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ABSTRACT Fault diagnosis is an important topic both in practice and research. There is intense pressure
on industrial systems to continue reducing unscheduled downtime, performance degradation, and safety
hazards, which requires detecting and recovering from potential faults as early as possible. From the historical
perspective, this paper divides fault diagnosis into previous research and industrial big data era. According
to primary drivers, this paper classifies fault diagnosis into knowledge-driven, data-driven, and value-driven
methods. Among them, the former two approaches belong to the previous research on fault diagnosis. They
mainly depend on expert experience and shallow models to detect and extract failures from relatively small
size data. With the continuous exponential growth of data, it is insufficient to mine valuable fault information
from massive multi-source heterogeneous data. The huge diagnostic value embodied in industrial big data
has driven the emergence of the third category, which belongs to fault diagnosis based on big data. It consists
of big data processing and analysis corresponding to high efficiency, cost effectiveness, and generality,
which can deal well with problems that previous methods faced. We introduce the concept of a device
electrocardiogram from the perspective of applicability to outline the present status of fault diagnosis for
big data, and compare it with traditional diagnostic system. We also discuss issues and challenges that need
to be further considered. It would be great valuable to integrate or explore more advanced diagnostic methods
to handle collected industrial big data and put them into practice to mine the huge hidden diagnostic value.

INDEX TERMS Fault diagnosis, industrial big data, value discovery, device electrocardiogram.

I. INTRODUCTION
In the context of Industry 4.0, related technologies, such
as the Internet of Things [1], wireless sensor networks [2],
and cloud computing [3]–[5], have developed rapidly. At the
same time, data acquisition and storage become easier and
easier, promoting the arrival of the era of industrial big
data. In 2001, Gartner [6] summarized the characteristics of
big data into ‘3V,’ namely, Volume, Velocity and Variety.
Further, IBM extended the connotation of the characteristics
of big data by including Veracity and Value, making it ‘5V.’
Correspondingly, it becomes focal for today’s research to
determine how to produce tremendous practical value quickly
and accurately frommassive data, which comes frommultiple
and heterogeneous sources at a rapid rate [7]–[10].

In modern industry, production equipment develops
towards being extremely precise, efficient and intelligent.

Small performance degradation or security risks may bring
serious consequences. It is vitally important to have a valid
diagnosis approach to ensure the safe operation of the equip-
ment. Before the arrival of big data, the previous research on
fault diagnosis mainly depended on the richness of domain
knowledge, the accuracy of diagnostic models, and the com-
pleteness of data samples [11]. These methods have the
advantages of simplicity, interpretability and ease of develop-
ment. But they are susceptible to disturbances in the environ-
ment, and produce a tremendous computation pressure when
facing large-scale complex systems.

With the exponential growth of monitoring data, fault diag-
nosis faces enormous challenges dealing with industrial big
data. It is like an iceberg where only a small part of fault infor-
mation floats on the surface. It is hard to use the previous diag-
nostic methods to explore the true hidden value [12], [13].
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At this time, the problem of transforming the growing
volumes of data into the value is a considerable issue. The
problem mainly includes two aspects. The first one is how
to diagnose and predict failures rapidly or even in real-time
using novel processing systems. The second one is how to
deeply dig out the ‘big’ value of big data by improving the
existing methods or leveraging new ones.

There are excellent reviews of fault diagnosis. Some
existing research divides it into model-based and histori-
cal data-based methods, and provides systematic analysis
and comparison from both quantitative and qualitative per-
spectives [14]–[16]. Some also divides it into model-based,
signal-based, knowledge-based, hybrid and active diagnosis
methods [17], [18], with special attention on real-time diag-
nosis and fault tolerance. But there are no studies that take
into account and sum up industrial big data for fault diagnosis.
Accordingly, this paper integrates the fault diagnosis of big
data with previous research, and classifies it into knowledge-
driven, data-driven and value-driven methods, according to
driving factors. Themain contributions of this paper are three-
fold as follows:

• We analyze and summarize recent advances in fault
diagnosis, classify them in details and more compre-
hensively, and discuss the current problems and new
challenges fault diagnosis faces in the big data era.

• We anatomize fault diagnosis based on industrial big
data, named value-driven diagnosis according to the
huge value hidden behind it, and compare it to previous
diagnostic methods from different perspectives.

• We introduce a novel concept and an application of the
Device electrocardiogram (DEKG), which is inspired
by the electrocardiogram for humans and monitors the
devices’ condition through their heartbeats.

The rest of this paper is organized as follows. Section II
proposes a taxonomy for fault diagnosis that takes indus-
trial big data into consideration. Section III reviews previous
studies on fault diagnosis from the perspective of big data.
Section IV summarizes fault diagnosis based on industrial big
data, and compares it with previous diagnosis methods from
the horizontal and vertical perspective. In section V, a novel
concept of the DEKG and its applications are introduced.
Section VI discusses the difficulties and challenges of fault
diagnosis in the big data era. Finally, the conclusion is drawn
in Section VII.

II. CLASSIFICATION OF FAULT DIAGNOSIS
In this paper, fault diagnosis is divided into knowledge-
driven, data-driven and value-driven methods, according to
driving factors, as shown in Figure 1. Knowledge-driven
fault diagnosis is based on mechanical principles or artificial
experience, and focuses on causal relationships. It applies to
situations having small amounts of inputs and outputs, where
the processes of the system are easy to model, and experience
is easy to collect [18]. Once the model is established, it can
realize real-time diagnosis, but only for specific types of
failures.

As the development of an industrial process shows a large
size and complexity, data scales along with the increase in
uncertain disturbances. It is hard to ensure the robustness of
knowledge-driven diagnosis to disturbances, and the sensitiv-
ity to failures. And it is also difficult to distinguish between
causes and effects. Moreover, both cost of labor and cost of
computation get higher, but it is difficult to maintain diagnos-
tic accuracy, which can even lower than before. Having these
problems, increasing data drives the transformation of fault
diagnostic methods.

Data-driven methods can effectively improve diagnostic
accuracy and the degree of automation [19]. They do not
rest on the richness of expert experience or the precision of
the mechanism model. But they depend on the correctness
and completeness of online and historical data. Data-driven
methods obtain implicit information using signal processing
or data mining, where mined features are used to characterize
the health conditions of the monitored systems. They mainly
involve correlation analysis.

With the further development of industrial equipment
towards higher complexity, speeds and intelligence [20], [21],
related advanced technologies [22]–[24] started to be applied
extensively. The growth ofmonitoring data is currently explo-
sive, so we are entering the industrial big data era. As profes-
sor Viktor [25] described in his book, the real value of big
data, just like an iceberg, floats in the sea, but most of it is
beneath the surface. The previous diagnosis methods mostly
explain values above the surface, for example, information
about occurred failures. And latent values can ensure the
best operation state of equipment, and are mostly related to
failures that may occur in a meantime, such as the possibility
of failures, the severity of possible failures, and an optimal
recovery strategy. Clearly, latent values are of much larger
value than surface ones.

However, the previous research on fault diagnosis can
hardly dig out latent values from complicated monitoring
data. This leads us to explore an applicable way to break
through the limits of data volumes and types, so that we
can shift the focus from the surface of equipment failures
to deeper issues. We regard such methods as value-driven
diagnosis. In the following sections, we introduce the prin-
ciples of each method and related recent research, compar-
atively analyze their diagnostic abilities, and highlight the
practical use of industrial big data, and directions for future
development.

III. PREVIOUS RESEARCH ON FAULT DIAGNOSIS
Fault diagnosis originated in the 1960s. Early research
regarded signal processing techniques and statistical anal-
ysis as major tools, and preliminary used artificial intelli-
gence to extract fault features. It is committed to building
diagnosis widen applications, increase the anti-interference
ability, and improve diagnosis precision. Previous fault
diagnosis includes knowledge-driven and data-driven fault
diagnosis [26], [27].
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FIGURE 1. Classification of diagnostic methods.

A. KNOWLEDGE-DRIVEN FAULT DIAGNOSIS METHODS
Knowledge-driven fault diagnosis methods are built upon
related knowledge as physical principles, fault mechanisms,
and relevant expertise. They can identify the essence of the
system, and realize real-time fault diagnosis. But the results
of diagnosis are directly related to the precision of the mathe-
matical model and the richness of experience. These methods
can be further divided into mechanism knowledge-driven and
empirical knowledge-driven methods according to different
types of knowledge.

Mechanism knowledge-driven methods need to estab-
lish a precise mathematical model based upon the under-
standing of the physical mechanism and system structure.
They construct a residual signal using the inputs and
outputs of the system, in order to find inconsistencies
between predicted and actual behaviors, so to detect,
isolate and evaluate failures. They mainly include state esti-
mation [28]–[31], parameter estimation [32], [33] and parity
spaces [34], [35].

However, during a complicated dynamic industrial pro-
cess, it is very difficult to build a mechanism model manually
according to a deep insight into the system. It is always

time-consuming, labor-intensive, and cannot maintain the
validity of the model.

Empirical knowledge-driven fault diagnosis mainly
depends on domain specific expertise and experience in long-
term accumulation. It designs reasoning and decision-making
mechanisms based on empirical knowledge to do diagno-
sis qualitatively, and can be further divided into the graph
theory [36]–[38] and expert systems [39]–[41], according to
different inference mechanisms.

This method can explain the key factors of a failure clearly
and directly. It has less reliance on the mechanism model,
and the results of diagnosis are easy to understand. But when
a causal relationship is complex and variable, the inference
process is extraordinarily complicated, so that it leads to mas-
sive computational time. Moreover, it leads to the problem of
erroneous and missed diagnosis.

Therefore, the challenges knowledge-driven diagnosis
faces in the big data era are mainly the following two
aspects: (1) how to obtain comprehensive and reliable spe-
cialist knowledge to build a diagnostic model and inference
mechanism, and (2) how to adaptively learn and diagnose new
issues and compound problems that occur in the system.
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TABLE 1. Improved methods of traditional fault diagnosis.

B. DATA-DRIVEN FAULT DIAGNOSIS METHODS
Data-driven fault diagnosis does not rest on building an
explicit mathematical model based on prior knowledge,
neither does it need to construct a reasoning mechanism
based on expert experience. It uses different sorts of data
mining techniques to extract and classify fault features in
acquired vast operating data [42]. It mainly includes signal
processing [43], [44], statistical analysis [45], [46] and early
quantitative artificial intelligence methods [47].

Signal processing for diagnosis is aimed at extracting fault
features in the time domain and frequency domain using
various signal processing techniques. The operating features
of a signal (e.g., a change in the amplitude or a phase drift)
reflect the health status of the system to some extent [48]. Sta-
tistical analysis for diagnosis mainly uses statistics descrip-
tions or statistical models to extract fault features. It mainly
describes correlations among variables [49]. Quantitative
artificial intelligence methods are used to train many types
of learning algorithms using collected industrial process data,
so that a computer can identify complex fault patterns auto-
matically, and diagnose failures intelligently [50].

Above all, data-driven fault diagnosis can be appropriate
to situations when the process mechanism is hard to master,
the model and parameters are difficult to determine, and large
amounts of data can be utilized. However, it requires high
data-quality, and relies on the completeness and the repre-
sentativeness of sample data. In addition, as the data volume
and data types increase, the computational complexity rapidly
increases. This produces expensive calculations. At the same
time, this method can hardly handle real-time streaming data

in a timelymanner. And it also has limitations in the diagnosis
of new and compound fault problems.

In allusion to the problems mentioned above, many
improved methods are proposed in recent years. Table 1
shows improved methods and their performance in details.
It can be seen that recent research involving previous methods
gets inputs from specific equipment with a specific fault
type or a particular system. And they mainly focus on the
improvement of basic performance, including increasing pre-
cision, widening the scope, strengthening the robustness of
uncertainty, and reducing the computational complexity.

But when facing massive, hierarchical and multidimen-
sional information in the era of big data, it is necessary to
further improve performance, such as the cost and speed of
massive data processing, the generation ability of diagnosis,
the depth of information mining, the integration of fault
features, and the intelligence degree of fault diagnosis. There-
fore, fault diagnosis more applicable to the characteristics of
big data has become a hot topic of research.

IV. FAULT DIAGNOSIS BASED ON INDUSTRIAL BIG DATA
With the increasing degrees of automation and intelligence
of industrial equipment, along with the development and
widening of the application spectrum of related advanced
technologies [58], [59], data started to grow exponentially.
It becomes important to process and analyze collected indus-
trial big data in order to obtain a great diagnostic value using
it. However, corresponding problems, such as computational
overload, widespread uncertainty, the lack of fault samples,
and the difficulty of predicting fault types, have prevent the
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applications of previous fault diagnosis methods [60]. As a
consequence, the question of how to realize rapid analysis
and deeper mining of massive monitoring data has become a
study focus in the big data era. In this section, we describe
and summarize value-driven diagnosis in two ways: big data
processing systems and big data analytical methods.

A. BIG DATA PROCESSING SYSTEMS
Traditional processing methods often rely on local high-
performance computers and simple parallel operations to
improve computational power. The key issues that need to be
solved are overcoming the limitations of original relational
databases and serial algorithms, and developing new types of
distributed processing systems for big data [61].

A big data processing system with high efficiency and cost
effectivity provides basic support for fault diagnosis based on
industrial big data. At present, studies on big data processing
systems are mainly focused on batch processing of histori-
cal monitoring data and real-time processing of online data.
In what follows, we describe the characteristics and research
advances of these two processing systems for fault diagnosis.

1) OFFLINE BATCH PROCESSING
The operation of large-scale complex industrial systems gen-
erates huge amount of monitoring data every day. As data
volumes increase, requirements for software and hardware,
and computational time becomes higher and higher [62]. How
to uncover valuable information from accumulated massive
data for fault prediction is a main concern. Offline batch
processing is aimed at the problem mentioned above, and it
is more suitable for mass stored data, as it focuses more on
the accuracy and comprehensiveness of analysis rather than
real-time diagnosis.

MapReduce [63] is a fairly typical big data batch process-
ing model having the features of efficiency, cost control and
scalability. It distributes mass data in a cluster of computers,
where hardware resources used can be adjusted dynamically
according to the analysis task. In addition, MapReduce can
be used to handle unstructured data. It shields the low-level
details of parallel processing, and, hence, reduces computa-
tional complexity and developer ability requirements.

All these features make MapReduce very popular in the
field of fault diagnosis based on industrial big data. In [64],
a novel framework named CloudView is proposed in a cloud
computing environment. The jobs of case-base creation in this
framework leverage the MapReduce parallel data processing
model, where fault prediction can be done on a timescale of
seconds. In [65], a MapReduce framework for fault diagnosis
in cloud-based manufacturing is developed. It is used to
recognize fault patterns automatically and effectively after
solving a data imbalance problem. In [66], the MapReduce
data processing mechanism is used to build a fault diagnosis
model which can improve diagnostic efficiency and reduce
fault costs in a photovoltaic power station.

However, MapReduce has the shortcoming of low com-
putational efficiency in complex calculations due to iterative

computations. In response to this issue, a distributed comput-
ing system called Spark [67] was developed in the University
of California, Berkeley. It leverages memory to process data
in order to reach faster processing. An integrated data pre-
processing framework based on Spark is proposed in [68] for
fault diagnosis. It can help to decrease data processing time
while improve classification accuracy.

2) REAL-TIME STREAM PROCESSING
Batch processing has drawbacks in terms of process complex-
ity and the lack of the ability to provide diagnosis feedback
in real time. However, with time, the value contained in
dynamic data flows decreases. Therefore, real-time monitor-
ing is needed in variable and complex operating conditions
in order to ensure timely maintenance. A stream processing
system is an appropriate choice to realize this. Not only does
it have fault tolerance and scalability, but it also can mine
diagnostic value timely, and realize real-time diagnosis to
keep equipment running constantly.

The Storm of Twitter [69] is currently often used as one
of stream processing systems. In comparison with the batch
processing architecture, Strom can handle infinite data flows
quickly and reliably. It has the features of strong fault tol-
erance, powerful expansibility and low latency. And it is
helpful to realize real-time monitoring, continuous diagnosis,
performance improvement and remote maintenance.

Batch processing systems and streaming processes are
often combined to provide comprehensive diagnosis online
and offline. In [70], a manufacturing big data solution used
for fault diagnosis is proposed. It includes a mechanism for
real-time active maintenance (MRAM) based on Storm and
a mechanism for off-line prediction and analysis (MOPA)
based on Hadoop. In [71], a cloud-based data-intensive
framework, which combines Storm and MapReduce, is pro-
posed. It solves the problems of heterogeneous data and
response times.

B. BIG DATA ANALYSIS METHODS
Under the basic support of a big data processing system, the
implicated value of big data needs effective analytic methods
to dig it out. Previous research on fault diagnosis generally
uses relatively simple and shallow models to analyze and
process single sample sets. Thesemodels have shown the lack
of capability in performance and generalization. It is hard
to satisfy the requirements of fault diagnosis based on big
data. Accordingly, using deep learning to obtain the hierarchy
representation of fault features, and using integrated method-
ology and data fusion techniques to obtain more reliable and
comprehensive diagnostic information become a developing
trend.

1) DEEP LEARNING
When extracting fault features from a large amount of mon-
itoring data, the traditional artificial intelligence requires
highly professional knowledge and a significant amount of
engineering techniques to manually design classification.
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And it also uses shallowmodels, whichmake it limited to gain
an insight into raw data. To explore a general and automated
feature extraction method, Hinton and Salakhutdinov [72]
proposed deep learning, which is good at finding complex
structures in high dimensional data. It can extract fault fea-
tures adaptively using enough conversions and combinations,
and distill the physical significance of features without man-
ual intervention.

In [73], a multi-sensor fault diagnosis method based on
deep belief learning (DBN) is proposed to provide effec-
tive health diagnosis. The DBN is composed of a stack of
restricted Boltzmann machines. It takes unlabeled data as
a training sample to train entire networks layer by layer,
and then uses the BP algorithm to fine tune the parameters.
Compared to the traditional processing of training models,
the DBN has advantages in fast training, quick convergence,
and the classification of unlabeled data. It solves the problem
of extracting features from multi-sensor heterogeneous data
with efficiency and accuracy.

The DBN is also used in a hierarchical diagnosis net-
work (HDN) in [74]. The HDN can be divided into two
functional layers, where the first layer is developed to identify
and locate faults using the DBN, while the second layer also
uses the DBN to rank fault severity. It expresses more details
regarding diagnosis, and overcomes the overlapping problem
caused by disturbances. In [75], intelligent fault diagnosis
constructed for deep neural networks is proposed. It allows
avoiding the dependence on traditional signal-processing
techniques and artificial experience, achieves health diagno-
sis adaptively and automatically.

2) INTEGRATION AND FUSION
On the one hand, due to the complexity of equipment
and the instability of environment, the occurrence of fail-
ures is always caused by the coupling of multiple factors.
The traditional diagnostic methods cannot reflect the run-
ning state of equipment adequately, or even cause missed
and erroneous diagnosis by analyzing one-dimensional data
or from a single perspective. Therefore, it is necessary to
fuse multi-source heterogeneous data for various aspects
of diagnostic information mining. It can be divided into
data-level, feature-level and decision-level fusion accord-
ing to the progressive relation with the workflow of fault
diagnosis.

In [76], fault diagnosis is regarded as a multi-sensor data
fusion problem. It completes the process of fault signal clas-
sification by using the Support Vector Machine (SVM) and
Short Term Fourier Transform (STFT) techniques. And with
the increase in available sensor data, the diagnostic accuracy,
reliability and robustness also increase. In [77], information
fusion fault diagnosis using evidence reasoning is proposed.
It resolves conflicts among evidence caused by uncertain
factors, so that it reduces the influence of uncertain factors,
and improves the accuracy of diagnosis results. In [78], the
proposed fault diagnosis method breaks through the limita-
tions of previous research that only provides diagnosis of

individual components. It detects multiple faults by using
combinational logic and fuzzy logic to reach systematic
diagnosis.

On the other hand, there is no existing diagnostic method
which would be able to detect the equipment health status
and reach the demand of high confidence by its own. It is
helpful to integrate knowledge-driven and data-driven meth-
ods in value-driven diagnosis. This way, it can strengthen
the research on fault mechanisms with the support of data
analysis, and promote the imagery cognition of faults to
deeper reveal fault mechanisms, and, therefore, to interpret
the mined diagnostic value in a more plausible way.

In [79], a novel distributed parallel computing model with
the characteristics of both directed graphs and neurons is
proposed. This model can visually express fuzzy rules in a
fuzzy diagnosis knowledge base, and model dynamic rea-
soning processes timely. In [80], a combined self-diagnosis
method is proposed to achieve higher automation and reli-
ability. The Bayesian networks of it are used to establish
a connection model, and the case-based reasoning of it is
used to recognize fault features to reduce the complexity
of the diagnostic process and human intervention. In [81],
intelligent fault diagnosis combines data mining technologies
and Bayesian networks. It takes advantages of data mining to
avoid local optima in Bayesian networks, and also uses the
merits of Bayesian networks to help data mining to handle
incomplete and uncertain information.

The features of fault diagnosis based on industrial big
data mentioned in this section are summarized in Table 2.
The table shows that the objects of big data diagnosis are
systems with massive data, and improvements in advanced
performance mainly focus on the aspects of quick analysis,
intelligence, automation and the deep diagnosis of hidden
failures.

C. COMPARISON AND ANALYSIS OF
PREVIOUS FAULT DIAGNOSIS
1) HORIZONTAL COMPARISON OF DIAGNOSTIC METHODS
All knowledge-driven, data-driven and value-driven diagno-
sis methods have their own advantages and disadvantages.
Each method has specific situations that allow full exertion
of advantages, but as circumstances change, the method may
be not applicable. Figure 2 shows the phase of development
of these methods and their applicable conditions.

When the data volume is small, knowledge-driven diagno-
sis performs best. It has the advantages of easy and straight-
forward inference, strong explanatory and rapid diagnosis.
But data-driven methods as well as value-driven methods,
cannot gain accurate fault features from small data sets.

As data becomes larger and richer, it is increasingly
difficult to obtain expert experience and relevant knowl-
edge, which hinders the applicability of knowledge-based
diagnosis models [11]. However, data-driven methods are
simple, and can provide diagnosis without modeling. This
can help to exploit fault information accurately from large
data sets and exclude the interference of uncertainty [16].
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TABLE 2. Fault diagnosis on industrial big data.

FIGURE 2. The phase of development and optimal performance of fault
diagnosis methods.

Though value-driven methods have similarities with data-
driven methods, both provide diagnosis by processing
monitoring data. But using value-driven methods for this
magnitude of data is a bit of overkill, as it makes the cost of
computation too large and the initialization time too lengthy.

With further exponential increase in data, the previous
fault diagnosis methods show problems, such as a too slow
diagnostic speed, incomplete or inaccurate results, or even
inability to produce a result. Value-driven diagnosis methods,
which have excellent ability in the value mining of big data,
show the greatest performance in this phase.

2) VERTICAL ANALYSIS OF DIAGNOSTIC PROCESSES
The process of fault diagnosis can be divided into three
stages, namely, data acquisition, feature extraction and fault
decision [17], from the perspective of the workflow of diag-
nosis. As shown in Table 3, every stage has its features and

diagnostic tasks, but they are very different between previous
methods and those for fault diagnosis based on big data.

In the stage of data acquisition, previous research mainly
analyzes small scale and short time data collected by a few or
even a single sensor. With the development of wireless sensor
technologies, a variety of sensors perceive diverse data con-
stantly. The resulting multivariate time series and incomplete
or uncertain heterogeneous data are the first challenge fault
diagnosis faces in the big data era [82]. Since the value of such
data is high, we need to look for more effective and applicable
methods to find out complex associations in it.

In the stage of feature extraction, previous fault diagnosis
improves its computing abilities by changing computer with
high performance or adding hardware (e.g., CPU and mem-
ory). This implies significant costs, though without useful
diagnosis from data flows. Therefore, using a new class of
processing systems, which are easily extensible and cost-
effective, becomes a required trend in the era of industrial
big data. Regarding the analytical approach in this stage, the
demand for diagnosis has shifted from shallow analysis for
a specific type of failures to deep and adaptive analysis for
diverse and dynamic failures.

In the final phase of decision making, previous diagnos-
tic methods output the results of diagnosis directly, due to
the utilization of one-dimensional data and simple models.
Diagnostic methods based on big data often use synthesized
methods to process fused information for more comprehen-
sive and well-founded decisions. Clearly, the results of big
data analysis are worth more.

V. AN APPLICATION OF INDUSTRIAL BIG
DATA FOR FAULT DIAGNOSIS
As is well known, a short time breakdown of industrial equip-
ment can cause tremendous losses, especially in today’s auto-
motive, continuous and compact manufacturing. Traditional
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TABLE 3. Comparison of previous fault diagnosis and diagnosis based on big data.

FIGURE 3. Comparison between the DEKG and traditional diagnostic processes. (a) DEKG of a machine. (b) DEKG of
a movement. (c) Traditional monitoring chart. (d) Traditional alarm.

fault diagnosis often complies with the fail and fix (FAF)
maintenance strategy, and it regards the failure of devices
as a sudden shutdown problem. But in fact, there is a pro-
cess of degradation before an unexpected stop. Therefore, to
prevent failures that may occur at some time in the future,
we can transform the maintenance strategy to predict and
prevent (PAP) strategy by using advanced analytical and
prediction technologies.

In recent years, some intelligent prognostic systems have
been developed and implemented to predict the perfor-
mance and life expectancy of machines, such as Watch-
dog AgentTM [83] and SensorCloudTM platforms [84].
Diffenet diagnostic system has its own features. For example,
Watchdog AgentTM could realize predictive condition-based
maintenance through enabling multi-sensor assessment, and
SensorCloudTM could easily upload any data through their

open data API in security. In what follows, we introduce a
novel idea called ‘‘Device electrocardiogram’’ (DEKG) [85]
to visualize the health conditions of monitored equipment.

A. DEVICE ELECTROCARDIOGRAM (DEKG)
Inspired by the electrocardiogram for humans, which presents
invisible heartbeats as visible images, the DEKG aims at
devices’ heartbeats to visualize every event and motion of
equipment. It can monitor the status of operations through
the changes of DEKG, and predict downtimes, providing
predictive and proactive maintenance.

Figure 3(a) shows the DEKG of a machine, where the
blue baseline stands for the ideal conditions of equipment,
and different color bars represent different health conditions.
The bars under the baseline are green, meaning that the
machine is running in a good status. They become yellow
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above the blue baseline within a threshold. This provides a
reminder that the machine needs to be monitored. Beyond the
threshold, bars turn orange. This warns that the device may
break down in a meantime, and the problem must be solved
as soon as possible. Moreover, the DEKG can depict the
detailed performance of a certain motion or event, as shown
in Figure 3(b). We can obtain the evolution of the warning
component, and find the root causes of the problem.

For comparison, Figure 3(c) and Figure 3(d) show tradi-
tional monitoring charts. Figure 3(c) only shows the overall
condition of a machine. We can only obtain the duration
over a cycle, but have no understanding of detailed motions
which may lead to failure. And a fault alarm is sent only after
a failure occurs, as shown in Figure 3(d), which results in
unrecoverable loss.

FIGURE 4. The architecture of the DEKG.

B. PRINCIPLES IN FAULT DIAGNOSIS
Figure 4 shows the architecture of a DEKG fault diagno-
sis system. It consist of four layers, namely, the equipment
layer, data acquisition layer, processing layer and application
layer. The data collectors in the data acquisition layer gather
and format massive data using the PLC from the equip-
ment layer, which can avoid requiring additional sensors.
As the scanning periods of data collectors are the same as
the PLC, the precise time of every move can be collected
to capture valid changing details. Then, the formatted data
is cached and shared to the processing layer. In this layer,
some fault diagnostic methods are chosen to perform degra-
dation assessment and prediction. When devices operate nor-
mally, it can also optimize the machine cycle to improve the
throughput. Finally, the results of the analysis are uploaded
to the application layer and produce the DEKG to help to
predict, recover warning parts, and optimize the cycle time.

FIGURE 5. The diagnosis of the DEKG.

Figure 5 is the diagnosis of the DEKG, it warns nearly two
hours and alerts three and a half hours in advance.

C. DISCUSSIONS
The traditional diagnosis is a process of the FAF. It outputs the
superficial understanding of a problem at the time it occurs.
The DEKGmethod can grasp the depths of the problem using
diagnostic methods based on big data. It greatly reduces the
dependency on experts’ experience and raises the degree of
diagnostic automation. Supplemented by visualization repre-
sentation, it provides a successful transition to the PAP, and
helps to optimize the manufacturing process.

The DEKG system also has some limitations. First, it col-
lects and analyzes the duration of actions, which, probably,
makes diagnosis too partial. Second, it only predicts the type
of failure, but ignores its severity. This leads to priority issues
when making the decision on fault recovery. In the future, the
DEKG can be illustrated in multiple dimensions and multiple
levels, and combine more advanced big data analytical meth-
ods to overall improve the performance of diagnosis.

VI. ISSUE AND CHALLENGES
Starting from data acquisition, there are huge differences
between the previous diagnosis methods and big data meth-
ods. The approaches of the former methods process small
amounts of monitoring data sequentially with human inter-
ventions. In the context of big data, it is not realistic to rely
on traditional diagnosis tomonitor and predict devices’ health
conditions. Fault diagnosis based on big data is able to satisfy
diagnostic demands, including processing and responding
to massive data in real time, extracting fault features, and
predicting failures automatically and effectively. However,
it is still in its initial stage of development, havingmany issues
and challenges.

A. DATA QUALITY AND COST BALANCE
With respect to data acquisition and data processing, data
is the cornerstone of fault diagnosis. The quality of data
directly affects the process of extracting fault features, and
influences the validity and authenticity of results. There are
a lot of mature technologies to gather massive distributed
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operating data [86]. But, first, data formats are different
when using various standards when collecting it. Moreover,
quality problems, such as data loss, noise, inconsistency [87],
and imbalance [88], should not be ignored. Also, cer-
tain costs are required to layout some diagnostic facilities
and implement the process of data collection, storage and
uploading [22], [89]. The purpose of fault diagnosis is to
reduce losses caused by downtimes to ensure vested interests
or increase revenues. If diagnostic costs are higher than losses
due to failures, fault diagnosis loses its meaning to some
extent. Therefore, the question of how to obtain raw data of
high quality, and at the same time ensure that the collection
costs are acceptable, must be considered.

B. METHOD SELECTION AND APPLICATION PROBLEMS
With respect to diagnostic methods, self-diagnosis without
human interventions also has some problems, such as the time
costs of the training model, and the reliability of the trained
model. Some common questions can be easily solved using
expert experience, when it is a waste to train a new model.
Accordingly, interactions with humans constitute another
issue to be considered [90]. In order to extract valuable
fault information more efficiently and reduce the cost, it is
necessary to consider the optimum combination of diagnostic
methods introduced above in the stage of design. Excellent
diagnosis can optimize the production process and guarantee
the optimum operating condition of equipment, to realize safe
production and the promotion of benefits. Furthermore, the
security of big data methods has always been the focus of
attention [91], [92]. It is an obstacle to extend and implement
fault diagnosis systems.

C. DEEP UTILIZATION
With respect to diagnostic results, for one thing, most of fault
diagnosis methods remain at the theoretical and experimental
stages. The effects of diagnosis and feasibility remain to be
examined. One needs to seek opportunities to combine theory
and practice, as the value of results can be more practical this
way. For another thing, almost all diagnosis methods stop as
results are obtained without considering further valuemining.
Feeding diagnosis back to the device producer, forming a
closed-loop control to enhance production efficiency from
the source and obtain more insight, is worth deep reflec-
tion. Moreover, most of diagnosis methods resolve superfi-
cial problems lacking the deep exploration of the essence of
faults. Future research should focus more on dynamic char-
acteristics and correlations within large complex equipment
systems, and explain the causality of failures from the surface
to the center.

VII. CONCLUSIONS
In this paper, we first comprehensively review and study
the development of fault diagnosis. It can be divided into
knowledge-driven, data-driven and value-driven diagnosis
based on different driving factors. From the perspective of
applicability in the big data era, we point out the limi-
tations of previous diagnostic methods, including the first

two approaches. As the data volume increases exponentially,
hidden important values lead researchers to explore more
advanced and effective approaches to predict and provide
diagnosis of device failures. We classify fault diagnosis based
on industrial big data as value-driven methods. They focus
on discovering and deep understanding of diagnostic values
hidden in massive multi-sourced heterogeneous data. Further,
we discuss an application of big data for fault diagnosis in
manufacturing. A novel diagnostic idea called the DEKG
is introduced, which transforms a diagnostic strategy form
the FAF into the PAP by monitoring the devices’ heartbeats.
In addition, we analyze and summarize existing issues and
challenges in the age of big data from the aspects of data
quality and cost balance, method selection, application prob-
lems, and deep utilization. It would be valuable to fuse the
advantages of different diagnosticmethods and take use of the
extracted fault futures further, for example, forming a closed
loop diagnostic control system andmakingmaintenance deci-
sions automatically. This provides thoughts for future studies.
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