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ABSTRACT Latin hypercube sampling (LHS) method has difficulty in dealing with non-positive definite
correlation matrices by traditional Cholesky decomposition, whereas it may often happen with the increasing
scale of input variables. In order to improve the numerical stability of LHS, an improved LHS with modified
alternating projections method (L-Mapm) is proposed in this paper. Compared with other two existing
modified algorithms, L-Mapm is considered to possess accuracy, speediness, and controllability at the
same time. The accuracy and effectiveness of L-Mapm applied to probabilistic load flow are proven by
the comparative tests in the IEEE 33-bus system and PG&E 69-bus system. The simulation results show that
L-Mapm has the best performance in modification and expands the application of LHS.

INDEX TERMS Latin hypercube sampling, correlation matrix, non-positive definite matrix, Cholesky
decomposition, alternating projections method.

I. INTRODUCTION
In recent years, distributed generation technology based on
renewable energy such as solar energy and wind power has
been widely used [1], [2]. However the output power of
photovoltaic power generation and wind power generation
has strong randomness due to the influence of the natural
environment factors, and the correlation between multiple
power sources also needs to be considered.

Probabilistic load flow (PLF), proposed by Barbara
Borkowska in 1974, is considered to be an efficient method to
solve the problem of uncertainty in load flow calculation [3].
The algorithm of PLF can be divided into three categories:
simulation method [4], [5], analytic method [6], [7] and
approximation method [8], [9]. Latin hypercube sampling,
one of the simulation methods, is proposed to improve the
sampling method and to consider the correlation of input
variables [10]–[12]. Through stratified sampling, the sample
points are uniformly and completely covered in the distri-
bution range of the variables, which can effectively reduce
the variance and the sampling scale. Through controlling
the correlation, extracted samples can reflect the relation-
ship between input variables more reliably. Current sampling

methods include: interval random sampling (IRS) [13], lattice
sampling (LS) [14] and important sampling (IS) [15]. The
methods of correlation control include: rank Gram-Schmidt
algorithm [16], genetic algorithm [17], simulated anneal-
ing algorithm [18] and Cholesky decomposition [14], [19].
Cholesky decomposition, as a commonly used control
method, is applied in this paper due to its simple and fast
calculation. In general, the correlation coefficient matrix is
treated as a positive definitematrix in correlation control [14].
However, the correlation of input variables is more complex
and may not be positive definite with the increasing scale of
distributed generation, whichwill produce numerical stability
problems. And stability is an important feature of measuring
algorithms [20], [21]. As we know, Cholesky decomposition
can only be used in the positive definite matrix and the prob-
ability of the positive definite matrix will be greatly reduced
as the dimension of the matrix increases [22].

The problem also occurs in other important areas such
as: finance, risk management and dynamic state estima-
tion (DSE). As a result, some methods have been already
proposed to modify the correlation matrix to enhance the
numerical stability. ‘‘schol’’ is an approach offered in the
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unscented Kalman filter toolbox and is applied at DSE [23].
Hypersphere decomposition (Hd) and Spectral decompo-
sition (Sd) are proposed to satisfy the correlation matrix
as semi-definite and to ensure the VAR calculation pro-
duce a positive number in the BGM interest rate option
model or market risk management [24]–[26].

However, ‘‘schol’’ cannot guarantee accuracy; Hd is too
slow to find the optimal result; Sd is unable to control the
correcting effect. In order to solve the problem more effec-
tively, an improved LHS based on alternating projections
method (L-Mapm) is presented in this paper. The core con-
ception of L-Mapm is alternating projections method, which
is proposed to acquire the closest symmetric positive semi-
definite matrix in finance as well as in DSE [27], [28]. After
a series of studies carried out on IEEE 33-bus and PG&E
69-bus test systems, L-Mapm is proven to have the best
performance in comparison with other two algorithms: LHS
based on Hd (L-Hd), LHS based on Sd (L-Sd). The perfor-
mance of Schol is proven to be unstable and inaccurate and
it just obtains an inaccurate Cholesky factor to continue the
procedure [28]. As a result, Schol is not used as a comparative
method. In order to reflect the influence of the correlation,
a line representing the independent input variables is also
shown: LHS with independent variables (L-Iv).

This paper is organized as follows: the basic ideas of LHS,
is described in Section II first. Then section III introduces
the principle of the three modified algorithms: Hd, Sd, and
Mapm. The performances of these algorithms are investigated
in Section IV through the IEEE 33-bus and PG&E 69-bus test
systems, and finally, Section V concludes this paper.

II. LATIN HYPERCUBE SAMPLING
The principle of LHS is ‘‘stratified sampling’’. Due to the
stratified technique, the sample points are covered in the
distribution range of the variables uniformly and completely,
and the variance is reduced effectively. LHS consists of two
main steps: sampling and permutation.

A. SAMPLING
The cumulative distribution function (CDF) of the input vari-
able X1 · · ·XK is ranged from 0 to 1, and the scale of CDF
is divided into equal intervals. A value is extracted in each
interval, and then the sample value is obtained through the
transformation of the inverse function.

Due to the differences in the extraction methods in the
interval, a variety of methods have been derived: IRS, LS and
IS. The sampling principles of the three sampling methods
are as follows:

1) IRS: The nth sample of Xk is:

xkn = F−1Zk ((n− rand)/N ) (1)

2) LS: The nth sample of Xk is:

xkn = F−1Zk (
n− 0.5
N

) (2)

3) IS: The formula is:

xkn = F−1Zk (

xk,n∫
yk,n

Zk (x)dx +
n− 1
N

) (3)

Zk is the CDF of Xk . F−1 is the inverse function transfor-
mation. The principle of IS is to select the boundary points
near the average value of the probability density function,
which reflects the sampling theories of ‘‘stratification’’ as
well as ‘‘importance’’. As the convergence is superior to the
effect of IRS and LS, this paper uses IS to draw sample [15].

B. PERMUTATION
Since the correlation of extracted samples cannot reflect the
real correlation between input variables, we need to control
the correlation.

In this paper, the improved Spearman rank correlation
coefficient is used to replace the sample values, which can
be used to solve the problem of correlation between input
variables of various distributions.

The step of the permutation can be summarized as follows:
1) Input variables X1 · · ·XK are sampled to get the sample

matrix S.
2) A random sequence matrix A is generated and PA is

the corresponding correlation coefficient matrix of A. If PA
is positive definite, it can be decomposed by the Cholesky
decomposition: PA = QAQTA where QA is a lower triangular
matrix.

3) The specified correlation coefficient matrix is Pset . Qset
is its lower triangular matrix.

4) DA = Q−1A A, Dset = QsetDA. The original sample
matrix S is sorted according toDset , and then a desired sample
matrix Sset can be obtained.

III. MODIFIED ALGORITHM
Cholesky decomposition is an important step in permutation.
However, when the correlation matrix is non-positive defi-
nite, the decomposition no longer applies. Assume that P is a
symmetric matrix, the diagonal elements are 1, and the non-
diagonal elements are random numbers in (-1, 1). As can be
seen from Table 1, with the dimension of P is increased, the
number of the positive definite matrix is greatly reduced [22].
Although P is not a theoretical correlation coefficient matrix,
P is close to the form of the correlation coefficient matrix
and can be regarded as a correlation coefficient matrix in the
estimation.

In order to improve the stability of LHS and expand the
application of it, several modified algorithms are proposed.

A. HYPERSPHERE DECOMPOSITION
This method is first applied in the field of finance and risk
control. Thematrix can bemodified to a semi positive definite
matrix by using the hypersphere decompositionmethod when
the abnormal value or the asynchronous data destroys the
correlation matrix or the risk manager wishes to change the
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TABLE 1. Relationship between dimension and the number of
positive-definite matrices.

correlation matrix. It exactly coincide to the requirement that
the correlation matrix in LHS needs to be positive definite to
use the Cholesky decomposition.

Hypersphere decomposition can be understood as an iter-
ative process to alter the pre-existing defined matrix to the
target correlation matrix. P is a given non-positive target
matrix, P̂ is the desired matrix that is closest to P. P̂ can be
constructed as follows:

P̂ = QQT (4)

qij =


cos θij ·

j−1∏
t=1

sin θit for j = 1 . . . n− 1

j−1∏
t=1

sin θit for j = n

(5)

{
θij
}
is an arbitrary set of n× (n− 1) dimensional angles.

The main diagonal elements of P̂ can be ensured to one due
to the trigonometric relationship and the requirement that the
radius of the unit hypersphere should be equal to one.

In order to modify P̂ to approaching P, a suitable error
measure can be defined as follows:

εa =

∥∥∥P− P̂∥∥∥ (6)

Based on the target equation (6), optimization algorithms
can be applied to find the matrix which matches the target
matrix best. Admittedly the accuracy of the result is at the
expense of the time.

B. SPECTRAL DECOMPOSITION N
Spectral decomposition is an empirical method without iter-
ating and we can always get a correlation matrix modified
well. The correction step is:

1) P is a correlation matrix, {λi}, {Li} are its corresponding
eigenvalues and eigenvectors.

PLi = λiLi
Li = [li1, li2, . . . , lin]T (7)

2) 3 is the diagonal matrix of eigenvalues and is modified
to a positive matrix 3′.

3 = diag(λi)

3′ : λ′i =

{
λi λi > 0
εb λi ≤ 0

(8)

3) Based on the eigenvectors {Li}, a diagonal scalingmatrix
D can be acquired as :

D : di =

[
n∑
t=1

l2itλ
′
t

]−1
(9)

4) The columns of Q′ is arrayed by multiplying the eigen-
vectors with their corresponding modified eigenvalues. Q is
the normalized form of Q′. P̂ is the corrected correlation
matrix constructed by Q.

Q′ = L
√
3′, Q =

√
DQ′

P̂ = QQT (10)

The matrix acquired is just similar to the target one intu-
itively. However, this method has advantages of simple com-
putation and quick speed.

C. MODIFIED ALTERNATING PROJECTIONS METHOD
Modified alternating projections method modifies the princi-
ple of the alternating projections method, which is presented
to solve the ‘‘nearest correlation matrix’’ problem occurred
in the finance industry. Mapm combines the advantages of
HD and SD, which possesses high precision as well as fast
speed. We can find a nearest matrix through alternating pro-
jectionsmethod, and the nearest matrix can be ‘‘embellished’’
to ensure symmetric and positive definite. The alternating
projections method can be summarized as (11). The output X
is proved to be the desired correlation matrix represented by
Pwhen the number of iterations is close to infinity [29], [30].

X = PU (PS (PU (· · ·PS (P))))→ P

PU (P) = P− diag(diag(P− I ))

PS (P) = Z × diag(max(vi, 0))× ZT

P = ZAZT , A = diag(vi) (11)

The detailed procedure of alternating projections method
is given:

1P = 0 (12)

Y = P (13)

while 1 {

[E, v] = eig(M ) (14)

v > τ1 ·max(g)→ w (15)

X = [E]w · [vw · · · vw︸ ︷︷ ︸
n

]T × [E]Tw (16)

if (‖Y − X‖ / ‖X‖ < τ2) break; (17)

Y = X − diag(diag(X − I )) (18)

}
To guarantee symmetric and positive definite, correspond-

ing steps can be taken:

[E, v] = eig(X ) (19)

δ = τ3max(v) (20)
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X = E × diag(v)× ET (21)

XV = diag(X ) (22)

V = sqrt(max(XV , δ)./diag(X )) (23)

X = diag(V )× X · [V · · ·V︸ ︷︷ ︸
n

] (24)

X = (X + XT )/2 (25)

X is the final modified correlation matrix. ‘eig’, ‘max’,
‘·’, ‘×’, ‘diag’, ‘sqrt’, ‘·/’ are MATLAB functions. E is the
eigenvector matrix. v is the column vector of eigenvalues.
w is the elements: v > τ1 · max(v). [E]w is the columns of
E that refer to w; ‘‖X‖’ is the Frobenius norm, which can be
described as (X is the n-order matrix):

‖X‖ =

√√√√ n∑
i=1

n∑
j=1

∣∣xij∣∣2 (26)

IV. CASE STUDIES
In order to compare the effect of these three algorithms
applied to LHS, a series of studies are carried out on IEEE
33-bus and PG&E 69-bus test systems withMATLAB 2013b,
respectively. Some simulation data is set as: εa = 10−4,
εb = 10−7, τ1 = 10−7, τ2 = 10−4, τ3 = 10−7. The span
of some lines is very large, and some are too close to distin-
guish under normal coordinates. So we use the logarithmic
coordinates (y = ln x) instead.

A. MODIFICATION OF MATRIX
P is the original non-positive correlation matrix. P̂ is the
modified matrix. pij, p̂ij are the elements of P and P̂.
In order to compare the correction results of three modi-
fied algorithms, different dimensions of matrices are selected
(n = 3, 5, 8, 10). The correcting effect is calculated by:

ep =

√√√√√ n∑
i=1

n∑
j=1

(pij − p̂ij)2

n2
(27)

Three algorithms are compared in Fig.1. The correspond-
ing simulation time is presented in Fig.2.

The correctness of Hd is largely influenced by the opti-
mization algorithms. We use the Genetic Algorithm to find
the optimal solution. The correcting effect is not good as
the simulation time is not long enough. Even so, the time
consumed is the longest, far more than others. For exam-
ple, under the dimension of 8, the simulation time of Hd is
0.402329s, whereas the time of Sd and Mapm is 0.000115s
and 0.000286s.

Sd works well in this test case. However, we cannot control
the effect of modification. It is treated as an empirical method
as we cannot provide the plausibility of the metric but have
always found that the results obtained were similar to the
desired results. It is a good choice to take it as a starting point
for other algorithm or just a fast approximate method to speed
up the calculation. For example, a good starting point of Hd
can greatly reduce the iteration time.

FIGURE 1. Correcting error of three algorithms under different
dimensions.

FIGURE 2. Simulation time of three algorithms under different
dimensions.

Mapm is considered to have the best effect of correction.
The error is minimal and the time is much shorter than Hd.
Moreover we can control the precision of the modified matrix
through setting the value of τ2. Mapm is considered to possess
accuracy, speediness and controllability at the same time,
which ameliorates the problem of the first two algorithms
effectively.

B. IEEE 33-BUS
In this study, photovoltaic generation is used as distributed
power. The model is based on the Beta distribution, and the
shape parameter is set as: α = 0.9, β = 0.85. The accuracy of
the three improved LHS algorithms (L-Hd, L-Sd, L-Mapm)
is evaluated by calculating the value of the output variables.
Besides, L-Iv is also shown to represent the algorithm of not
concerning correlation. The formulas of the relative error are
as follows:

eU =

∣∣∣∣∣µ
U
f − µ

U
b

µUb

∣∣∣∣∣× 100% (28)

eP =

∣∣∣∣∣µ
P
f − µ

P
b

µPb

∣∣∣∣∣× 100% (29)

∑
eU ==

Nnode∑
i=1

eUi (30)

∑
eP ==

Nbranch∑
i=1

epi (31)

µUb , µ
P
b are the reference value for the voltage and power,

which are acquired by large-scale Monte Carlo simula-
tion(MCS). Nnode, Nbranch are the total number of nodes and
branches of the system.

∑
eU ,

∑
eP are the sum of relative

error of the whole system.
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The total number of nodes in the IEEE33 system is: 33; the
number of branches: 32; number of links: 5. The distributed
photovoltaic generation is connected at the node of 9, 15, 33,
and the capacity is: 150kVA. The dimension of correlation
matrix is 3.

The MCS was tested under the scale of 40000, 60000 and
80000. The average change rates of voltage and power are
0.0012%, 0.01%; 0.001%, 0.004%. The simulation times
are 143.592s, 282.663s, and 437.211s. After comprehensive
consideration, the voltage value and power value obtained
under the 60000 sampling are selected as the reference value.
Four algorithms are tested under the size of 300.

In order to reduce the influence of randomness on the
results, four methods are sampled 50 times, and the accuracy
and robustness of the algorithm are evaluated by mean value
and standard deviation of the 50 relative errors.

Fig.3 and Fig.4 are the mean averages of the relative error
of all the voltages and powers. There is no visible correcting
problem and all the three modified algorithms work well.
However, it should be noticed that the performance of L-Iv
is much worse, which confirms that the correlation has great
influence on the results of power flow, especially the perfor-
mance of the voltage. The conclusion can also be validated
from the data presented in TAB.II, which is the sum of relative
error obtained by the four algorithms. L-Mapm is proved to
have the highest precision.

FIGURE 3. The average value of relative error of each node
voltage (IEEE-33) obtained by the four algorithms.

FIGURE 4. The average value of relative error of each branch
power (IEEE-33) obtained by the four algorithms.

The standard deviations of the relative error of the three
modified algorithms are shown in Fig.5 and Fig.6. L-Mapm is
considered to have a better stability as its standard deviations
are lower than L-Hd and L-Sd.

TABLE 2. The sum of relative error (IEEE-33) obtained by the four
algorithms under the sample size of 300.

FIGURE 5. standard deviation of relative error of each node
voltage (IEEE-33) obtained by the three algorithms.

FIGURE 6. The standard deviation of relative error of each branch
power (IEEE-33) obtained by the three algorithms.

Next is a detailed analysis of the results of a single sam-
pling. The node voltage and branch power under all sampling
values obtained by the four algorithms are shown in Fig.7-8.
Local enlarged drawing is adopted to show the distribu-
tion of curves more clearly. L-Mapm is considered to have
a relatively small fluctuation range, comparing with other
algorithms. The probability density functions of node (20)
voltage and branch (20) power are shown in Fig.9 and Fig.10.
As can be seen, the distributions of L-Hd, L-Sd and L-Mapm
are basically consistent with the true distribution, which is
represented byMCS,whereas the distribution of L-Iv is rather
different from the others.

C. PG&E 69-BUS
The total number of nodes in the PG&E69 node system is:
69; the number of branches: 68; number of links: 5. A big
difference of the system distinguished from IEEE33 is that
we increases the number of input variables greatly as well
as the capacity. The photovoltaic generation is connected at
12, 18, 25, 28, 39, 43, 53, 68, and the capacity is: 200kVA.
The dimension of correlation matrix is 8. The purpose of
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FIGURE 7. The node voltage under all sampling values obtained by the
four algorithms and MCS.

FIGURE 8. The branch power under all sampling values obtained by the
four algorithms and MCS.

FIGURE 9. The probability density functions of node(20) voltage obtained
by the four algorithms and MCS.

FIGURE 10. The probability density functions of branch(20) power
obtained by the four algorithms and MCS.

this test system is to determine whether these three modified
algorithms are stable when the dimension of matrix is larger.

The MCS was tested under the scale of 30000, 50000 and
70000. The average change rates of voltage and power are
0.009%, 0.013%; 0.002%, 0.008%. The simulation times are
193.631s, 456.513s, and 857.044s. The sample of 50000 is
chosen as the reference value. Under the scale of 300, all the
average values and standard deviations of the relative error
tested by four algorithms are shown in Figs.11–15 and Table 3

FIGURE 11. The average value of relative error of each node
voltage (PG&E-69) obtained by the four algorithms.

FIGURE 12. Partial enlarged detail of Fig.11.

FIGURE 13. The average value of relative error of each branch
power (PG&E-69) obtained by the four algorithms.

FIGURE 14. The standard deviation of relative error of each node
voltage (PG&E-69)obtained by the three algorithms.

after repeating 50 times. As we can see, ignoring correlations
can lead to significant errors in voltage and power especially
in the voltage as the error is twice asmuch as the others. L-Hd,
L-Sd, and L-Mapm seem to have approximate correction
effect as before. However, from Fig.12, a partial enlarged
detail of Fig.11, we can find that L-Mapm has the most
accurate result. This finding is consistent with the result of
Fig.1. Moreover L-Mapm still has much better stability than
L-Hd and L-Sd.

From a detailed analysis of a single sampling (Fig.16-19),
the distribution of L-Mapm is most fitted to the true
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FIGURE 15. The standard deviation of relative error of each branch
power (PG&E-69) obtained by the three algorithms.

FIGURE 16. The node voltage under all sampling values obtained by the
four algorithms and MCS.

FIGURE 17. The branch power under all sampling values obtained by the
four algorithms and MCS.

FIGURE 18. The probability density functions of node(18) voltage
obtained by the four algorithms and MCS.

distribution, which is represented by MCS. However, the
curve of L-Iv is still far from the reference curve, which can-
not reflect the true fluctuations in voltage or power.Moreover,
it will directly affect the judgment of bus voltage violation and
branch overload.

The sums of the relative error under different sampling
sizes are shown in Fig.20 and Fig.21, sampling size from 10 to
1000, with a change of units by 10. Except the beginning of
some points, L-Mapm remains a good and steady correcting
effect with the increasing of the scale. It also indicates that

FIGURE 19. The probability density functions of branch(31) power
obtained by the four algorithms and MCS.

FIGURE 20. The sum of the relative error of node voltage under different
sample size.

FIGURE 21. The sum of the relative error of branch power under different
sample size.

TABLE 3. The sum of relative error (PG&E-69) obtained by the four
algorithms under the sample size of 300.

sufficient samples should be extracted to ensure the accuracy
of algorithms.

V. CONCLUSIONS
In this paper, an improved LHS method (L-Mapm) is pro-
posed to enhance the numerical stability of LHS. In order to
evaluate the performance of L-Mapm comprehensively, other
two modified algorithms (L-Hd, L-Sd) are also introduced.
After a series of case studies, the following conclusions can
be drawn:
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1) Through modifying the matrix under different dimen-
sions, we find that Hd does not own the highest precision but
costs the longest time. Sdworkswell but cannot be controlled.
The correcting error of Mapm is the minimal, and Mapm
is considered to have the best performance in these three
algorithms due to its accuracy, speediness and controllability.

2) In IEEE33 test system: there is no visible cor-
recting problem and all the three algorithms work well.
In PG&E69 test system: the difference between algorithms
becomes larger, and L-Mapm still has the highest accuracy
and best robustness. L-Mapmmodifies the problem of numer-
ical stability effectively and expands the application of LHS.

3) The correlation has a great influence on the calculation
results of the power flow. Ignoring the correlation cannot
reflect the real distribution of the voltage and power, which
affects the judgment of the bus voltage violation and branch
overload and causes a great error.

4) In PG&E69 test system: L-Mapm is steady except the
several fewer sampling points, and sufficient samples should
be extracted to ensure the accuracy of algorithms.
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