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ABSTRACT This study proposes an accurate mathematical model and a novel decoupling scheme for
developing a 5-degrees-of-freedom rotor system of a wind turbine with high robustness, fast response and
good-tracking properties. The proposed scheme incorporates neural network generalized inverse (NNGI)
control and five model reference adaptive (MRA) controllers. The decoupled open-loop generalized
pseudo-linear system can be established by placing the NNGI system in front of the original system.
The MRA controllers are utilized to design a closed-loop controller to improve the robustness and
anti-disturbance ability of the entire rigid rotor system. The effectiveness of the proposed control scheme is
demonstrated via simulation and experimental results for various operations.

INDEX TERMS Wind turbine, decoupling control, neural network generalized inversion, model reference
adaptive control, magnetic levitation generator, magnetic bearing.

I. INTRODUCTION
Wind energy is an increasingly important, well-known renew-
able energy resource and has attracted a large proportion of
investments [1], [2]. Manufacturers have replaced the tradi-
tional wind turbines with direct-drive wind turbines without
gearboxes in recent years because of the high cost and vul-
nerability of the gearboxes in wind turbines [3], [4]. However,
the start-up wind speed of direct-drive wind turbines is higher
than that of the traditional wind turbines because of the size
and weight of wind turbines. The working conditions of wind
turbines, including the heat, high humidity and impact load-
ing, are also poor. Magnetic bearings, which offer efficient
shock resistance, long lifetimes, and efficient sealing and
lubrication, can be used in direct-drive wind turbines to solve
the abovementioned problems [5]–[8].

A magnetic levitation system consists of many magnetic
levitation devices, such as magnetic bearings and levitation
windings [9]. In addition, the system is a time-varying system
that is multivariable, close coupling, and nonlinear. There-
fore, the control scheme is complex and difficult to use in
a magnetic levitation system. An individual and traditional
linear control scheme, i.e., the proportional integral differ-
ential (PID), has been used in magnetic levitation systems.

However, the coupling among the system variables is dis-
regarded; thus, many high-performance decoupling control
schemes with high accuracy and performance have been
used in magnetic levitation systems, such as sliding model
control [10], adaptive robust nonlinear control [11], output
feedback stepping control [12], and dynamic feedback lin-
earization decoupling [13], [14]. These methods, which were
mentioned in previous studies, require an accurate mathe-
matical model, but the accurate mathematical model of a
5-DOF rotor system is difficult to deduce. To solve this
problem, neural network inversion has been used in 5-DOF
systems [15], [16].

The neural network generalized inverse (NNGI) technol-
ogy is the improvement of the neural network inverse system
method. The NNGI technology can constitute open-loop sta-
ble subsystem with the original system in comparison with
the neural network inverse system method. Moreover, the
obtained subsystem is a linear transfer function of which
zeros and poles can be assigned easily, and the integral con-
trollers are also easy to design.

For complex nonlinear systems, the NNGI control scheme
can play a role in feedback linearization and multivari-
able decoupling, and it is simple and easy to understand.
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Nevertheless, a few uncertainties are inherent in nonlinear
systems because of the modeling error, loading change, and
environment [17]–[19]. Themodel reference adaptive (MRA)
controller is used in nonlinear systems, where the tracking
signal comes from a set of reference dynamics [20]. Hence,
the NNGI control scheme and MRA controllers can be com-
bined in a 5-DOF magnetic levitation system.

The remainder of this paper is organized as follows. The
structure and mathematical model of the 5-DOF magnetic
levitation direct-drive wind turbine are described in section II.
In section III, the NNGI control scheme is used for decou-
pling of the 5-DOF magnetic levitation system, and the MRA
controllers are designed to improve the system robustness.
In section IV, simulation and experimental studies are carried
out to verify the effectiveness of the proposed control scheme.
Finally, the conclusion is given in section V.

II. PRINCIPLES OF GENERALIZED INVERSE AND
MRA CONTROLLER
A. BASIC CONCEPT OF GENERALIZED INVERSION
From the viewpoint of functional analysis, a multivariable
system 6 can be considered as a mapping θ reflecting the
inputs and outputs. Given a system 6 with the inputs u(t),
outputs y(t), and the initial vector x(t0) = x0, the above
mapping θ describing the relationship between the inputs and
outputs can be defined as follows:

y(·) = θ (x0,u(·)) or y = θu (1)

According to [21] and [22], the definition of the general-
ized inverse system of mapping θ is as follows:

Definition: Assuming a system 5 with p-dimensional
input ϕ(t) = [ϕ1, ϕ2, · · · , ϕp]T , which is the differential
analytic function vector, and q-dimensional output ud (t) =
[ud1, ud2, · · · , udq]T , the mapping relation between inputs
and outputs is ud = θ̄gϕ, and the inputs and outputs are
subject to some initial conditions.5 can be referred to as the
generalized inversion of the original system 6 if

θ θ̄gϕ = θud = yd (2)

where yd is the expected output vector of 6,
yd = [yd1, yd2, · · · ydp]T , and

ϕ = ai0y
(α)
di + ai1y

(α−1)
di + ai2y

(α−2)
di + · · · aiαydi,

i = 1, 2, · · · , p (3)

where ai0, ai1, · · · , aiα are real numbers and ai0 6= 0.
As a MIMO nonlinear system that has q-dimensional input

vectors u = [u1, u2, · · · , uq]T ∈ Rq and q-dimensional
output vectors y = [y1, y2, · · · , yq]T ∈ Rq, the differential
equation can be expressed as:

F(y(ε)T ,Y ,u(σ )T ,U) = 0 (4)

where

ε = (ε1, ε2, · · · εq)T , σ = (σ1, σ2, · · · σq)T ,

y(ε) = (y(ε1)1 , · · ·, y
(εq)
q ), u(σ ) = (u(σ1)1 , · · · , u

(σq)
q ),

Y = (y(ε1−1)1 , · · · , y1, · · ·, y
(εq−1)
q , · · · , yq)T,

U = (u(σ1)1 , · · ·, u1, · · · , u
(σq−1)
q , · · ·, uq)T,

and σi and εi are the highest derivative orders of input ui and
output yi, respectively.
According to the theorem in [23], for a MIMO system

expressed as in (4) on an open setD, the generalized inversion
5εσ exists, or the system is invertible when det[ ∂F

∂U (M ) ] 6= 0

and ∂F
∂U (M ) is continuous. The generalized inversion 5εσ is:

żj = Ajzj + Bjvj, j ∈ q
ȯj = C joj + Djej, j ∈ q
e = φ(v, z, o)
u = e(−σ )

(5)

where the output of 5εσ is u = [u1, u2, · · · , uq]T , the input
of 5εσ is v = (v1, v2, · · · , vq)T , vj = y

(εj)
j , ej = u

(σj)
j j ∈ q,

and (Aj,Bj) and (C j,Dj) are the Brunovsky normalized form
matrices of εj and σj, respectively.
e(−σ ) = (e−σ11 , e−σ22 , · · ·, e

−σq
q ) is the σ =

(σ1, σ2, · · · , σq)T-order integration of e, and the variables
and inputs of the system can be expressed as follows:{

zj(i+1) = y(i)j , j ∈ q, i = 0, 1, · · · , εj − 1

oj(i+1) = u(i)j , j ∈ q, i = 0, 1, · · · , σj − 1
(6)

vj =
1
ajεj

[−aj0yj −−aj1ẏj − · · · − aj(εj−1)y
(εj−1)
j + v̄j]

=
1
ajεj

[−aj0zj1 −−aj1zj2 − · · · − aj(εj−1)zjεj + v̄j],

j ∈ q (7)

where ajεj 6= 0.
The pseudo-linear composite system can be obtained when

the generalized inversion is connected in series with the orig-
inal system, and the transfer function of inputs and outputs is:

G(s)

= diag(G11(s), · · · ,Gqq(s))

= diag(
1

a1ε1sε1 + a1(ε1−1)sε1−1 + · · · + a11s+ a10
, · · · ,

1

aqεqs
εq + aq(εq−1)s

εq−1 + · · · + aq1s+ aq0
) (8)

B. STRUCTURE AND PRINCIPLE OF MRA CONTROLLER
The basic principle of a MRA controller can be summarized
as follows: a reference model is designed according to the
structure and control requirements of the controlled object,
and then the parameters of the controller are adjusted based
on the difference between the referencemodel and the outputs
of the controlled object [24], [25]. Finally, the controlled
object is made to match up with the characteristics of the
ideal reference model. The typical structure of an MRA con-
troller is shown in Fig. 1. The generalized error e is obtained
by comparing the reference model with the output of the
controlled object, and the functional form of the generalized
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FIGURE 1. Basic structure of MRA controller.

FIGURE 2. Structure of the proposed 5-DOF wind turbine.

error is made to yield a minimum by modifying the controller
parameters.

III. STRUCTURE AND MATHEMATICAL MODEL
A. DESCRIPTION OF THE 5-DOF MAGNETIC LEVITATION
WIND TURBINE SYSTEM
A novel 5-DOF magnetic levitation wind turbine is proposed
in this study, as shown in Fig. 2. The wind turbine consists
of a 3-DOF hybrid magnetic bearing with a large carrying
capacity and a 2-DOF generator. As for the 5 DOF magnetic
levitation wind turbine system, it means that the 2-DOF
generator has 2-DOF radial suspension DOF and the 3-DOF
hybrid magnetic bearing has 2-DOF radial suspension DOF
and single-DOF axial DOF. It’s important to note that the
5 DOF magnetic levitation wind turbine system excludes the
rotational DOF. The cross-section of the 2-DOF generator,
which consists of one inner stator, one outer stator, arma-
ture windings, levitation windings, a distributed hollow rotor,
and permanent magnets, is shown in Fig. 3. The armature
windings are positioned in the outer stator, and the levitation
windings are positioned in the inner stator. The surface-
mounted permanent magnets adopt a radial magnetization.
The coupling between the armature and levitation windings
can be relieved by the distributed hollow rotor [26].

As shown in Fig. 3, the magnetic levitation windings are
wound around the inner stator poles, and the number of
turns of each levitation winding is Nf . The schematic of the

FIGURE 3. Cross-section of the 2-DOF generator.

FIGURE 4. Connection diagram of the levitation windings in the inner
stator.

connection and control method is shown in Fig. 4. Every two
adjacent windings are connected in series, and the differential
controllers are used in the radial direction. The principle
of levitation force generation is that the current ixb will be
added to the circuit when the rotor is shifted off the equilib-
rium position to the left side. According to the principle of
Maxwell force generation, the rotor will be pulled back by
the levitation force because of the difference current in the
levitation windings. The principle of levitation force on the
other side is the same as that presented above.

FIGURE 5. Structure of the 3-DOF hybrid magnetic bearing.

The structure of the 3-DOF hybrid magnetic bearing
and the connection with the levitation windings are shown
in Fig. 5. The bearing consists of one outer stator, one inner
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stator with eight poles, a radial magnetized permanentmagnet
ring, axial levitation windings, radial levitation windings, and
a rotor. The eight poles are set in the inner stator to increase
the carrying capacity and tolerance of the hybrid magnetic
bearing. Bias flux is provided by the permanent magnet ring
in this magnetic bearing.

The working principle of the 3-DOF magnetic bearing is
that the radial control current iya is loaded when the rotor
is shifted off the equilibrium position toward the negative
direction of the y-axis; then, the magnitude of the upper air
gap flux is greater than that of the lower air gap flux because
the flux 8ya generated by iya is superimposed with the bias
flux 8m in the upper air gap and offsetting occurs between
8ya and 8m in the lower air gap. According to the principle
of Maxwell force generation, the rotor will be pulled back to
the equilibrium position because a difference force is applied
to the rotor. The principle of the levitation force in the other
directions is the same; the z-axis control flux is 8ca, and the
x-axis control flux is 8xa.
In conclusion, the rigid rotor of the wind turbine system

can be suspended by the 2-DOFmagnetic levitation generator
on the left side and by the 3-DOF magnetic bearing on the
right side. The forces acting on the rigid rotor are depicted
in Fig. 6. The forces Fyb and Fxb on the left side are produced
by the 2-DOF magnetic levitation generator, and Fya, Fxa
and Fz on the right side are produced by the 3-DOF magnetic
bearing. Fdx , Fdy, and Fdz are the disturbances from the load
or environment; O is the centroid of the rigid rotor; and mg is
the weight of the rotor.

B. MODELING OF LEVITATION FORCES IN 2-DOF
MAGNETIC LEVITATION GENERATOR
The modeling of the 3-DOF magnetic bearing and the
2-DOF generator can be deduced because the 5-DOF mag-
netic levitation wind turbine system is suspended by two
different structures. The following assumptions are made to
simplify the magnetic circulation:
(1) The reluctance of the stator iron core and the rotor core

is not considered.
(2) Finite coercivities and magnetic saturation are ignored.
(3) The influence of the compensating current is disrega-

rded.
The principle of virtual displacement indicates that the

electromagnetic force suffered by a rotor is equal to the partial
derivatives of magnetic energy storage Wa, i.e.,

Wa =
1
2
BHV =

1
2
BHAl (9)

where B is the flux density of the air gap, H is the magnetic
field intensity, V is the volume of the air gap under the two
levitation poles, l is the length of the air gap, and A is the
cross-section of the levitation pole. The electromagnetic force
suffered by the rotor under the levitation pole is

f =
∂Wa

∂l
=

1
2
BHA =

B2A
2µ0

(10)

FIGURE 6. Rigid rotor of the wind turbine system. (a) Forces acting on the
rigid rotor. (b) Photograph of the rigid rotor.

According to Ampere’s law, the flux density is assumed to
remain constant, i.e.,

B = µ0
Ni
l

(11)

By combining (10) and (11), we obtain

f = k
i2

l2
(12)

where Ni is the magnetomotive force, µ0 = 4π × 10−7 H/m,
and k = µ0N 2A

2 .
There are eight levitation forces acting on the hollow rotor

in the 2-DOF magnetic levitation generator. Considering that
the angle among the forces is α = 22.5◦, the composition of
every two radial levitation forces along the radial axis is

f = 2× k
i2

l2
cos 22.5◦ (13)

Then, the radial levitation forces acting on the rotor on the
left side are

Fxb = 2 cos 22.5◦k[
(I0 + ixb)2

x2b
−

(I0 − ixb)2

(2g0 − xb)2
] (14)

Fyb = 2 cos 22.5◦k[
(I0 + iyb)2

y2b
−

(I0 − iyb)2

(2g0 − yb)2
] (15)
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Fxa = 4g0Srµ0{
1
σa
·

yaSzFm(2g0 − ya)
xayaSz(2g0 − xa)(2g0 − ya)+ 2g0zSr(2g0ya − y2a + 2g0xa − x2a )

+
nxaixa
σc

[
1

ya(2g0 − ya)+ 2g0xa
−

1
ya(2g0 − ya)+ 2g0(2g0 − xa)

]

×{
1
σa
·

yaSzFm(2g0 − ya)(g0 − xa)
xayaSz(2g0 − xa)(2g0 − ya)+ 2g0zSr(2g0ya − y2a + 2g0xa − x2a )

+
g0nxaixa
σc

[
1

ya(2g0 − ya)+ 2g0xa
+

1
ya(2g0 − ya)+ 2g0(2g0 − xa)

]} (19)

Fya = 4g0Srµ0{
1
σa
·

xaSzFm(2g0 − xa)
xayaSz(2g0 − xa)(2g0 − ya)+ 2g0zSr(2g0ya − y2a + 2g0xa − x2a )

+
nyaiya
σc

[
1

xa(2g0 − xa)+ 2g0ya
−

1
xa(2g0 − xa)+ 2g0(2g0 − ya)

]}

× {
1
σa
·

xaSzFm(2g0 − xa)(g0 − ya)
xayaSz(2g0 − xa)(2g0 − ya)+ 2g0zSr (2g0ya − y2a + 2g0xa − x2a )

+
g0nyaiya
σc

[
1

xa(2g0 − xa)+ 2g0ya
+

1
xa(2g0 − xa)+ 2g0(2g0 − ya)

]} (20)

where g0 is the air gap width when the rotor is at the equi-
librium position; I0 is the bias current in the control circuit;
ixb and iyb are the control currents of the generator in the
x and y directions, respectively; and xb and yb are the real
air gap lengths between the rotor and inner stator on the left
side.

On the basis of Taylor expansion and by omitting the high-
order items, (14) and (15) are transformed as follows{

Fxb ≈ kib · ixb + kxyb · (xb − g0)
Fyb ≈ kib · iyb + kxyb · (yb − g0)

(16)

where kib =
8kI0·cos 22.5◦

g20
and kxyb = −

8kI20 ·cos 22.5
◦

g30
.

C. MODELING OF THE 3-DOF MAGNETIC BEARING
As shown in Figs. 5 and 6, and according to (10), the radial
electromagnetic forces produced by the magnetic bearing on
the rotor on the right side can be expressed as follows

Fxa = 2(
B2x1aSr
2µ0

−
B2x2aSr
2µ0

) (17)

Fya = 2(
B2y1aSr

2µ0
−
B2y2aSr

2µ0
) (18)

where Sr is the cross-sectional area of the tooth of the inner
stator and Bx1a, Bx2a, By1a, and By2a are the air gap flux
densities in the radial x and y directions. The parameters of the
magnetic bearing can be substituted into (17) and (18) as well
as (19) and (20), as shown at the top of this page, where ixa
and iya are the control currents of the magnetic bearings in the
radial direction; xa and ya are the real air gap lengths between
the rotor and inner stator on the right side; nxa and nya are the
numbers of turns in the x and y directions, respectively; Sz is
the cross-sectional area of the poles in the z-direction; σa and
σc are the correction factors of the radial and axial control

magnetic circuits, respectively; and Fm is the magnetomotive
force source of the permanent magnet ring.

In accordance with Taylor expansion and by omitting the
high-order items, (19) and (20) are converted into{

Fxa ≈ kxai · ixa + kxya · (xa − g0)
Fya ≈ kyai · iya + kxya · (ya − g0)

(21)

where kxai =
8SrSzµ0Fmnxa

3σaσcg20(4Sr+Sz)
, kyai =

8SrSzµ0Fmnya
3σaσcg20(4Sr+Sz)

, and

kxya = −
4SrS2z F

2
mµ0

σ 2a g
3
0(4Sr+Sz)

2 .

The axial electromagnetic forces produced by themagnetic
bearing on the rotor can be expressed as

Fz = {
yaSrSzFm(xa + ya + 2g0)

2σa
× [

1

Szg20 + 2zSr (xa + ya)

+
1

Szg20 + 2(2g0 − z)Sr (xa + ya)
]}

× {
µ0yaSrFm(xa+ya+2g0)

σa
× [

1

Szg20 + 2zSr (xa + ya)

−
1

Szg20 + 2(2g0 − z)Sr (xa + ya)
]+

2µ0nziz
σcg0

} (22)

where z is the real air gap length between the rotor and outer
stator in the axial direction.

On the basis of Taylor expansion and by omitting the high-
order items, (22) is expressed as:

Fz ≈ kzi · iz + kz · (z− g0) (23)

where kzi =
16FmSrSzµ0nz
σaσcg0(4Sr+Sz)

and kz = −
256µ0F2

mS
3
r Sz

σ 2a g0(Sz+4Sr )3
.

D. MATHEMATICAL MODEL OF 5-DOF ROTOR SYSTEM
According to the rotor dynamics theory and Newton’s second
law, the dynamic model of the 5-DOF rotor system equations
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can be expressed as follows

mẍ = Fxa + Fxb − Fdx

mÿ = Fya + Fyb − Fdy − mg

mz̈ = Fz − Fdz

J θ̈x − Jzωθ̇y = Fxblb − Fxala + Fdx(la + l0)

J θ̈y + Jzωθ̇x = −Fyblb + Fyala + Fdy(la + l0)

(24)



θx =
1

la + lb
(xa − xb)

θy =
1

la + lb
(ya − yb)

x =
lb

la + lb
xa +

la
la + lb

xb

y =
lb

la + lb
ya +

la
la + lb

yb

(25)

where x, y, and z are the displacements of the centroid in the
x-, y-, and z-directions, respectively; J is the moment of
inertia of the rotor in the x- and y-directions; Jz is the moment
of inertia of the rotor in the z-direction; and θx and θy are the
rotation angles of the rotor relative to the XZ and YZ planes,
respectively.

(16), (21), (23), and (25) are substituted into (24), i.e.,

ẍa =
J − ml2a
mJ

[kxaiixa + kxya(xa − g0)]+
Jzlaω(ẏa − ẏb)
J (la + lb)

+
J + mlalb

mJ
[kibixb + kxyb(xb − g0)]

+
mla(la + l0)− J

mJ
Fdx

ẍb =
J + mlalb

mJ
[kxaiixa + kxya(xa − g0)]

−
Jzlbω(ẏa − ẏb)
J (la + lb)

+
J − ml2b
mJ

[kibixb + kxyb(xb − g0)]

−
J + mlb(la + l0)

mJ
Fdx

ÿa =
J + ml2a
mJ

[kyaiiya + kxya(ya − g0)]

−
Jzlaω(ẋa − ẋb)
J (la + lb)

+
J − mlalb

mJ
× [kibiyb + kxyb(yb − g0)]

+
mla(la + l0)− J

mJ
Fdy − g

ÿb =
J − mlalb

mJ
[kyaiiya + kxya(ya − g0)]

+
Jzlbω(ẋa − ẋb)
J (la + lb)

+
J + ml2b
mJ

[kibiyb + kxyb(yb − g0)]

−
J + mlb(la + l0)

mJ
Fdy − g

z̈ =
kzi
m
iz +

kz
m
(z− g0)−

Fdz
m

(26)

As seen from (26), there are some couplings in the rotor
system. For instance, the displacements in the x-direction
will be affected by the displacements in the y-direction, and

the flux in the air gap will be changed with arbitrary dis-
placements. Therefore, it is necessary to apply the decoupling
method to the rotor system.

E. ANALYSIS OF INVERTIBILITY OF 5-DOF MAGNETIC
LEVITATION WIND TURBINE SYSTEM
(26) shows that five input and output variables exist in the
5-DOF rotor system. The input variables U , the output
variables Y , and the state variables X can be defined as
follows

U = [u1, u2, u3, u4, u5]T = [ixa, ixb, iya, iyb, iz]T (27)

Y = [y1, y2, y3, y4, y5]T = [xa, xb, ya, yb, z]T (28)

X = [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10]T

= [xa, xb, ya, yb, z, ẋa, ẋb, ẏa, ẏb, ż]T (29)

(26) can be rewritten as

ẋ1 = x6
ẋ2 = x7
ẋ3 = x8
ẋ4 = x9
ẋ5 = x10

(30)



ẋ6 =
J − ml2a
mJ

[kxaiu1 + kxya(x1 − g0)]

+
Jzlaω(x8 − x9)
J (la + lb)

+
J + mlalb

mJ

× [kibu2 + kxyb(x2 − g0)]+
mla(la + l0)− J

mJ
Fdx

ẋ7 =
J + mlalb

mJ
[kxaiu1 + kxya(x1 − g0)]

−
Jzlbω(x8 − x9)
J (la + lb)

+
J − ml2b
mJ

× [kibu2 + kxyb(x2 − g0)]−
J + mlb(la + l0)

mJ
Fdx

ẋ8 =
J + ml2a
mJ

[kyaiu3 + kxya(x3 − g0)]

−
Jzlaω(x6 − x7)
J (la + lb)

+
J − mlalb

mJ

× [kibu4 + kxyb(x4 − g0)]+
mla(la + l0)−J

mJ
Fdy−g

ẋ9 =
J − mlalb

mJ
[kyaiu3 + kxya(x3 − g0)]

+
Jzlbω(x6 − x7)
J (la + lb)

+
J + ml2b
mJ

× [kibu4 + kxyb(x4 − g0)]−
J + mlb(la+l0)

mJ
Fdy−g

ẋ10 =
kzi
m
u5 +

kz
m
(x5 − g0)−

Fdz
m

(31)

The invertibility of the system should be analyzed to con-
struct the inverse system of the rotor system. According to
the inverse system theory and using the interactor algorithm,
the outputs of the 5-DOF system are differentiated until the
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derivatives contain input U .

Y5 =


y(α1)1

y(α2)2

y(α3)3

y(α4)4

y(α5)5



=



J − ml2a
mJ

[kxaiu1 + kxya(x1 − g0)]

+
Jzlaω(x8 − x9)
J (la + lb)

+
J + mlalb

mJ

×[kibu2 + kxyb(x2 − g0)]+
mla(la + l0)− J

mJ
Fdx

J + mlalb
mJ

[kxaiu1 + kxya(x1 − g0)]

−
Jzlbω(x8 − x9)
J (la + lb)

+
J − ml2b
mJ

×[kibu2 + kxyb(x2 − g0)]−
J + mlb(la + l0)

mJ
Fdx

J + ml2a
mJ

[kyaiu3 + kxya(x3 − g0)]

−
Jzlaω(x6 − x7)
J (la + lb)

+
J − mlalb

mJ

×[kibu4 + kxyb(x4 − g0)]+
mla(la + l0)−J

mJ
Fdy−g

J − mlalb
mJ

[kyaiu3 + kxya(x3 − g0)]

+
Jzlbω(x6 − x7)
J (la + lb)

+
J + ml2b
mJ

×[kibu4 + kxyb(x4 − g0)]−
J + mlb(la+l0)

mJ
Fdy−g

kzi
m
u5 +

kz
m
(x5 − g0)−

Fdz
m


(32)

where α1 = α2 = α3 = α4 = α5 = 2.
The Jacobi matrix can be derived as (33), as shown at the

bottom of this page.
The coefficients kxai, kib, kyai, and kzi will not be zero

when the structure and parameters of the rotor system are

established. Thus, det[ ∂Y5
∂uT ] 6= 0, and (33) is nonsingular.

FIGURE 7. Diagram of the generalized pseudo-linear system.

The relative order of the rotor system α is

α = ne = [α1 = α2 = α3 = α4 = α5] = [2 2 2 2 2]T

(34)

where ne is the essential order of the system. The generalized
inversion of the original system is therefore existent.

The linear system is now introduced to establish the stable
pseudo-linear system according to the generalized inverse
theory [26]. The inputs of the 5-DOF rotor system can be
given as

u = φ[(ẏ1, y1, ẏ2, y2, ẏ3, y3, ẏ4, y4, ẏ5, y5), ν̂] (35)

ν̂ =
[
ν̂1, ν̂2, ν̂3, ν̂4, ν̂5

]T (36)

ν̂1 = a12ÿ1 + a11ẏ1 + a10y1
ν̂2 = a22ÿ2 + a21ẏ2 + a20y2
ν̂3 = a32ÿ3 + a31ẏ3 + a30y3
ν̂4 = a42ÿ4 + a41ẏ4 + a40y4
ν̂5 = a52ÿ5 + a51ẏ5 + a50y5

(37)

where aij (i = 1, 2, 3, 4, 5; j = 0, 1, 2) is the pole assignment
coefficient. (35) can be considered as being in series with the
original system; thus, the generalized pseudo-linear system is

G(s) = diag(G11(s),G22(s),G33(s),G44(s),G55(s))

= diag(
1

a12s2 + a11s+ a10
,

1
a22s2 + a21s+ a20

,

1
a32s2 + a31s+ a30

,
1

a42s2 + a41s+ a40
,

1
a52s2 + a51s+ a50

) (38)

∂Y5

∂uT
=



J − ml2a
mJ

kxai
J + mlalb

mJ
kib 0 0 0

J + mlalb
mJ

kxai
J − ml2b
mJ

kib 0 0 0

0 0
J + ml2a
mJ

kyai
J − mlalb

mJ
kib 0

0 0
J − mlalb

mJ
kyai

J + ml2b
mJ

kib 0

0 0 0 0
kzi
m


(33)
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FIGURE 8. Control block diagram of the entire system.

The coefficients are selected to be a12 = a22 = a32 =
a42 = a52 = 1, a11 = a21 = a31 = a41 = a51 = 1.414, and
a10 = a20 = a30 = a40 = a50 = 1 to construct an optimal
second-order system.

IV. MRA CONTROLLER-BASED NNGI
CONTROL STRATEGY
The neural network, which has a strong nonlinear approxi-
mation capability, can be used to construct the generalized
inversion of the 5-DOF wind turbine because of the uncer-
tainties of the mathematical model deduced in the previous
section. The feedback closed-loop control system with the
MRA controller must be used in the NNGI system of the
5-DOF wind turbine to achieve high robustness.

A. NNGI SYSTEM
The process of realizing the NNGI system includes deter-
mination and training of the NNGI system. The arith-
metic results from the mathematical expression of the
generalized inverse system are introduced into the neural
network to increase the adaptability and anti-disturbance
of the generalized inversion. The back propagation (BP)
neural network is utilized in the generalized inversion of
the 5-DOF rotor system, and five integrators and five dif-
ferentiators are used to characterize the dynamic charac-
teristics. The five-point numerical differential algorithm is
used in this study. The inputs and outputs of the neural
network are {xa, ẋa, ẍa, xb, ẋb, ẍb, ya, ẏa, ÿa, yb, ẏb, ÿb, z, ż, z̈}
and {xa, xb, ya, yb, z}. According to the inputs and outputs of
the BP neural network, the numbers of neurons in the input,
hidden, and output layers are set as 15, 30, and 5, respectively.

The trained BP neural network can be considered as in
series with the original system. A generalized pseudo-linear
system can be built, as illustrated in Fig. 7. Fig. 7 shows
that the generalized pseudo-linear system is equivalent to five
independent second-order linear integral subsystems, and an

accurate model of the original system is not needed in this
developed scheme.

B. 5-DOF MRA CONTROLLERS
As shown in Fig. 7, the original system can be decoupled
by cascading the NNGI system with the original system.
A simple open-loop system, which is more affected by many
factors in practical application, is then obtained. The closed-
loop controllers are essential in this study to improve the
system performance.

The MRA controllers are used in the closed-loop system
to increase the robustness. The control block diagram of the
proposed 5-DOF wind turbine based on the NNGI control
scheme and MRA controllers is shown in Fig. 8.

FIGURE 9. Closed-loop system of the MRA controller in the xa-direction.

As shown in Fig. 8, the 5-DOF rotor system controller can
be designed according to the control theory of linear systems
because five displacements are decoupled. The controllers for
the five subsystems can then be designed independently. The
adaptive law for every single-input and single-output system
can be deduced when the reference model is set as G(s) =
1/s2 + 1.414s + 1. The xa-direction radial displacement is
taken as an example, and the structure of MRA1 and the
control schematic program in the xa-direction are shown in
Fig. 9. In the figure, xa∗ and xa are the given input and
actual output in the xa-direction, respectively; G1(s) is the
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TABLE 1. Parameters of the 5-DOF rigid rotor system.

generalized pseudo-linear system in the xa-direction; G(s) is
the reference model in the xa-direction; Fdx(s) is the pertur-
bation in the xa-direction; kp1 is the actual gain; kc1 is the
adjustable gain; C1(s) is the reference controller in the xa-
direction; and e1 and ė1 are the error and the rate of change
error, respectively. Therefore, in the wind power generation
process, by using the proposed control scheme, the multivari-
able, non-linear, and coupled original system is equivalent
to five independent second-order linear integral subsystems.
Since the robustness and anti-disturbance properties of the
5-DOF suspension control is improved greatly, the whole
performance of the 5 DOF magnetic levitation wind turbine
system, such as energy capture, can be significantly enhanced
as well. Thereby, more realistic future research will benefit
from focusing on optimization of wind power generation in
some typical operation conditions.

The closed-loop transfer function of the subsystem in the
xa-direction is

φ1(s) = G(s)− G1(s) = k1/(s2 + 1.414s+ 1) (39)

where k1 = 1− kc1kp1.
The adaptive law in the xa-direction can be deduced using

the Lyapunov stability theorem [28]. The selected Lyapunov
function is

V1(X ) = XT1 P1X1 + λ1k
2
1 , λ1 > 0 (40)

where P1 is the symmetrical positive definite matrix and the
state variable X1 = [x1, x2]T = [e1, ė1]T .
Matrix P1 can be deduced as follows

P1 =
[
1.414 0.5
0.5 0.707

]
(41)

The adaptive law in the xa-direction is

k̇c1 =
1

λ1kp1
XT1 P1B1x

∗
a =

1
λ1kp1

(0.5e1 + 0.707ė1)x∗a

(42)

(42) indicates that the adaptive law in the xa-direction is
determined by X1, kc, error e, and rate of change error ė;
thus, the subsystemwill have good stability and coincide with
the MRA in real time. A reference controller is added to the
subsystem according to the principle of adaptive control to
enhance the robustness, stability and tracking performance.
The transfer function of the reference controller is as follows

C1(s) = F1(s)G−1(s) =
s2 + 1.414s+ 1

(2s+ 1)2
(43)

where F1(s) is the second-order low-pass-filtered function.

FIGURE 10. Simulation using NNGI control scheme. (a) Displacements
in xa- and xb-directions. (b) Displacements in ya- and yb-directions.
(c) Displacements in z-direction.

TABLE 2. Parameters of the PID controller.

The design processes of the other four adaptive laws are
similar. The adaptive laws in the other four directions are as
follows

k̇c2 =
1

λ2kp2
XT2 P2B2x

∗
b =

1
λ2kp2

(0.5e2 + 0.707ė2)x∗b

(44)

k̇c3 =
1

λ3kp3
XT3 P3B3y

∗
a =

1
λ3kp3

(0.5e3 + 0.707ė3)y∗a

(45)
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FIGURE 11. Simulated responses for the MRA-NNGI and PID-NNGI control strategies. (a) Displacements in
the xa-direction for the two different control methods. (b) Displacements in the xb-direction for the two
different control methods. (c) Displacements in the ya-direction for the two different control methods.
(d) Displacements in the yb-direction for the two different control methods. (e) Displacements in the
z-direction for the two different control methods.

k̇c4 =
1

λ4kp4
XT4 P4B4y

∗
b =

1
λ4kp4

(0.5e4 + 0.707ė4)y∗b

(46)

k̇c5 =
1

λ5kp5
XT5 P5B5z

∗
=

1
λ5kp5

(0.5e5 + 0.707ė5)z∗

(47)

V. VALIDATION
First, comparative simulations are conducted usingMATLAB
to verif y the validity and superiority of the 5-DOF wind

turbine system with the NNGI control scheme and MRA
controllers. Then, startup and anti-jamming experiments
are carried out to validate the decoupling performance of
MRA-NNGI based on a TMS320F2821 DSP and a control
computer. The parameters of the 5-DOF rigid rotor system
are given in Table 1, and the power amplification factor is set
at ks = 20000. The air gap width at the equilibrium position
is set at g0 = 1 mm, the initial gap lengths in five directions
are set at xa = ya = 0.8 mm, xb = yb = 0.9 mm and
z = 1.15 mm, and the rotor speed is set at 250 r/min.
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A. DECOUPLING PROPERTIES OF NNGI
CONTROL SCHEME
To demonstrate the decoupling properties of the NNGI con-
trol scheme, simulations of the displacements of the rotor
in 5 directions are carried out. As shown in Fig. 10(a), the
initial displacements in the xa- and xb-directions are−0.2mm
and −0.1 mm, respectively. When the displacements are
from the initial values to 0 mm at t = 0 s, as for the
NNGI control scheme, the rotor returns to equilibrium in
the xa- and xb-directions after a period of overshoots, and the
displacements in other directions are almost unchanged.

Fig. 10(b) depicts the displacements of the rotor in the
ya- and yb-directions. When the displacements are from the
initial values to 0 mm at t = 0.1 s, there are almost
no fluctuations of the displacements of the rotor in the
xa- and xb-directions. Fig. 10(c) shows that the displacement
of the rotor in the z-direction is from an initial value to 0 mm
at t = 0 s; the displacements in the other directions have
almost no fluctuations. It is clear that the rotor system with
the NNGI control scheme can be well decoupled.

B. COMPARISON WITH MRA-NNGI AND PID-NNGI
Two methods, namely, 1) the proposed control
scheme (MRA-NNGI) and 2) the conventional PID control
scheme (PID-NNGI), are used in this study to verify the
decoupling, tracking, disturbance and robustness properties.
The parameters of the PID controller are given in Table 2,
and the displacement curves in the xa-, ya-, xb-, yb-
and z- directions are shown in Fig. 11.
Fig. 11(a) presents the comparison of the two methods in

the xa-direction. When the displacement in the xa-direction is
from the initial values to 0 mm at t = 0 s, the system with the
MRA-NNGI control scheme is stabilized at approximately
t = 0.052 s, whereas the system with the PID controller
is stabilized at approximately t = 0.071 s. As shown by
the other figures in Fig. 11, the durations of stability of the
MRA-NNGI for 5-DOF are shorter than those of the
PID-NNGI.

Fig. 11 also presents a comparison between the two meth-
ods under the influence of disturbances. Taking Fig. 11(b) for
example, the system with the MRA-NNGI control scheme
is stabilized at approximately t = 0.113 s when the distur-
bance is added at t = 0.1 s, and the system with the PID
controller is stabilized at approximately t = 0.123 s. The
same can be concluded based on several other simulation dia-
grams. Thus, the tracking properties of the proposed control
scheme (MRA-NNGI) are superior to those of the traditional
PID control scheme (PID-NNGI).

Fig. 11 shows that when the disturbance is imposed in
the radial x-direction at t = 0.1 s, the deviations in the
y-direction when the MRA-NNGI control scheme is used
are almost not influenced. The decoupling properties of the
NNGI control scheme for this system are good. The dis-
placements of the rotor in the xa- and xb-directions are
almost unchanged when the disturbance is added in the

ya- and yb-directions at t = 0.08 s. The momentary over-
shoots and the recovery time of the PID-NNGI are greater
than those of the MRA-NNGI when the disturbance is
imposed. It can also be seen from Fig. 11 that there is little
influence on the rotor in the radial direction when the dis-
turbance is added in the z-direction. Therefore, the decou-
pling, tracking, disturbance, and robustness properties of the
MRA-NNGI are superior to those of the PID-NNGI.

FIGURE 12. Startup displacement curves of rotor. (a) Displacement of
rotor in xa- and ya-directions. (b) Displacement of rotor in
xb- and yb-directions. (c) Displacement of rotor in z-direction.

C. EXPERIMENTAL VALIDATIONS
To verify the decoupling effectiveness of the MRA-NNGI
control, startup and anti-jamming experiments are carried out
on the prototype. Five displacement sensors are used to detect
the displacements of the rotor in 5 directions, and the startup
displacement curves of the rotor are shown in Fig. 12. The
radial displacements in the xa-, ya-, xb-, and yb-directions
are shown in Fig. 12(a) and (b), and the displacement in the
z-direction is shown in Fig. 12(c). From Fig. 12, when using
the MRA-NNGI control scheme, the rotor is pulled back to
the radial equilibrium position from the initial position at
approximately t = 0.21 s when the radial levitation currents
are loaded in the levitationwindings at t = 0.14 s. In addition,
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the rotor is pulled back to the equilibrium position in the
z-direction at approximately t = 0.4 s when the axial con-
trol current is loaded at t = 0.3 s. As shown in Fig. 12,
using the MRA-NNGI control, there is little influence in
the 5 directions.

FIGURE 13. Displacement curves of rotor under disturbances.
(a) Displacement of rotor when the disturbance is added in the radial
direction. (b) Displacement of rotor under a disturbance in the z-direction.

To verify the dynamic stability of the rotor system, exter-
nal disturbances are applied to the rotor in the xa-, ya-
and z-directions when the rotor of the wind turbine is
operating at the rated speed. From Fig. 13(a), it can be
seen that the displacement in the z-direction is almost
unchanged when the disturbances are added in the radial
xa- and ya-directions. It can also be seen from Fig. 13(b)
that the radial displacements are almost unchanged when the
disturbance is added in the z-direction at t = 0.4 s.

Thus, the results of the simulations and experiments reveal
that the proposed control scheme, which combines the NNGI
control scheme and MRA controllers, has exceptional decou-
pling, robustness and stability.

VI. CONCLUSIONS
A newMRA-based NNGI scheme for decoupling control of a
5-DOF rotor system is proposed in this study with considera-
tion of the strong coupling,multivariable and nonlinear nature

of a 5-DOF rotor system. The simulations and experiments
demonstrate the following: 1) after putting five NNGI sys-
tems in front of the original system, a simple open-loop gener-
alized pseudo-linear system is achieved, and the 5-DOF rotor
system is decoupled; 2) the dynamic, anti-disturbance, and
decoupling performances can be effectively improved using
the MRA controllers based on the NNGI control scheme.
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