
was used to combine experts’ estimates according to
Bayes’ theorem. Zio and Apostolakis [16] used the
approach to assess the risk of radioactive waste repositories.

Fischer and Grandhi [27] applied an adjustment factor to
low-fidelities models so as to scale them to high-fidelity
models. In a series of studies conducted in [25] and [28]–[30],
the adjustment factor approach was combined with the alter-
nate hypotheses approach by introducing an adjustment factor
to quantify the uncertainty in each alternate model; the model
uncertainty was, then, evaluated by averaging all the models
according to the alternate hypotheses approach.

The alternate hypotheses approach requires enumerat-
ing a set of mutually exclusive and collectively exhaustive
models [15]. In the case of model-based reliability methods,
however, it is impossible for us to enumerate all the pos-
sible models, which limits the application of the alternate
hypotheses approach. Hence, we adopt the adjustment factor
approach in this paper to develop a new reliability metric
to describe the effect of epistemic uncertainty (model uncer-
tainty) on the model-based reliability methods.

In the adjustment factor approaches, epistemic uncer-
tainty is quantified by the adjustment factor, which is often
determined based on validation test data (for example,
see [18] or [30]). In practice, however, due to limited time
and resources, it is hard, if not impossible, to gather suf-
ficient validation test data. Resorting to expert judgements
might offer an alternative solution (for example, see [16]),
but they could be criticized for being too subjective. On the
other hand, epistemic uncertainty relates to the knowledge
on the component or system functions and failure behav-
iors: as this knowledge is accumulated, epistemic uncertainty
is reduced. In the life cycle of a component or system,
the knowledge is gained by implementing a number of relia-
bility analysis-related engineering activities, whose purpose
is to help designers better understand potential failure modes
and mechanisms. For example, through Failure Mode, Effect
and Criticality Analysis (FMECA), potential failure modes
and their effects could be identified, so that the designer
can better understand the product’s failure behaviors [31].
Similar engineering activities include Failure Report, Anal-
ysis, and Corrective Action System (FRACAS) [32], Reli-
ability Growth Test (RGT) [33], Reliability Enhancement
Test (RET) [32], Reliability Simulation Test (RST) [34], [35],
etc. In this paper, we develop a new quantification method
for the epistemic uncertainty in the adjustment factor method,
based on the effectiveness of these engineering activities.

The contributions of this paper are summarized as
follows:

1) a new reliability metric, the belief reliability, is devel-
oped to explicitly consider epistemic uncertainty in the
model-based reliability methods;

2) a newmethod is developed to quantify epistemic uncer-
tainty, based on the effectiveness of the engineering
activities related to the reliability analysis and assess-
ment of components and systems;

3) a method is developed to evaluate the belief reliability
of components and systems, based on the integration
of design margin, aleatory uncertainty and epistemic
uncertainty.
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The rest of the paper is organized as follows. In Section II,
belief reliability is defined to account for the effect of
epistemic uncertainty in model-based reliability methods.
In Section III, epistemic uncertainty is quantified based on
the effectiveness of the related engineering activities and a
belief reliability evaluation method is developed. Section IV
presents two case studies to demonstrate the developed meth-
ods. Finally, the paper is concluded in Section V with a
discussion on future works.

II. DEFINITION OF BELIEF RELIABILITY
In this section, we introduce a new metric of reliability, belief
reliability, to explicitly account for the influence of epistemic
uncertainty onmodel-based reliability methods.We start with
a brief introduction of the model-based reliability method
in subsection II-A. Then, belief reliability is defined in
subsection II-B.

A. MODEL-BASED RELIABILITY METHODS
For a general description of model-based reliability methods,
we introduce the concepts of performance parameter and
performance margin:
Definition 1 (Performance Parameter): Suppose failure

occurs when a parameter p reaches a threshold value pth.
Then, the parameter p is referred to as a performance param-
eter, while the threshold value pth is referred to as the func-
tional failure threshold associated with p.

According to Definition 1, performance parameters and
functional failure thresholds define the functional require-
ments on a system or a component, for which three categories
exist in practice:

1) Smaller-the-better (STB) parameters: if failure occurs
when p ≥ pth, then, the performance parameter p is a
STB parameter.

2) Larger-the-better (LTB) parameters: if failure occurs
when p ≤ pth, then, the performance parameter p is
a LTB parameter.

3) Nominal-the-better (NTB) parameters: if failure occurs
when p ≤ pth,L or p ≥ pth,U , then, the performance
parameter p is a NTB parameter.

Definition 2 (Performance Margin): Suppose p is a per-
formance parameter and pth is its associated functional failure
threshold; then,

m =



pth − p
pth

, if p is STB,

p− pth
pth

, if p is LTB,

min
(
pth,U − p
pth,U

,
p− pth,L
pth,L

)
, if p is NTB

(1)

is defined as the (relative) performance margin associated
with the performance parameter p.
Remark 1: From Definition 2, performance margin is a

unitless quantity and failure occurs whenever m ≤ 0.
In the model-based reliability methods, it is assumed that

the performance margin can be described by a deterministic

model, which is derived based on knowledge of the functional
principles and failure mechanisms of the component [5], [36].
Conceptually, we assume that the performance margin model
has the form

m = gm(x), (2)

where gm(·) denotes the deterministic model which predicts
the performance margin and x is a vector of input variables.
In the design and manufacturing processes of a product,

there aremany uncertain factors influencing the input x of (2).
Thus, the values of x may vary from product to product of
the same type. Usually, this product-to-product variability is
described by assuming that x is a vector of random vari-
ables with given probability density functions. Then, m is
also a random variable and reliability Rp is defined as the
probability that m is greater than zero. The subscript p is
used to indicate that Rp is a probability measure. Given the
probability density function of x, denoted by fX (·), Rp can be
calculated by:

Rp = Pr (gm(x) > 0) =
∫
· · ·

∫
gm(x)>0

fX (x)dx. (3)

B. DEFINITION OF BELIEF RELIABILITY
Belief reliability is defined in this subsection to explicitly
account for the effect of epistemic uncertainty inmodel-based
reliability methods. For this, we first define design margin
and Aleatory Uncertainty Factor (AUF):
Definition 3 (Design Margin): Suppose the performance

margin of a component or a system can be calculated by (2).
Then, design margin md is defined as

md = gm(xN ), (4)

where xN is the nominal values of the parameters.
Definition 4 (Aleatory Uncertainty Factor (AUF)): Sup-

pose Rp is the probabilistic reliability calculated from the
performance margin model using (3). Then, AUF σm is
defined as

σm =
md
ZRp

, (5)

where ZRp is the value of the inverse cumulative distribution
function of a standard normal distribution evaluated at Rp.
Further, let equivalent design margin ME to be

ME = md + εm, (6)

where εm ∼ Normal(0, σ 2
m). It is easy to verify that ME ∼

Normal(md , σ 2
m) and Rp can be calculated as the probabil-

ity that ME > 0, as shown in Figure 1 (a). Therefore,
the probabilistic reliability can be quantified by the equivalent
performance margin and further by md and σm, where
• md describes the inherent reliability of the product
when all the input variables take their nominal val-
ues. Graphically, it measures the distance from the
center of the equivalent performance margin distribu-
tion to the boundaries of the failure region, as shown
in Figure 1 (a);
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FIGURE 1. Epistemic uncertainty effect on the distribution of the
equivalent performance margin. (a) Aleatory distribution.
(b) Effect of epistemic uncertainty.

• σm accounts for the uncertainty resulting from the
product-to-product random variations, e.g., the tolerance
of manufacturing processes, the variability in material
properties, etc. Usually, these random variations are
controlled by engineering activities such as tolerance
design, environmental stress screening, stochastic pro-
cess control, etc [11].

To further account for the effect of epistemic uncertainty,
it is assumed that:

ME = md + εm + εe, (7)

where εe is an adjustment factor [16] and εe ∼

Normal(0, σ 2
e ). Parameter σe is defined as Epistemic Uncer-

tainty Factor (EUF) and it quantifies the effect of epis-
temic uncertainty. The physical meaning of (7) is explained
in Figure 1 (b): epistemic uncertainty introduces additional
dispersion to the aleatory distribution of the equivalent per-
formance margin. The degree of the dispersion is related to
the knowledge we have on the failure process of the product,
i.e., the more knowledge we have, the less value σe takes.
Considering the assumption made in (7), we can, then,

define the belief reliability as follows:
Definition 5 (Belief Reliability): The reliability metric

RB = 8N

(
md√
σ 2
m + σ

2
e

)
(8)

is defined as belief reliability, where 8N (·) is the cumulative
distribution function of a standard normal random variable.

Belief reliability can be interpreted as our belief degree on
the product reliability, based on the knowledge of design mar-
gin, aleatory uncertainty and epistemic uncertainty. In the fol-
lowing, we discuss respectively how design margin, aleatory
uncertainty and epistemic uncertainty influence the value of
belief reliability.
Discussion 1: It is obvious from (8) that RB ∈ [0, 1],

where
• RB = 0 indicates that we believe for sure that a com-
ponent or system is unreliable, i.e., it cannot perform its
desired function under stated time period and operated
conditions.

• RB = 1 indicates that we believe for sure that a com-
ponent or system is reliable, i.e., it can perform its
desired function under stated time period and operated
conditions.

• RB = 0.5 indicates that we are most uncertain about the
reliability of the component or system [37].

• RB,A > RB,B indicates that we believe that product A is
more reliable than product B.

Discussion 2 (Variation of RB With the Design Margin):
From (8), it is easy to see that RB is an increasing function
of md , as illustrated by Figure 2, which is in accordance with
the intuitive fact that when the design margin is increased,
the component or system becomes more reliable.

FIGURE 2. Influence of md on RB.

Besides, it can be verified from (8) that if md = 0,
RB = 0.5. This is because when md = 0, the product is at
borderline between working and failure. Therefore, we are
most uncertain about its reliability (For details, please refer
to the maximum uncertainty principle in [37]).
Discussion 3 (Variation of RB With the Aleatory

Uncertainty): In (8), the effect of aleatory uncertainty is
measured by the AUF, σm. Figure 3 shows the variation of RB
with σm, when σe is fixed, for different values of md . It can
be seen from Figure 3 that when md and σe are fixed,
RB approaches 0.5 as σm increases to infinity. The result is
easy to understand, since σm → ∞ indicates the fact that
uncertainty has the greatest influence.
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FIGURE 3. Variation of RB with σm.

Discussion 4 (Variation of RB With the Epistemic
Uncertainty): In (8), the effect of epistemic uncertainty is
measured by the EUF, σe. The variation of RB with respect
to σe is illustrated in Figure 4, with σm fixed to 0.2. From
Figure 4, we can see that when σe → ∞, RB also
approaches 0.5, for the same reason as the AUF.

FIGURE 4. Variation of RB with σe.

Besides, it can be shown from (8) and assumption (3) that
as σe → 0, RB approaches the Rp calculated by the model-
based reliability methods using equation (3). This is a natural
result since σe = 0 is the ideal case for which there is no
epistemic uncertainty, so that the product failure behavior is
accurately predicted by the deterministic performancemargin
model and the aleatory uncertainty.

In practice, we always havemd ≥ 0 and σe > 0. Therefore,

RB ≤ Rp (9)

where Rp is the probabilistic reliability predicted by (3) under
the same conditions. Equation (9) shows that using belief
reliability yields a more conservative evaluation result than
using the probabilistic reliability, because belief reliability

considers the effect of insufficient knowledge on the relia-
bility evaluations.

III. EVALUATION OF BELIEF RELIABILITY
In this section, we discuss how to evaluate the belief reli-
ability for a given product. A general framework for belief
reliability evaluation is first given in subsection III-A. Then,
a method is presented for evaluating epistemic uncertainty
and determining the value of the EUF.

A. BELIEF RELIABILITY EVALUATION
The RB defined in (8) incorporates the contributions of design
marginmd , aleatory uncertainty (represented by σm) and epis-
temic uncertainty (represented by σe). The contributions from
the three factors should be evaluated individually and then,
combined to evaluate the belief reliability of a component.
Detailed procedures are presented in Figure 5.

FIGURE 5. Procedures for component belief reliability evaluation.

Four steps comprise the evaluation procedure:

1) PERFORMANCE MARGIN MODEL DEVELOPMENT
First, a deterministic performance margin model is developed
to predict the value of the performance marginm. The perfor-
mance margin model can be developed based on knowledge
of underlying functional principles and physics of failures.
For a detailed discussion on how to develop performance
margin models, readers might refer to [38] and [39].

2) ALEATORY UNCERTAINTY EVALUATION
Next, the values of md and σm are determined. The value of
md is calculated based on (4), where all the input parameters
of the performance margin model take their nominal values.
To calculated the value of σm, the probabilistic reliability
Rp is calculated first by propagating aleatory uncertainty
in the model parameters according to (3). Either structural
reliability methods [5] or Monte Carlo simulations [7] might
be used for the calculation. Then, σm can be calculated by
combining md and Rp using (5).

3) EPISTEMIC UNCERTAINTY EVALUATION
The value of σe is, then, determined by evaluating the effect
and potential impact of epistemic uncertainty. In practice,
epistemic uncertainty relates to the knowledge on the com-
ponent or system functions and failure behaviors: as this
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TABLE 1. Examples of EU-related engineering activities.

knowledge is accumulated, epistemic uncertainty is reduced.
Hence, in this paper, we relate epistemic uncertainty to our
state of knowledge on the product and its failure process and
assess the value of σe based on the effectiveness of engineer-
ing activities that generate our knowledge base. Details on
how to evaluate the value of σe is given in Section III-B.

4) BELIEF RELIABILITY EVALUATION
Following steps 1) - 3), the values ofmd , σm and σe are deter-
mined. Then, the belief reliability can be evaluated according
to (8).

B. QUANTIFICATION OF EPISTEMIC UNCERTAINTY
In this section, we develop a method to quantify epis-
temic uncertainty based on the state of knowledge.
In subsection III-B1, we discuss how to evaluate the state
of knowledge, and then, in subsection III-B2, we quantify the
effect of epistemic uncertainty in terms of σe.

1) EVALUATION OF THE STATE OF KNOWLEDGE
In the life cycle of a component or system, the knowledge on
the products’ failure behavior is gained by implementing a
number of engineering activities of reliability analysis, whose
purposes are to help designers better understand potential
failure modes and mechanisms. In this paper, we refer to
these engineering activities as epistemic uncertainty-related
(EU-related) engineering activities. Table 1 lists some com-
monly encountered EU-related engineering activities and dis-
cusses their contributions to gaining knowledge and reduc-
ing epistemic uncertainty, where FMECA stands for Failure
Mode, Effect and Criticality Analysis, FRACAS stands for
Failure Reporting, Analysis, and Corrective Action System,
RET stands for Reliability Enhancement Test, RGT stands
for Reliability Growth Test and RST stands for Reliability
Simulation Test.

In this paper, we make an assumption that the state
of knowledge is directly related to the effectiveness
of the EU-related engineering activities. Suppose there
are n EU-related engineering activities in a product life
cycle. Let yi, i = 1, 2, · · · , n denote the effectiveness of the
EU-related engineering activities, where yi ∈ [0, 1];
the more effective the engineering activity is, the larger value
the corresponding yi takes. The values of yi are determined by

asking experts to evaluate the effectiveness of the EU-related
engineering activities, based on a set of predefined evaluation
criteria.

For example, the effectiveness of FMECA can be eval-
uated based on eight elements, as shown in Table 2. For
each element, experts are invited to evaluate their perfor-
mances according to the criteria listed in Table 2. Based on
the evaluated performance, a score can be assigned to each
element, denoted by S1, S2, · · · , S8. Then, the effectiveness
of FMECA, denoted by y1, can be determined by

y1 =
1
8

8∑
i=1

Si. (10)

The effectiveness of other EU-related engineering activ-
ities can be evaluated in a similar way, so that the val-
ues for y1, y2, · · · , yn can be determined. Then, the state
of knowledge about the potential failures of the compo-
nent or system can be evaluated as the weighted average
of yi, i = 1, 2, · · · , n:

y =
n∑
i=1

ωiyi, (11)

where ωi is the relative importance of the ith engineering
activity for the characterization of the potential failure behav-
iors, where

∑n
i=1 ωi = 1.

2) DETERMINATION OF EUF
Having determined the value of y, we need to define a func-
tion σe = h(y), through which σe is determined. Since σe
is a measure of the severity of epistemic uncertainty and y
measures the state of knowledge, σe is negatively dependent
on y. Theoretically, any monotonic decreasing function of y
could serve as h(y). In practice, the form of h(y) reflects
the decision maker attitude towards epistemic uncertainty
and is related to the complexity of the product. Therefore,
we propose h(y) to be

h(y) =



1
3
√
y
· md , for simple products;

1
3y6
· md , for complex products;

1
3y2
· md , for medium complex products.

(12)
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TABLE 2. Evaluation criteria for FMECA.

FIGURE 6. Different attitudes of the decision maker towards epistemic
uncertainty.

By letting σm = 0 and md fixed to a constant value,
the attitudes of the decision maker for different products can
be investigated (see Figure 6):

• for simple products, RB is a convex function of y, indi-
cating that even when y is small, we can gather enough
knowledge on the product function and failure behav-
iors, so that we can assign a high value to the belief
reliability;

• for complex products, RB is a concave function of y,
indicating that only when y is large we can gather suf-
ficient knowledge on the product function and failure

behaviors, so that we can assign a high value to the belief
reliability;

• the h(y) for medium complex products lies between the
two extremes.

IV. CASE STUDIES
In this section, we apply the developed belief reliabil-
ity to evaluate the reliability of two engineering com-
ponents/systems, i.e., a Hydraulic Servo Actuator (HSA)
in Section IV-A and a Single Board Computer (SBC)
in Section IV-B. A comparison is also made on both
cases with respect to the traditional probabilistic reliability
metrics.

A. HYDRAULIC SERVO ACTUATOR (HSA)
The HSA considered in this paper comprises the six compo-
nents, as listed in Table 3. The schematic of the HSA is given
in Figure 7.

The required function of the HSA is to transform
input electrical signals, xinput, into the displacement of the
hydraulic cylinder (HC). The performance parameter of the
HSA is the attenuation ratio measured in dB:

pHSA = −20 lg
AHC
Aobj

, (13)

where, AHC denotes the amplitude of the HC displacements
when input signal xinput is a sinusoidal signal, and Aobj is the
objective value of AHC. Failure occurs when pHSA ≥ pth =
3(dB). The belief reliability of theHSA is evaluated following
the procedures in Figure 5.
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TABLE 3. Components and tolerances of the HSA.

1) PERFORMANCE MARGIN MODEL DEVELOPMENT
The performance margin model is developed in two steps.
First, a model for the pHSA is developed based on hydraulic
principles, with the help of commercial software AMESim.
TheAMESimmodel is given in Figure 7. Coherentlywith (2),
the model in Figure 7 is written as

pHSA = gHSA(xHSA). (14)

FIGURE 7. Schematic of the AMESim model to predict pHSA.

Second, as pHSA is a STB performance parameter, the per-
formance margin of the HSA can be determined according
to (1):

mHSA =
1
pth

(pth − gHSA(xHSA)) . (15)

2) ALEATORY UNCERTAINTY EVALUATION
The xHSA comprises six parameters, namely, the clearances
on diameters (CoDs) of the six components of the HSA. The
CoDs are subject to aleatory uncertainties from production
and manufacturing processes, which are quantified by the
tolerances in Table 3. For simplicity of illustration, it is
assumed that all the six parameters follow normal distribu-
tions. Following the ’3σ ’ principle (for references, see [40]),
the probability density function for each parameter is deter-
mined and given in Table 3. The value of md is calculated
by (4), where the nominal values are given in Table 3. The
resulting md is 0.6928 (dB). The values of σm is determined
usingMonte Carlo simulations with a sample size N = 3000.
The resulting σm is 0.0353 (dB).

3) EPISTEMIC UNCERTAINTY EVALUATION
Then, we need to determine the value of σe. In the devel-
opment of the HSA, five EU-related engineering activities,
i.e., FMECA, FRACAS, RGT, RET and RST have been
conducted. Let yi, i = 1, 2, · · · , 5 denote the five engineering
activities, respectively. The values of yis can be determined by
evaluating the effectiveness of these engineering activities,
based on the procedures illustrated in Section III-B1. The
result is y1 = 0.70, y2 = 0.90, y3 = 0.80, y4 = 0.85,
y5 = 0.70. In this case study, the engineering activities
are assumed to have equal weights, ω1 = ω2 = · · · =

ω5 = 1/5, and then, according to (11), y = 0.79. Since the
HSA has medium complexity, according to (12),

σe =
1
3y2
· md = 0.3700. (16)

4) BELIEF RELIABILITY EVALUATION
Finally, the belief reliability can be predicted using (8) and
the result is shown in Table 4. If we only consider the
aleatory uncertainty, probabilistic reliability can be predicted
using (3), whose value is also presented in Table 4 for com-
parisons. The result shows that, as expected, epistemic uncer-
tainty reduces our confidence that the product will perform its
function as designed, whereas probabilistic reliability would
lead to overconfidence.

TABLE 4. Comparison between probabilistic reliability and belief
reliability.

Another major difference between belief reliability and
probabilistic reliability is that belief reliability allows for
the consideration of EU-related engineering activities in the
reliability assessment, which are neglected in the probability-
based reliability evaluation. For example, if the effectiveness
of the EU-related engineering activities is increased from
y1 = 0.70, y2 = 0.90, y3 = 0.80, y4 = 0.85, y5 = 0.70
to y1 = y2 = · · · = y5 = 0.9, then, the belief reliability
will increase from RB,0 = 0.9688 to RB,1 = 0.9921.
In other words, in order to enhance the belief reliability, one
not only needs to increase the design margin and reduce
aleatory uncertainty by design, but also needs to reduce
epistemic uncertainty by improving the state of knowledge,
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whereas probabilistic reliability focuses only on the former
two aspects.

B. SINGLE BOARD COMPUTER
A SBC, as shown in Figure 8 [41], is chosen to demonstrate
the time-dependent belief reliability analysis for electrical
systems.

FIGURE 8. A SBC [41].

TABLE 5. Predicted failure rates of the SBC [41].

A probabilistic reliability analysis was conducted in [41]
based on the parts-counting reliability prediction method
in [42]. The times to failure of both the components are
assumed to be exponentially distributed and their failure
rates are predicted based on the database in [42], as shown
in Table 5. The failure rate of the SBC can, then, be calculated
by summing over all the components’ failure rates. Hence,
the predicted probabilistic reliability is

Rp(t) = exp{−1.186× 10−6t}, (17)

where the unit of t is hour.
The probabilistic reliability in (17) is a time-dependent

function. To further evaluate the belief reliability, first note
by substituting (5) into (8), we have

RB =
1√√√√( 1

ZRp

)2

+

(
σe

md

)2
. (18)

Since Rp is time-dependent, the belief reliability is also a
time-dependent function and can be calculated by using (18)

recursively at each time t:

RB(t) =
1√√√√( 1

ZRp(t)

)2

+

(
σe

md

)2
, (19)

whereRp(t) is the time-dependent probabilistic reliability and
σe is the EUF evaluated using the procedures in Section III-B.

The effectiveness of the five EU-related engineering activ-
ities, i.e., FMECA, FRACAS, RGT, RET and RST, can be
assessed using the procedures illustrated in Section III-B1:
y1 = 0.60, y2 = 0.80, y3 = 0.70, y4 = 0.75, y5 =
0.55. As the previous case study, we also assume that the
five activities have equal weights. From (11), y = 0.68.
By assessing the configuration of the SBC, it is determined
that it hasmedium complexity. Therefore, by substituting (12)
and (17) into (19), the belief reliability of the SBC can be
calculated, as shown in Figure 9.

FIGURE 9. Belief reliability of the SBC.

It can be seen from Figure 9 that the belief reliability curve
is more close to RB = 0.5 than the probabilistic reliability.
This is because RB = 0.5 corresponds to the state of max-
imum uncertainty, since we cannot differentiate whether the
system is more likely to be working or failure (for details,
please refer to maximum uncertainty principle in [37]). Since
belief reliability considers the influence of epistemic uncer-
tainty, it yields a more uncertain result than the probabilistic
reliability.

A sensitivity analysis is conducted with respect to y to
further investigate the influence of epistemic uncertainty on
belief reliability. The results are given in Figure 10. It can
be seen from Figure 10 that the value of y significantly
impactsRB: a larger value of y, which indicates improvements
on the effectiveness of the EU-related engineering activities,
tends to make the belief reliability moving towards the prob-
abilistic reliability; while a lower value of y tends to make
the belief reliability moving towards 0.5, which is the state of
maximum uncertainty. This demonstrates that, compared to
the traditional probabilistic reliability, belief reliability allows
for the explicit consideration of epistemic uncertainty and
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FIGURE 10. Belief reliability of the SBC.

EU-related engineering activities in the reliability assess-
ment. In other words, in order to enhance the belief reliability,
one not only needs to increase the design margin and reduce
aleatory uncertainty by design, but also needs to reduce epis-
temic uncertainty by improving the state of knowledge.

V. CONCLUSION
In this paper, a new metric of belief reliability has been
introduced to explicitly incorporate the influence of epis-
temic uncertainty into model-based methods of reliability
assessments. To quantify the effect of epistemic uncertainty,
an evaluation method is proposed, based on the effectiveness
of engineering activities related to reliability analysis and
assessment. The proposed belief reliability evaluationmethod
integrates design margin, aleatory uncertainty and epistemic
uncertainty for a comprehensive and systematic characteri-
zation of reliability. Two numerical case studies demonstrate
the benefits of belief reliability compared to the traditional
probability-based reliability metrics, with the explicit consid-
eration of epistemic uncertainty.

Compared to the traditional probabilistic reliability
metrics, belief reliability explicitly considers the effect of
epistemic uncertainty and allows considering EU-related
engineering activities in reliability assessment. We believe
that as a new reliability metric, belief reliability is beneficial
in reliability engineering practices, since epistemic uncer-
tainty is a severe problem for real-world products, especially
for those in design and development phases. An interesting
future work is to define a mathematical theory to model
belief reliability and its time-dependence. Various mathe-
matical theories dealing with epistemic uncertainty can be
considered, e.g., Bayesian theory, evidence theory, possibility
theory, uncertainty theory, etc. Besides, methods of scoring
the effectiveness of engineering activities should be further
investigated.
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