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ABSTRACT Quality assessment of 3-D images encounters more challenges in better understanding of
human visual system. In this paper, we propose a perceptual quality assessment approach for stereoscopic
images by modeling visual properties of the primary visual cortex. For this purpose, we obtain a new
feature encoding approach for the visual information, and define a new similarity measure approach to
match the feature encoding to give more reliable and accurate quality assessment. Experimental results on
three symmetrically, asymmetrically, and multiple distorted stereoscopic image quality assessment databases
demonstrate that our method has high consistency with subjective assessment.

INDEX TERMS
microstructure, macrostructure.

I. INTRODUCTION

Qualty assessment of stereoscopic images is challenging
but has made great progress in recent years. However, due
to the limitations in fully understanding the neural mech-
anism that the human perceives an image in stereoscopic
vision (to distinguish with the previous works that utilizes
neural network techniques to predict the perceptual quality),
computational model that mimics the visual neurons and pre-
dicts image quality accurately, nevertheless, may offer new
insights to explain visual perception to a wide range of visual
stimuli.

A. RELATED WORK

The essence of image quality assessment is to under-
stand how we see and perceive the images. The classic
full-reference (FR) methods, including structural similar-
ity index (SSIM) [1], feature similarity (FSIM) [2], visual
information fidelity (VIF) [3], gradient magnitude similar-
ity deviation (GMSD) [4], and so on, are devoted to dig
image features and measure their similarity. However, due
to the difficulty in establishing clear principles in human
vision perception, especially in the promising stereoscopic
vision, it is important to consider how the existing compu-
tational models can be used to simulate the neural mecha-
nisms of visual cortex. Computational models of the visual
cortex could provide a platform for achieving such a target,

Stereoscopic image quality assessment, primary visual cortex, receptive field,

integrating results across different cells to provide an overall
explanation for the quality prediction.

The human perceives images in the ventral pathway, begin-
ning with simple and complex cells in the primary visual
cortex (V1). Then, the streams pass to the V2, V3 and V4 area
for perception and recognition. The V1 is the largest part of
the human visions system (HVS) responsible for the primary
vision, and it receives the signals from the Lateral Geniculate
Nucleus (LGN) located in both hemispheres of the brain.
From the perspective of physiological point, the V1 has two
main types of cells namely simple cells and complex cells
responsible for perception [5]. Following neural processing
in the receptive fields (RFs), two retinal images are passed to
the V1 in the brain. The retinal information is first received
by the simple cells which work independently to the left and
right eyes. Then, each pair of RFs is connected to a complex
cell to generate the binocular signal. As an alternative way to
connect the left and right signals to gain more reliable percep-
tion, different types of binocular combination behaviors (also
known as binocular integration behaviors in some literatures)
are simulated to integrate the quality scores from left and
right channels [6]-[10]. However, this type of approaches is
still limited to relatively simple models of human perception,
and does not capture the intrinsic behavior of complex cells,
so that these approaches are unsuitable for stereoscopic image
quality assessment (SIQA).
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On the other hand, the challenge for SIQA mainly orig-
inates from the understanding of binocular vision. Aiming
at utilizing the properties of binocular vision, our previous
work [11] first interpreted the phenomena of monocular,
binocular fusion and binocular suppression based on different
region classification. Lee er al. [12] further discriminated
coarse and fine 3D perception. For coarse 3D perception,
regional 3D information is classified into one of stereopsis,
binocular rivalry, or suppression. For fine 3D perception,
binocular foveation and fusion are reflected to each seg-
ment. Cao et al. [13] classified image regions into monocular
and binocular regions, and utilized several visual charac-
teristics to simulate the primary visual processing mecha-
nism. Even a complex visual process involves both binocular
fusion and binocular rivalry that co-exist at different spatial
regions, it remains unclear how the binocular vision affect the
region classification because the findings have never tested
by psychology experiments. Hence, a large number of works
attempt to model the binocular fusion and binocular rivalry
behavior on the so-called ‘cyclopean’ view, a binocular single
vision created from two eyes. In [14], cyclopean image was
created from the left image and disparity-compensated right
image, and the local energy was used for weights to explain
the binocular rivalry. In [15], the local phase and amplitude
features extracted from the cyclopean image were used to
measure 2D artifacts. Similarly, different feature represen-
tation methods were conducted on the cyclopean images in
many works [16]-[19]. However, these methods do not con-
cern the core issue that how the cyclopean vision is formed in
the brain, and are distinguished only by different information
representation for the cyclopean image.

As known, studies of visual cortex typically measure
responses to a set of stimuli designed to investigate a
psychology phenomenon [20]. Thus, we can measure the
electroencephalograph (EEG)/functional magnetic resonance
imaging (fMRI) responses in early visual cortex and develop
different models to predict and measure these responses.
To model the responses instead of measuring by devices, a set
of Vl-like filters are applied to the image to get the response
signals. For binocular vision, binocular energy model is
established from the left and right filters (defined as RFs in
the two eyes), which depends on the disparity of the input
stimulus, and the disparity tuning of the unit [21]. Different
binocular energy models have been proposed to respond
for stimulus from phase or position shift [22]-[24]. For
SIQA task, Bensalma et al. [25] utilized Complex Wavelet
Transform (CWT) to calculate the responses of two pairs
of stereoscopic images, and built Binocular Energy Quality
Metric (BEQM) to measure the quality. Galkandage et al. [26]
extended the binocular energy model, and built Extended
Binocular Energy Quality Metric (EBEQM) for stereoscopic
vision. Our previous work [27] utilized binocular response
and binocular mask components to modulate the perceptual
quality. Overall, the energy responses are more in line with
the process that human is responsible for simple and com-
plex cells. However, the success of binocular energy models
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depends on accurate connections among the simple and com-
plex cells, and need to dig much deeper features from the
responses.

B. OBSERVATIONS

As mentioned above, previous works point out important
visual properties of binocular combination behavior, e.g.,
cyclopean vision and binocular energy models in model-
ing the perceptual quality of stereoscopic images. However,
these models or methods only explain limited phenomena of
the V1. Most methods distinguished from others are only in
different types and/or amounts of information extracted from
the stereoscopic images. For SIQA task, even most of these
models currently work well for symmetrically distorted stim-
uli, the core principle of a model should have the capability to
handle asymmetrically distorted stimuli or multiple distorted
stimuli. Therefore, from the perspective of visual pathway,
the expansibility of these methods may be limited, because:

« Observing the impact of disparity activity, we note that
the binocular energy model cannot well address the
quality variations, and such variations require disparity
stimulus, leading to poor performance in addressing
asymmetrically distorted stimuli.

« The cyclopean vision is suggested a constraint for mod-
eling binocular combination behavior, but the influence
of different disparity stimuli is not well characterized.

o We observe that the V1 is responsible for the basic
neuronal activity in early visual cortex. Increas-
ing or decreasing the contrast induced by image distor-
tion will affect the V1 activity. This motive us to simulate
the visual pathway in the V1 for neural processing,
rather than simply modeling one particular behavior.

C. CONTRIBUTIONS

In this work, we use hierarchical monocular simple cells,
monocular complex cells, binocular simple cells and binocu-
lar complex cells to represent the visual pathway in the V1.
The main motivation of this work is to develop a tech-
nique that more effectively models neural processing for the
visual information representation in the V1. Towards this end,
we obtain a new feature encoding approach, and define a new
similarity measure approach to match the feature encoding to
give more reliable and accurate quality assessment. For fea-
ture encoding, we construct responses across different scales,
orientations and disparity planes to represent contrast and
phase features. For similarity measure, we define microstruc-
ture similarity from the features to reflect the local perception,
and macrostructure similarity to reflect the basic perception.
The main contributions are summarized as follows:

1) We simulate the visual pathway in the V1 based on the
RFs from monocular simple, monocular complex, binocular
simple and binocular complex cells. Defining such a path-
way can comprehensively measure quality degradations and
variations.

2) We measure microstructure similarity from con-
trast and phase features to detect the local perception,
and measure macrostructure similarity to reflect the basic
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FIGURE 1. Procedure of the proposed method.
perception. We thus use different combination and pooling
methods to combine the similarity indexes into a final quality.

3) Through comprehensive experiments and comparison,
we analyze that our metric correlates well with subjective
observations especially for asymmetrically and multiple dis-
torted stereoscopic images, demonstrating that it can be used
as a general quality evaluator for various stereoscopic images
applications.

The remainder of the paper is organized as fol-
lows. Section 2 presents the proposed quality assessment
approach. The experimental results are given and discussed
in Section 3, and finally conclusions are drawn in Section 4.

Il. THE PROPOSED APPROACH

Numerous studies have conducted visual quality analysis in
the V1 [8]-[19], [28]. In this paper, we propose a perceptual
quality assessment approach for stereoscopic images by mod-
eling visual properties of V1. Our approach consists of four
parts: visual information modeling, feature encoding, similar-
ity measure and quality pooling, as shown in Fig. 1. The core
of our approach is the modeling of monocular and binocular
visual information to simulate the simple and complex cells.
The visual information from each stage is exploited to extract
contrast and phase features. Next, we measure the micro-
and macro-structure similarities between the reference and
distorted features, and finally employ different combination
and pooling methods to combine the similarity indexes into a
final quality.

A. VI MODEL

Before processing by the V1 model, the input IX/%(x) is
perceived by the lateral geniculate nucleus (LGN) neu-
rons with a RF function h;(x). The response to the input
is computed by convoluting with the circular symmetric
on-center/off-surround RFs. Refer to [29], the output from
this filter is subject to a multiplicative gain followed by a
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saturating nonlinearity, such that
XHR() = kign x (ho () @ IR(x))

(D
1 — 202 x2 4 y?
e (55 ) @

where L/R designates that the cell belongs to the left and
right, “®” is the convolution operation, o is used to con-
trol the scales of LoG filter. In this paper, we set ¢ = 2
and kLGN = 2.

Based on the inputs coming from the LGN, the perceived
V1 cells are classically divided into two types: simple cells
and complex cells (also defined as neuron in some litera-
tures). For stereoscopic vision, to characterize monocular and
binocular V1-like RFs, these V1 cells can be divided into the
following typical types: monocular simple and complex cells,
binocular simple and complex cells. Similar to [30], we use
Gabor-like filter to simulate the RF properties, defined as
follows:

x2+y2
o

h, (X) = )

1 x/2 + y2y/2 .
20,0(X) = Tryor exp <—T> exp (jox')  (3)
where x’ = (xcosf + ysin6), y = (—xsinf + ycos9),

[x]T = max (x, 0), w represents the spatial frequency of the
sinusoidal carrier, 6 is the orientation (the angle of the normal
to the sinusoid), y is the spatial aspect ratio and o is the
sigma of the Gaussian envelope. Four orientations, 0°, 45°,
90° and 135°, are used with six different spatial frequencies,
1.74,2.47,3.49,4.93,6.98 and 9.87 (cycles/degree) (the scale
is reflected by the spatial frequenc1es) Thus, the simple cell
is computed with the response S19 (X) of the Gabor filter to
the input X2/ (x), responded to dark-light contrast polarity,
which is defined as follows:

SEE 0 = 2.0 ® [XF] )

Next, the responses of simple cells are further processed by
complex cells. To address directional selectivity of the RFs,
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TABLE 1. The relationship between disparity d and allelotropic shift s.

Disparity (d) V. near disparity

Near disparity

Zero disparity Far disparity V. Far disparity

Allelotropic shift (s) -30 -15

0 15 30

all simple cells are decomposed only on the horizontal or ver-
tical direction, the cells responded to horizontal or vertical
boundary are obtained by

Se ) = ) Syl §)
0eH

S(Z,L/R,-&-(X) Z SL/R+ 6)
oeV

where H/V designates to the horizontal or vertical boundary.
The cells in V1 layer 4 with light-dark contrast polarity are

the inverse of those in (5) and (6):
Sg/V’L/R’_(X) — —Sg/V'L/R’+(X) (7)

The cells in V1 layer 3B monocular are obtained by
+
5 [Sg/V,L/R,Jr/—(X)] 8)

where the multiplicative factor of 2 is to compensate for
the monocular simple cells received from only one eye. The
response of a V1 monocular simple cell is calculated by

+ +
CHIVLIR(x) — [BZ/V,L/R,+(X)] + [Bg/V,L/R,—(X)] ©)

BH/VLIRF/=(x) =

By integrating the simple cells within the horizontal and
vertical directions, the response of a monocular complex cell
is calculated by

CCLUI/R(X) — <C5,L/R(X) 4 C(Z,L/R(X)>2 (10)

The response of a corresponding layer of binocular simple
cells can be modeled as:

RE®) = (CLo + CR)’ an

Normally, by pooling the responses of simple cells with
different monocular phase and/or position shift, we obtain
binocular complex cells with a specific disparity tuning,
as done in our previous work [31]. To focus on 3B and 2/3A
layers in the V1 in this work, we derive binocular complex
cell based on the laminar cortical model in [32]. The layer 3B
inhibitory cells only respond to vertical boundary. The cell
membrane potentials are determined by

QVL+/ (X)
= % ([SX*L*“‘(x +s, y)]+
- <[QVR+/ w] el )]
+|oi T ey )) (12)
QVR+/ (X)
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= % <[SVR+/ x+s, y)]
- ([QV”/ @] +[elh )]

A [ Ae] )) (13)

where y» and S represent the decay rate and the strength of
the inhibition, respectively, d is the disparity plane to which
the model neuron is tuned, and s is the allelotropic shift
that depends on the disparity plane. The relationship between
disparity plane d and allelotropic shift s is defined in Table 1.
In the experiment, refer to [32], we set y» = 4.5 and 8 = 4.

The layer 3B binocular cells receive input from
the V1 layer 4 and layer 3B inhibitory cells corresponding
to the same position and disparity, determined as follows:

VB +/—- (x)

= rll <[Sc\:,‘(§’+/(x + s, y)]+ + [SV R/ = (x —s, y)]

~a ([QV“/ w] +[elh 7 wn]

+[eE @]+ [l )] )) (14)

where y; and o represent the decay rate and the strength of
the inhibition, respectively. In the experiment, refer to [32],
we set Yy = 0.29 and o = 6.

The final V1 binocular complex cells are calculated by

Lt =[BrEtw] +[BE ] as)

After the above multi-stage processing, we obtain
Cf,’/V’L/R( ), CL/R(X), Rg(x) and C(L/’f(x) to characterize
monocular simple, monocular complex,’ binocular simple and
binocular complex cells respectively. In the next stages, these
different cells are fed to the perceptual quality model to obtain
the perceptual quality. The same V1 model is also used in our
previous work [33] for 3D image quality prediction, but more
effective perceptual features are extracted from the perceptual
information in this work.

B. PERCEPTUAL QUALITY MODEL

Even though the above responses can reflect low-level con-
trast features, they are not enough in detecting structure infor-
mation to account for the HVS sensitivity. To extract robust
structure information, phase features are further extracted
from the response maps. Inspired by the great success
of phase congruency (PC) in extracting invariant features,
we obtain the local phase instead of the gradient as in
our previous work [11]. Similar to [2], by modulating the
image on different scales and orientations, a set of responses
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at each point X ([1,,6(X), &,0(X)]) are obtained. Then, with
the local amplitude on scale s and orientation (A;(X) =

\/ 17s,9(x)2 + ésyg(x)z), and the local energy along orientation
0 (Eg(x) = /Fo(x)?> + Hg(x)?) where Fg(x) = ) n50(X)
N
and Hyp(x) = Y ;.6(x), the phase congruency is computed
s
by

Y Ey(x)

o 0
PC™ = Sy a,m
s 0

(16)

where ¢ is a small positive constant. As an example in Fig. 2,
the response map extracted from the WN distorted image
still suffers from serious local quality degradation, while the
extracted PC maps success in conducting local comparisons.

FIGURE 2. Example of original and distorted response and PC maps.
(a) original response map; (b) the PC map of (a); (c) white noise
distorted response map of (a); (d) the PC map of (c).

Focused on the responses extracted from the V1 model,
we use the great successful similarity measure to detect the
local difference between the original and its contaminated
response maps. We take this similarity as microstructure
similarity. Thus, let C,,¢(X) and C ;5(x) be the reference and
distorted response maps, respectively, contrast microstructure
similarity is defined as

zcorg(x) : Cdis(x) + T
(Corg®)” + (Cais(¥)* + T

Similarly, let E,.(x) and Eg;s(x) be the reference and
distorted phase maps, respectively, phase microstructure sim-
ilarity is defined as

Or(x) = (17)

ZEorg(X) < Egis(x) + Ty
(Eorg))” + (Egis(¥)* + T

From another aspect, distortion will also affect the pre-
sentation of visual saliency. For example, human’s fix-
ation may change to those serious distorted regions.
Therefore, the macrostructure difference between the original
and distorted saliency maps is also crucial in determining the
visual quality. To detect the saliency information, the input

0p(x) = (18)
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FIGURE 3. lllustration of smoothed response and PC maps corresponding
to Figs. 2(a)-(d).

left and right images are first down-sampled by a factor
of 2, and obtain the response maps and PC maps from the
down-sampled inputs by the above similar process. Then,
these response maps and PC maps are smoothed using a
Gaussian kernel function to act as the saliency maps, denoted
as C‘org(x) and édis(x), E(,,g(x) and Edis(x), correspond-
ing to the above C,(x) and Cgis(X), Eope(x) and Egis(x),
respectively. Fig. 3 shows the smoothed maps corresponding
to Figs. 1(a)—(d).
Then, contrast macrostructure similarity is defined as

min (Cor ), Cais() + T
max (Corg(x), Cais(x))) + T>
Similarly, phase macrostructure similarity is defined as
min (Eorg0, Eais3)) + T

max (Eorg), Bais(3))) + T

Or(x) =

19)

Op(x) = (20)

Then, QR(X), @p(x), QR(X) and Qp(x) are combined to get
the global similarity. We define the final quality score Qs as
follows:

a B

1 ~ ~ 1 o o

Q5 = (N > 0r)- QP(X)) : (ﬁ > Or(x) - QP(X))
xeQ xeQ’

21

where o and § are two parameters to adjust the relative impor-
tance of micro- and macro-structure features, 2 means the
whole spatial domain, 2" means the sampled spatial domain,
and N and N’ denotes the number of the pixels in the two
spatial domains.

C. 3D QUALITY POOLING

Recall that we use monocular simple cells, monocular com-
plex cells, binocular simple cells and binocular complex cells
to characterize the V1, and the similarity score in each stage
is computed respectively. Taking monocular complex cells as
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an example, quality scores for the left and right images are
obtained first, and are combined into a binocular quality by
binocular combination model

Outs.o = COM(Qys o ONis ) (22)

where COM denotes the binocular combination operation.
Here, we use the classical Gain-Control model [34] to address
the binocular combination behavior. The weights in the
Gain-Control model are computed across different scales as
follows:

1+ Z Z Csis(X; w)

L WER, XEQ
p= L R (23)
I+ > Y Chixw)+ > Y Cux o)
weR, XEQ WER, XEN
I+ Y Y Chxw)
R we, XEQ
pe= (24)
I+ Y Y Chxo+ X ¥ Chkx w)
weR, XEQ WER, XEQ

The Gain-Control model can accurately describe an early
stage of binocular combination. In the subsequent stages,
the fused binocular signals are directly perceived by the
means of responses. Then, by applying average pooling on
the quality scores across all scales (and across all disparity
planes for the binocular complex cells), the final quality
scores for the monocular simple cells, monocular complex
cells, binocular simple cells and binocular complex cells are
computed as

Oums = wAQ’QG(QZS,w + O¥is.o) (25)
Ouc = aA)e\gG(QMC,w) (26)
Ops = AVG(Qps.0) 27)
Opc = | _AVG  (Qpc.wa) (28)

where AVG denotes the average pooling operation.

Once the quality scores for the four stages are obtained,
we should combine them into a global 3D quality score.
Theoretically, the influences of monocular/binocular sim-
ple/complex cells for different distortion types are not the
same. As demonstrated by the comparative results in the
following Subsection 3.3, the effectiveness of the quality
scores on different types of distortion will be relatively dif-
ferent. To achieve a more natural perception (that is, they
are not simply averaged), a pooling operation is performed.
All the quality scores are fused to generate a 3D quality
score (defined as PVC index) as:

Opvc = OP (Qus, Ouc. Oss., Oc) (29)

where OP denotes pooling operation. Here, different weight-
ing/multiplication/learning pooling strategies can be used.
For simplicity, we use linear weighting to combine the four
quality scores.

In addition to the above contrast/phase changes, luminance
changes can also cause the visible distortion although they are
also related to the contrast/phase changes. In the experiment,
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we found that only adopting PVC index cannot obtain sat-
isfactory results for some distortions (the evaluation results
will be analyzed). Therefore, besides measuring the above
contrast/phase changes, we adopt additional global metric
directly on the original and distorted left/right images to
measure the global luminance similarity (GLS) by

0%, s = SSIM(I5, 1) (30)

Note that we have tested several popular FR IQA met-
rics, and find that the SSIM metric is comparatively well in
addressing the luminance and contrast changes to compensate
the PVC index. Similar to Eq. (22), the binocular combined
GLS index is computed by

OcLs = COM(Q%; 5, 0%, 6) 31)

The final index is calculated by combining Qpyc and Qgrs
into a quality score by

O=vy - -Qpyc+U—y) OcLs (32)

where 0 < y < 1 is a parameter for adjusting the relative
importance of the two components.

lIl. EXPERIMENTAL RESULTS AND ANALYSES

A. DATABASE AND EXPERIMENT DESCRIPTION

To validate the effectiveness of the proposed method, we con-
duct experiments on the LIVE 3D IQA Databases (Phase-I
and Phase-II) [35], [36]. The LIVE 3D IQA Database Phase-1
contains 20 reference stereopairs and 365 symmetrically
distorted stereopairs corresponding to five distortion types:
JPEG, JP2K, GBLUR, WN and Fast fading (FF). The LIVE
3D IQA Database Phase-II contains 8 reference stereopairs,
and 120 symmetrically and 240 asymmetrically distorted
stereopairs corresponding to the same distortion types with
LIVE 3D IQA Database Phase-I.

In addition, to further verify the proposed method, the
experiments are also conducted on our recent multiply-
distorted stereoscopic image database (NBU-MDSID) [37],
which is composed of 270 multiply-distorted stereoscopic
images corrupted simultaneously by blurring, JPEG com-
pression and noise injection symmetrically imposed on the
left and right images. The database has been made available
online at http://www.escience.cn/people/fshao/database.html.

Four commonly-used performance indicators, Pearson’s
Linear Correlation Coefficient (PLCC), Spearman’s Rank
Correlation Coefficient (SRCC), Kendall’s Rank Correlation
Coefficient (KRCC), and Root Mean-Squared Error (RMSE),
are used to evaluate the IQA metrics. For the nonlinear regres-
sion, a four-parameter logistic mapping function is used:

B1— B2
AO—B/IB 1 1

where B1, B2, B3 and B4 are determined by using the subjec-
tive scores and the objective scores.

We compare our method with eight state-of-the-art
SIQA approaches, including: Lin’s scheme [8] (FI-PSNR
and FI-SSIM), Benoit’s scheme [39] (the d 1 metric is used),

DMOS, = + B2 (33)
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TABLE 2. Overall performance on LIVE 3D IQA Database Phase-I and Phase-Il.

Criteria LIVE-I LIVE-II
PLCC SRCC KRCC RMSE PLCC SRCC KRCC RMSE
FI-PSNR 0.8345 0.8341 0.6297 9.0360 0.6584 0.6375 0.5252 8.4956
FI-SSIM 0.8721 0.8765 0.6791 8.0236 0.6844 0.6795 0.5042 8.2295
Benoit [38] 0.8899 0.8901 0.6947 7.4786 0.7642 0.7475 0.5553 7.2806
Bensalma [25] 0.8874 0.8747 0.6756 7.5585 0.7699 0.7513 0.5761 7.2035
Chen [14] 0.9167 0.9157 0.7368 6.5503 0.9065 0.9013 0.7307 4.7663
Shao [11] 0.9228 0.9199 0.7409 6.3190 0.7585 0.7451 0.5646 7.3554
Shao [39] 0.9350 0.9251 0.7291 5.8155 0.8628 0.8494 0.6145 5.7058
Lin [15] 0.9242 0.9203 0.7415 6.2629 0.9113 0.8935 0.7206 4.6477
Proposed 0.9389 0.9308 0.7648 5.6459 0.9263 0.9282 0.7627 4.1996

TABLE 3. Performance evaluation for each individual distortion type on LIVE 3D IQA Database Phase-I.

Distortion Criteria FI-PSNR FI-SSIM Benoit[38] Bensalma[25] Chen[14] Shao[11] Shao[39] Proposed
PLCC 02187 04773 0.5766 03803 0.6344 0.6563 0.6533 0.6654
SRCC 0.1212 0.4361 0.4983 0.3283 0.5582 0.6148 0.6167 0.6339
JPEG
KRCC 0.0735 0.2837 03301 02141 03718 0.4270 0.4243 0.4395
RMSE 6.3810 6.5392 5.3429 6.0477 5.0548 4.9341 5.0089 6.4344
PLCC 0.7851 0.8650 0.8859 0.8389 0.9164 0.9238 0.9269 0.9360
SRCC 0.7993 0.8584 0.8730 0.8171 0.8956 0.8752 0.8789 0.9000
JP2K
KRCC 05918 0.6563 0.6791 0.6000 0.7139 0.6797 0.7000 0.7259
RMSE 8.0215 6.4979 6.0073 7.0493 5.1852 4.9580 4.6080 4.5571
PLCC 0.9095 0.9176 09217 0.9369 0.9417 0.9513 0.9534 0.9542
SRCC 0.9020 0.8793 0.8802 0.9157 0.9261 0.9375 0.9403 0.9242
GB
KRCC 0.7333 0.7192 0.7212 0.7495 0.7717 0.8000 0.7576 0.7697
RMSE 6.0169 5.7522 5.6146 5.0595 4.8698 4.4606 4.5208 4.3308
PLCC 0.9351 0.9374 0.9354 0.9147 0.9436 0.9410 0.9368 0.9441
SRCC 0.9316 0.9379 0.9369 0.9055 0.9481 0.9431 0.9366 0.9430
WN
KRCC 0.7665 0.7835 0.7816 0.7291 0.8025 0.7949 0.7329 0.7886
RMSE 5.8963 5.7923 5.8831 6.7247 5.5073 5.6315 6.7650 5.4836
PLCC 0.7026 0.7203 0.7477 0.7339 0.7580 0.8403 0.8532 0.8304
SRCC 0.5875 0.5861 0.6242 0.6500 0.6879 0.7814 0.8056 0.7807
FF
KRCC 0.4168 0.4327 0.4491 0.4681 05118 0.5859 0.5833 0.6029
RMSE 8.8425 8.6198 8.2509 8.4399 8.1048 6.7363 6.7766 6.9238
Bensalma’s scheme [25], Chen’s scheme [14], combination behavior, Bensalma’s scheme [25] uses

Lin’s scheme [15] (Proposed-IS is used) and our two previous
schemes (Shao’s scheme [11] and Shao’s scheme [39]).
Note that FI-PSNR and FI-SSIM metrics use binocular
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binocular energy model, and Chen’s scheme [14] and
Lin’s scheme [15] use cyclopean vision to measure the
perceived quality.
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TABLE 4. Performance evaluation for each individual distortion type on LIVE 3D IQA Database Phase-II.

Criteria FI-PSNR FI-SSIM Benoit[38] Bensalma[25] Chen[14] Shao[11] Shao[39] Proposed
PLCC 0.6124 0.6417 05328 0.8577 0.8422 0.7504 0.7857 0.8506
SRCC 0.5234 0.6789 0.5078 0.8461 0.8396 0.7195 0.7367 0.8340
JPEG
KRCC 03544 0.4837 03592 0.6411 0.6364 0.5180 0.4835 0.6466
RMSE 6.7968 7.3302 62033 3.3302 3.9525 4.8452 4.1394 3.8537
PLCC 0.6696 0.7224 0.6467 0.6667 0.8426 0.8377 0.8124 0.8768
SRCC 0.6557 0.7027 0.6325 0.8038 0.8334 0.8477 0.8234 0.8747
JP2K
KRCC 0.4640 0.5070 0.4499 0.6182 0.6416 0.6635 0.5674 0.7011
RMSE 7.2909 6.7882 7.4878 9.8165 5.2870 53607 57167 47574
PLCC 0.9100 0.8417 0.8814 0.9077 0.9650 0.8270 0.8645 0.9445
SRCC 0.8650 0.8358 0.8545 0.8838 0.9096 0.8005 0.8490 0.9241
GB
KRCC 0.6667 0.6401 0.6635 0.6995 0.7441 0.6111 0.6515 0.7739
RMSE 5.7723 75182 6.5777 5.8419 3.6532 7.8289 63012 45729
PLCC 0.8547 0.9271 0.8610 0.9436 0.9602 0.8496 0.8646 0.9339
SRCC 0.7098 0.9206 0.8569 0.9386 0.9554 0.8455 0.8589 0.9325
WN
KRCC 0.5454 0.7551 0.6823 0.7809 0.8153 0.6690 0.7001 0.7786
RMSE 55610 40156 5.4488 3.5457 2.9920 5.6511 4.5764 3.8315
PLCC 0.6550 0.8561 0.8472 0.9097 0.9097 0.8808 0.9035 0.9330
SRCC 0.7660 0.8348 0.8319 0.8743 0.8890 0.8509 0.8906 0.9409
FF
KRCC 0.5814 0.6596 0.6455 0.7144 0.7402 0.6854 0.7526 0.7958
RMSE 8.6955 5.9466 6.1126 47779 4.7794 5.4488 5.8804 3.8973
B. OVERALL PERFORMANCE ON LIVE Chen’s scheme, Lin’s scheme and our method are
3D IMAGE DATABASE significantly superior to other methods. Chen’s and

To examine the performance of the proposed method in
evaluating the symmetrically and asymmetrically distorted
images, we reported the overall performance on LIVE 3D
IQA Database Phase-I and Phase-II in Table 2, in which
the case with the best performance is highlighted in bold.
From Table 2, observe that the proposed method out-
performs all the other comparative methods in terms of
most of the performance criteria on two databases. Some
other interesting phenomena can be observed from the
table: 1) for the symmetrically distorted stereoscopic images,
some SIQA algorithms perform quite well, and there seems
to be less performance difference between the 3D methods.
Due to the space limitation, we do not list the performance
of 2D IQA algorithms on the LIVE 3D IQA Database Phase-
I, but some well-developed algorithms also can achieve
impressive predictive performance when directly applied on
the two stereoscopic views and then averaged; 2) for the more
challenging asymmetrically distorted stereoscopic images,
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Lin’s schemes use cyclopean images to evaluate the quality,
which have proved to be effective in predicting the quality of
asymmetrically distorted cases. Our method is particularly
effective for asymmetrically distorted stereoscopic images
because the comprehensive monocular and binocular vision
is considered.

To more comprehensively evaluate the prediction perfor-
mance of the proposed scheme, we compare the reported
results of nine methods for each distortion type. The PLCC,
SRCC, KRCC and RMSE results are listed in Tables 3 and 4,
where the top three metrics have been highlighted in bold-
face. One can see that the proposed scheme is among the
top 3 metrics 8 times in terms of PLCC, 6 times in terms
of SRCC, 8 times in terms of KRCC, and 6 times in terms
of RMSE. Impressively, for the LIVE Phase-II database
including both symmetrically and asymmetrically distorted
stereoscopic pairs, our method performs the best on the JP2K,
blurring and FF distortions. Therefore, performance gains on
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TABLE 5. PLCC Performance of each quality component.

Database Algorithm JPEG JP2K GB WN FF All

Ouc 0.6816 0.9400 0.9512 0.9222 0.8188 0.9137
Oss 0.6388 0.9353 0.9524 0.9256 0.8227 0.9238
Osc 0.6164 0.9058 0.9448 0.9058 0.7169 0.8825

LIVEI
Oprc 0.6657 0.9352 0.9533 0.9263 0.8293 0.9221
Oas 0.2741 0.8210 0.9080 0.9250 0.7297 0.8699
0 0.6654 0.9360 0.9542 0.9441 0.8304 0.9389
Ouc 0.8006 0.8279 0.9697 0.9065 0.8697 0.8831
Oss 0.8662 0.8953 0.9189 0.9447 0.9219 0.8125
Osc 0.8700 0.7692 0.5439 0.9323 0.7311 0.6289

LIVEII
Oprrc 0.8291 0.8594 0.9795 0.9119 0.9205 0.9181
Oas 0.5486 0.7191 0.7250 0.9139 0.7342 0.6584
0 0.8506 0.8768 0.9445 0.9339 0.9330 0.9263

TABLE 6. SRCC Performance of each quality component.
Database Algorithm JPEG JP2K GB WN FF All

Owmc 0.6507 0.9038 0.9170 0.9264 0.7519 0.9142
Oss 0.6109 0.8973 0.9245 0.9259 0.7699 0.9218
Osc 0.6541 0.8858 0.9072 0.8796 0.5835 0.8890

LIVEI
Oprc 0.6371 0.8992 0.9192 0.9292 0.7765 0.9256
OaLs 0.2407 0.8222 0.8788 0.9282 0.6866 0.8559
0 0.6339 0.9000 0.9242 0.9430 0.7807 0.9308
Owmc 0.7824 0.8111 0.8737 0.9056 0.8380 0.8868
Oss 0.8563 0.8870 0.9261 0.9434 0.8902 0.8004
Osc 0.8060 0.7660 0.5859 0.9324 0.7043 0.6541

LIVEII
Oprc 0.8023 0.8505 0.9330 0.9121 0.9371 0.9228
OaLs 0.5644 0.7003 0.7387 0.9091 0.7350 0.6375
0 0.8340 0.8747 0.9241 0.9325 0.9409 0.9282

the overall or individual distortions by our proposed method
is indicative of its power in mimicking the visual aspects
in the V1.

C. CONTRIBUTION OF EACH COMPONENTS

In fact, our method is composed of Qus, Omc, Ops and
QOpc to derive Qpyc, and use Qpyc and Qgrs to derive the
final score. Therefore, it is meaningful to investigate the
impact of each quality component in the proposed method.
To facilitate the analysis, we design the following schemes
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(e.g., denoting by Omc, Ops. Opc, Opvc, and Qgrs) for
comparison. The results of PLCC and SRCC are presented

in Table 5 and Table 6. From the tables, we can see that,
for different types of distortion, the influence of Quc,
QOps and Qpc will have large deviations in evaluating the
perceptual quality. For example, for the symmetrically dis-
torted LIVE Phase-I database, Q¢ and Qpg are effective
for most of the distortions (Qps and Qpyc have the similar
overall performance), while for the asymmetrically distorted
cases, integrating Qpc into the Qpyc will largely promote the
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FIGURE 4. Scatter plots of objective scores versus subjective data (DMOS). (a) LIVE Database-Phase I. (b) LIVE Database-Phase Il. (c) NBU-MDSID.

overall performance, even for FF distortion, Qpc will have
weakness in addressing the actual perception on both LIVE
Phase-I and Phase-II databases. On the other hand, only using
QOpyc to predict the final quality is not a best choice except for
blurring distortion in the LIVE Phase-II database. Therefore,
by training a proper parameter A (A = 0.285 in this work),
the performance on the overall or individual distortions can
be further promoted.

TABLE 7. Overall performance on NBU-MDSID.

Criteria PLCC SRCC KRCC RMSE
FI-PSNR 0.8477 0.8461 0.6165 5.0966
FI-SSIM 0.8967 0.9227 0.7580 4.2374
Benoit [38] 0.8667 0.8313 0.7174 4.4209
Bensalma[25] 0.8564 0.8336 0.6408 4.9426
Chen[14] 0.8849 0.8772 0.6577 43851
Shao[11] 0.8342 0.7580 0.6585 5.3200
Shao [39] 0.9185 0.9048 0.7174 3.6867
Shao [37] 0.8781 0.8815 0.6496 4.5702
Proposed 0.9523 0.9359 0.7721 2.9209

D. PERFORMANCE ON MULTI-DISTORTED DATABASE

In addition to the above single-distorted cases, we also
report the performances on our recent constructed multiply-
distorted database (NBU-MDSID). Our no-reference metric
designed for the database is also compared. We were sur-
prised to find from Table 7 that, the performance of our
method is significantly superior to other methods. The PLCC
is promoted from 0.9185 (the highest performance of the
comparative methods) to 0.9523, and SRCC is promoted
from 0.9048 to 0.9359. The results further confirm that the
proposed model have the capability to handle symmetrically
and asymmetrically distorted stimuli, as well as multiple dis-
torted stimuli. The scatter plots on the three databases shown
in Fig. 4 demonstrate that our model has superior convergence
and monotonicity.

IV. CONCLUSIONS

In this paper, we have presented a new stereoscopic image
quality assessment approach by modeling visual properties of
the primary visual cortex (V1). The main motivation of this
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work is to develop a technique that more effectively models
neural processing for the visual information representation in
the V1. Towards this end, we propose new feature encoding
and similarity measure approaches to give more reliable and
accurate quality assessment. The results demonstrated that
the proposed approach can yield much better results than
the other competing methods. As future work, we plan to
consider deeper visual features and explore the connections
them to better simulate the perception process. We also plan
to extend this framework to blind reference applications.

REFERENCES

[1] Z.Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: A feature similarity
index for image quality assessment,” IEEE Trans. Image Process., vol. 20,
no. 8, pp. 2378-2386, Aug. 2011.

H. R. Sheikh and A. C. Bovik, “Image information and visual quality,”
IEEE Trans. Image Process., vol. 15, no. 2, pp. 430-444, Feb. 2006.

W. Xue, L. Zhang, X. Mou, and A. C. Bovik, “Gradient magnitude
similarity deviation: A highly efficient perceptual image quality index,”
IEEE Trans. Image Process., vol. 23, no. 2, pp. 684-695, Feb. 2014.
W.E. L. Grimson, From Images to Surfaces: A Computational Study of the
Human Early Visual System. Cambridge, MA, USA: MIT Press, 1981.

J. Zhou, M. A. Georgeson, and R. F. Hess, “Linear binocular combination
of responses to contrast modulation: Contrast-weighted summation in first-
and second-order vision,” J. Vis., vol. 14, no. 13, p. 24, 2014.

C.B. Huang, J. Zhou, Y. Zhou, and Z. L. Lu, “Contrast and phase combina-
tion in binocular vision,” PLoS One, vol. 5, no. 12, 2010, Art. no. e15075.
Y.-H. Lin and J.-L. Wu, “Quality assessment of stereoscopic 3D image
compression by binocular integration behaviors,” IEEE Trans. Image Pro-
cess., vol. 23, no. 4, pp. 1527-1542, Apr. 2014.

J. Wang, A. Rehman, K. Zeng, S. Wang, and Z. Wang, “‘Quality prediction
of asymmetrically distorted stereoscopic 3D images,” IEEE Trans. Image
Process., vol. 24, no. 11, pp. 3400-3414, Nov. 2015.

J. Yang, Y. Liu, Z. Gao, R. Chu, and Z. Song, “A perceptual stereoscopic
image quality assessment model accounting for binocular combination
behavior,” J. Vis. Commun. Image Represent., vol. 31, pp. 138-145,
Aug. 2015.

F. Shao, W. Lin, S. Gu, G. Jiang, and T. Srikanthan, “Perceptual full-
reference quality assessment of stereoscopic images by considering binoc-
ular visual characteristics,” IEEE Trans. Image Process., vol. 22, no. 5,
pp. 1940-1953, May 2013.

K. Lee and S. Lee, “3D perception based quality pooling: Stereopsis,
binocular rivalry, and binocular suppression,” IEEE J. Sel. Topics Signal
Process., vol. 9, no. 3, pp. 533-545, Apr. 2015.

Y. Cao, W. Hong, and L. Yu, “‘Full-reference perceptual quality assessment
for stereoscopic images based on primary visual processing mechanism,”
in Proc. IEEE Int. Conf. Multimedia Expo (ICME), Jul. 2016, pp. 1-6.
M.-J. Chen, C.-C. Su, D.-K. Kwon, L. K. Cormack, and A. C. Bovik, ‘“Full-
reference quality assessment of stereopairs accounting for rivalry,” Signal
Process. Image Commun., vol. 28, no. 9, pp. 1143-1155, Oct. 2013.

[2]

[3]

[4]

[51

[6]

[7]
[8]

[9]

[10]

(11]

[12]

(13]

(14]

15715



IEEE Access

F. Shao et al.: Modeling the Perceptual Quality of Stereoscopic Images in the Primary Visual Cortex

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Y. Lin, J. Yang, W. Lu, Q. Meng, Z. Lv, and H. Song, “Quality index
for stereoscopic images by jointly evaluating cyclopean amplitude and
cyclopean phase,” IEEE J. Sel. Topics Signal Process., vol. 11, no. 1,
pp. 89-101, Feb. 2017.

J. Yang et al., “Quality assessment metric of stereo images consider-
ing cyclopean integration and visual saliency,” Inform. Sci., vol. 373,
pp. 251-268, Dec. 2016.

L. Jin, A. Boev, K. Egiazarian, and A. P. Gotchev, “Quantifying the
importance of cyclopean view and binocular rivalry-related features for
objective quality assessment of mobile 3D video,” EURASIP J. Image
Video Process., vol. 2014, no. 6, pp. 1-18, 2014.

Y. Zhang and D. M. Chandler, “3D-MAD: A full reference stereo-
scopic image quality estimator based on binocular lightness and con-
trast perception,” [EEE Trans. Image Process., vol. 24, no. 11,
pp. 3810-3825, Nov. 2015.

A. Maalouf and M.-C. Larabi, “CYCLOP: A stereo color image quality
assessment metric,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Pro-
cess., May 2011, pp. 1161-1164.

A. Polonsky, R. Blake, J. Braun, and D. J. Heeger, ‘“Neuronal activity in
human primary visual cortex correlates with perception during binocular
rivalry,” Nature Neurosci., vol. 3, no. 11, pp. 1153-1159, 2000.

P. B. Hibbard, “Binocular energy responses to natural images,” Vis. Res.,
vol. 48, no. 12, pp. 1427-1439, 2008.

Y. Chen and N. Qian, “A coarse-to-fine disparity energy model with
both phase-shift and position-shift receptive field mechanisms,” Neural
Comput., vol. 16, no. 8, pp. 1545-1577, 2004.

P. B. Hibbard, R. Goutcher, and D. W. Hunter, “Encoding and estimation
of first- and second-order binocular disparity in natural images,” Vis. Res.,
vol. 120, pp. 108-120, Mar. 2016.

J. C. A. Read and B. G. Cumming, “Testing quantitative models of
binocular disparity selectivity in primary visual cortex,” J. Neurophysiol.,
vol. 90, no. 5, pp. 2795-2817, 2003.

R. Bensalma and M. C. Larabi, “A perceptual metric for stereoscopic
image quality assessment based on the binocular energy,” Multidimen-
sional Syst. Signal Process., vol. 24, no. 2, pp. 281-316, Jun. 2013.

C. Galkandage, J. Calic, S. Dogan, and J. Y. Guillemaut, *“Stereoscopic
video quality assessment using binocular energy,” IEEE J. Sel. Topics
Signal Process., vol. 11, no. 1, pp. 102-112, Feb. 2017.

F. Shao, G. Jiang, M. Yu, F. Li, Z. Peng, and R. Fu, “Binocular energy
response based quality assessment of stereoscopic images,” Digit. Signal
Process., vol. 29, pp. 45-53, Sep. 2014.

F.Zhang, W. Jiang, F. Autrusseau, and W. Lin, “Exploring V1 by modeling
the perceptual quality of images,” J. Vis., vol. 14, no. 1, p. 26, Jan. 2014.
M. W. Spratling, “Image segmentation using a sparse coding model
of cortical area V1,” [EEE Trans. Image Process., vol. 22, no. 4,
pp. 1631-1643, Apr. 2013.

G. Azzopardi and N. Petkov, “A CORF computational model of a simple
cell that relies on LGN input outperforms the Gabor function model,”
Biological, vol. 106, no. 3, pp. 177-189, Mar. 2012.

F. Shao, W. Lin, G. Jiang, and Q. Dai, “Models of monocular and binocular
visual perception in quality assessment of stereoscopic images,” IEEE
Trans. Comput. Imag., vol. 2, no. 2, pp. 123-135, Feb. 2016.

S. Grossberg and P. D. L. Howe, “A laminar cortical model of stereopsis
and three-dimensional surface perception,” Vis. Res., vol. 43, pp. 801-829,
Apr. 2003.

F. Shao, W. Chen, W. Lin, Q. Jiang, and G. L. Jiang, ““Simulating receptive
fields of human visual cortex for 3D image quality prediction,” Appl. Opt.,
vol. 5, no. 21, pp. 5488-5496, Jul. 2016.

J. Ding and G. Sperling, ““A gain-control theory of binocular combination,”
Proc. Nat. Acad. Sci. USA, vol. 103, no. 4, pp. 1141-1146, 2006.

A. K. Moorthy, C.-C. Su, A. Mittal, and A. C. Bovik, “Subjective eval-
uation of stereoscopic image quality,” Signal Process., Image Commun.,
vol. 28, no. 8, pp. 870-883, Dec. 2013.

M.-J. Chen, L. K. Cormack, and A. C. Bovik, “No-reference quality
assessment of natural stereopairs,” IEEE Trans. Image Process., vol. 22,
no. 9, pp. 379-391, Sep. 2013.

F. Shao, W. Tian, W. Lin, G. Jiang, and Q. Dai, “Learning sparse
representation for blind quality assessment of multiply-distorted stereo-
scopic images,” IEEE Trans. Multimedia, vol. 19, no. 9, pp. 1821-1836,
Aug. 2017.

A. Benoit, P. Le Callet, P. Campisi, and R. Cousseau, “Using disparity for
quality assessment of stereoscopic images,” in Proc. 15th IEEE Int. Conf.
Image Process., Oct. 2008, pp. 389-392.

15716

[39] E Shao, K. Li, W. Lin, G. Jiang, M. Yu, and Q. Dai, “Full-reference
quality assessment of stereoscopic images by learning binocular recep-
tive field properties,” IEEE Trans. Image Process., vol. 24, no. 10,
pp. 2971-2983, Oct. 2015.

FENG SHAO (M’16) received the B.S. and Ph.D.
degrees from Zhejiang University, Hangzhou,
China, in 2002 and 2007, respectively, all in elec-
tronic science and technology. He is currently a
Professor with the Faculty of Information Sci-
ence and Engineering, Ningbo University, China.
He was a Visiting Fellow with the School of
Computer Engineering, Nanyang Technological
University, Singapore, in 2012. He received Excel-
lent Young Scholar Award by NSF of China
in 2016. He has authored over 100 technical articles in refereed journals and
proceedings in the areas of 3-D video coding, 3-D quality assessment, and
image perception.

WANTING CHEN received the B.S. degree from
Ningbo University, Ningbo, China, in 2015. She is
currently pursuing the M.S. degree at Ningbo
University. Her current research interests include
image/video processing and quality assessment.

GANGY!I JIANG received the M.S. degree from
Hangzhou University in 1992, and the Ph.D.
degree from Ajou University, South Korea,
in 2000. He is currently a Professor with the
Faculty of Information Science and Engineering,
Ningbo University, China. His research interests
mainly include digital video compression and
multi-view video coding.

YO-SUNG HO (SM’06-F’16) received the B.S.
and M.S. degrees in electronic engineering from
Seoul National University, Seoul, South Korea,
in 1981 and 1983, respectively, and the Ph.D.
degree in electrical and computer engineering
from the University of California, Santa Barbara,
in 1990. He joined Electronics and Telecommuni-
cations Research Institute, (ETRI), Daejeon, South
[ -4 Korea, in 1983. From 1990 to 1993, he was with

S A the Philips Laboratories, Briarcliff Manor, NY,
USA, where he was involved in development of the advanced digital high-
definition television system. In 1993, he rejoined the technical staff of ETRI
and was involved in development of the Korean DBS digital television and
high-definition television systems. Since 1995, he has been with the Gwangju
Institute of Science and Technology, Gwangju, South Korea, where he is
currently a Professor with the Information and Communications Department.
His research interests include digital image and video coding, image analysis,
and image restoration, advanced video coding techniques, digital video and
audio broadcasting, 3-D video processing, and content-based signal repre-
sentation and processing.

VOLUME 5, 2017



