
SPECIAL SECTION ON THE NEW ERA OF SMART CITIES: SENSORS,
COMMUNICATION TECHNOLOGIES AND APPLICATIONS

Received May 31, 2017, accepted July 1, 2017, date of publication July 24, 2017, date of current version September 19, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2731382

SmartCityWare: A Service-Oriented Middleware
for Cloud and Fog Enabled Smart City Services
NADER MOHAMED1, JAMEELA AL-JAROODI2, IMAD JAWHAR3, (Member, IEEE),
SANJA LAZAROVA-MOLNAR4, AND SARA MAHMOUD5
1Middleware Technologies Laboratory, Pittsburgh, PA 15057 USA
2Department of Engineering, Robert Morris University, Moon, PA 15108 USA
3Midcomp Research Center, 1600 Saida, Lebanon
4Center for Energy Informatics, University of Southern Denmark, 5230 Odense, Denmark
5College of Information Technology, United Arab Emirates University, 15551 Al Ain, UAE

Corresponding author: Nader Mohamed (nader@middleware-tech.net)

ABSTRACT Smart cities are becoming a reality. Various aspects of modern cities are being automated
and integrated with information and communication technologies to achieve higher functionality, optimized
resources utilization, and management, and improved quality of life for the residents. Smart cities rely
heavily on utilizing various software, hardware, and communication technologies to improve the operations
in areas, such as healthcare, transportation, energy, education, logistics, and many others, while reducing
costs and resources consumption. One of the promising technologies to support such efforts is the Cloud of
Things (CoT). CoT provides a platform for linking the cyber parts of a smart city that are executed on the
cloud with the physical parts of the smart city, including residents, vehicles, power grids, buildings, water
networks, hospitals, and other resources. Another useful technology is Fog Computing, which extends the
traditional Cloud Computing paradigm to the edge of the network to enable localized and real-time support
for operating-enhanced smart city services. However, proper integration and efficient utilization of CoT
and Fog Computing is not an easy task. This paper discusses how the service-oriented middleware (SOM)
approach can help resolve some of the challenges of developing and operating smart city services using CoT
and Fog Computing. We propose an SOM called SmartCityWare for effective integration and utilization
of CoT and Fog Computing. SmartCityWare abstracts services and components involved in smart city
applications as services accessible through the service-oriented model. This enhances integration and allows
for flexible inclusion and utilization of the various services needed in a smart city application. In addition,
we discuss the implementation and experimental issues of SmartCityWare and demonstrate its use through
examples of smart city applications.

INDEX TERMS Smart city, Cloud of Things, Internet of Things, cyber physical systems, middleware,
service-oriented middleware, cloud computing, fog computing.

I. INTRODUCTION
Smart cities are the promising future of high quality living
for the increasing population of cities in the world. Urban
population increased from 746 million in 1950 to almost
4 billion in 2014 and the projections show further increases in
these numbers reaching around 6 billion by 2050.Mega cities,
accommodating 10 or more million people are increasing in
numbers and large cities are also growing rapidly. To achieve
high quality living and manage and operate these large cities,
innovative solutions are needed, leading to the development
of the smart city concept.

In a smart city, various aspects of living, operations, and
management are automated and streamlined through effective

and usually intelligent computing systems. The base unit in
a smart city system is the sensors. Sensors of various types,
capabilities and functionalities are deployed to monitor and
record city parameters. These sensors need to be integrated
with other devices and computing facilities to achieve their
goals for monitoring and control of the smart city functions.

Various technologies and computational approaches pro-
vide the basic capabilities to integrate the sensors, actuators
and other devices in a city’s physical environment to create a
smart city. Advances in Cyber-Physical Systems (CPS), Inter-
net of Things (IoT), Cloud Computing (CC), Fog Computing
and other software technologies have positively contributed
to this goal. These new technologies offer an unprecedented

17576
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017



N. Mohamed et al.: SmartCityWare: A SOM for Cloud and Fog-Enabled Smart City Services

opportunity to create a wide array of applications that opti-
mize smart cities’ services. These technologies are integrated
into the Cloud of Things (CoT) [1]. In CoT, all objects
of a smart city like the residents, vehicles, streets, build-
ings, hospitals, and energy and water plants are intercon-
nected through the IoT, which is integrated with CC systems,
running intelligent software to optimize the smart city’s
services. In addition, Fog Computing can offer extension
features for CC systems to better support low latency require-
ments, location awareness, scalability, and mobility for these
services [2].

Smart city applications can be developed to effectively
and efficiently use the available and emerging technologies
to continue enhancing the living quality of the residents,
while optimizing the utilization of the city’s resources and
reducing the negative impact on the environment. One of
these is Cloud Computing Systems, which provide large
scale computational and data storage services to smart
cities [3]–[5]. Another technology is Fog Computing Sys-
tems, which augment the functions of cloud services by
providing services closer to the physical city environment.
As a result, it can support the low latency, location awareness,
mobility, streaming, and real-time requirements of the smart
city applications [6], [7]. Another very useful technology is
the Wireless Sensor Networks (WSN), which are used to
connect sensors for monitoring the different resources, com-
ponents, residents and operations of a smart city [8], [9].
The Internet of Things (IoT) is another technology being
developed for various applications; however, it is very use-
ful for integrating the physical objects of a smart city in
a well-defined network [10], [11]. Cyber Physical systems
further extend the IoT concept to facilitate the interaction
between the cyber world and the physical world in a smart
city [12]. Other relevant technologies for a smart city include
robotics, to provide different ground actions and physical
controls [13]; Unmanned Aerial Vehicles (UAV), to enhance
delivery of services, traffic monitoring, security and safety
controls, and telecommunication services [14], [15]; and Big
Data Analytics (BDA), to provide smart decisions based on
collected data [16], [17].

Integrating technologies likeWSN, IoT, CPS, robotics, and
UAVs in addition to other technologies that will be available
in the future with Cloud Computing will create the Cloud of
Things (CoT). CoT can support the operations in a smart city,
which can also be further enhanced by utilizing Fog Com-
puting [18]. CoT and Fog computing will provide a powerful
environment for supporting the operations of smart city appli-
cations. However, developing, implementing, maintaining,
and operating these applications in an effective manner are
major challenges. This paper introduces a service-oriented
middleware approach to relax these challenges. We propose
SmartCityWare, a SOM for integrating CoT and Fog Com-
puting to support the development and execution of smart
city applications. This approach will provide a meaningful
representation and utilities to design and implement such
services.

This paper is organized as follows. Section II provides
background information about smart city applications, CoT,
and Fog Computing. Section III discusses using service-
orientedmiddleware for smart city applications. A conceptual
design and the functions and services of SmartCityWare are
discussed in Section IV while SmartCityWare runtime envi-
ronment is discussed in Section V. Section VI illustrates some
examples for smart city applications using SmartCityWare.
Some experimental evaluations are discussed in Section VII,
Section VIII is an overview of some related work, and
Section IX concludes the paper.

II. BACKGROUND
Creating and sustaining a smart city requires the integration
of various technologies and the collaboration of many enti-
ties. City administration, city officials, emergency response
teams, workers and residents all need to be involved in the
process. In addition, the infrastructure, buildings, transporta-
tion systems, spaces and all physical aspects of the city are
involved. To tie all of this together a sophisticated network
of sensor devices, actuators, computing facilities and smart
devices must be put in place. The general smart city concept
involves monitoring, controlling, and managing the condi-
tions of all of the city’s infrastructures and physical com-
ponents to optimize operations and use of resources, while
providing high quality services to the citizens [19], [20].
These include critical components like hospitals, power and
water plants, communication networks, airports, seaports and
transportation infrastructures. In addition, there are residen-
tial and commercial buildings, parks, recreational facilities,
vehicles, and all types of electronic and mechanical devices
used by people.

The major contributor to the emergence of smart cities
is the development in sensor technologies. These include
specialized sensors devised for specific purposes and also the
use of smart devices to provide sensing and data collection
features like smart phones capable of sensing the location,
temperature and other aspects of an environment. However,
sensing devices also require networks and computing facili-
ties that allow for accurate data collection, aggregation and
dissemination. This requires using Information and Commu-
nication Technologies (ICT) to facilitate and optimize the
services provided in a smart city. It is often stated that the
goal of utilizing ICT is to improve existing services by mak-
ing them more efficient, more user-friendly or, in general,
more citizen-centric. With the recent advances in ICT, all
city components and critical infrastructures can be integrated,
monitored, and controlled for the benefit of the citizens.

One of the emerging technologies that effectively can be
used for smart cities is the CoT. Having an IoT in place that
includes sensing and actuating devices within a smart city can
help provide specific enhancements. However, integrating
this IoT with the cloud opens up a larger set of capabilities
to facilitate large scale computation and decision making for
the smart city. It will also allow for the integration of multiple
IoTs and physical environments to create a larger view of the

VOLUME 5, 2017 17577



N. Mohamed et al.: SmartCityWare: A SOM for Cloud and Fog-Enabled Smart City Services

smart city’s operations, leading to enhanced decisions and
optimizations. The CoT helps connect, monitor, and apply
enhancements in all aspects of a smart city through the IoT
and Cloud services as shown in Figure 1. Cloud computing
provides a flexible virtual execution system and on-demand
services for a smart city. It can process and store huge data
sets and offer dynamic computing capabilities that can be
scaled in or out based on the varying demands of the smart
city services. The CoT can be implemented with a multiple-
layer model. One of the most important layers is the CoT
platform as a service. This layer links the IoT and the CC
infrastructure and services and provide services to implement
and operate optimization applications for smart city services.

FIGURE 1. The CoT Model for Smart Cities.

Another emerging technology that could be of great benefit
to smart city applications is Fog computing as it can enhance
the CoT paradigm by providing small platforms located at
the network edges in a smart city. These fog platforms can
operate localized cloud-like services to support IoT oper-
ations. The services can be control, storage, communica-
tion, processing, configuration, monitoring, measurement,
and management services to support a certain IoT smart city
application. Using Fog Computing, an application in a certain
area in a smart city can utilize an architecture that uses a
dedicated computer available locally, or one or more end-user
devices or nearby edge devices. The Fog platform will allow
executing services geographically close to the IoT applica-
tions. This offers several advantages for IoT applications
including [2]:

• Providing low latency services, as fog devices are
located closer to the actual IoT components and can react
faster than the cloud.

• Offering location aware services based on the location of
the IoT components in use and the connected fog nodes.

• Providing better scalability support for widely geo-
graphical distributed applications. This is enabled due to
the availability of multiple fog nodes within the different
geographic locations, thus the need to centralize the
tasks is minimized as the fog nodes can handle many
requirements locally.

• Supporting better mobility and access control for differ-
ent types of mobile devices as they travel around the city.
As a result, these devices can have access to the required
services through the nearest fog nodes.

• Offering better Quality of Services (QoS) support. Some
services have strict QoS requirements and the fog nodes
will be able to help support these requirements locally.

• Providing more efficient communication with other sys-
tems. Fog nodes are structured and designed like cloud
nodes thus they can communicate with different sys-
tem through the cloud or other fogs to achieve certain
goals.

These advantages help create solutions to many challenges
that smart city applications face and enable the creation of
higher quality and more controllable services to perfectly
achieve the vision of a smart city. The architecture of inte-
grating Fog computing into CoT for a smart city is shown
in Figure 2. In this architecture, the fogs will provide more
localized real-time monitoring, control, and optimization for
the smart city applications while the cloud will provide global
monitoring, control, optimization, and future planning for
these applications.

FIGURE 2. Integrating Fog Computing and CoT for Smart City applications.

Various types of smart city applications can be designed
and implemented with the support of COT and Fog comput-
ing. These include applications for intelligent transportation
systems, smart energy systems, infrastructure and environ-
ment monitoring, and public safety applications. Table 1 lists
some examples of smart city applications and how they can
benefit from both the CoT and fog computing. More dis-
cussion on how CoT and fog computing can support these
applications is available in [41]. These applications have
specific requirements and may pose several challenges for
their developers. Some of these challenges include:

• Support for real time operations and responses.
• The ability to seamlessly handle heterogeneous devices
and components.

• The ability to accommodate for devices with limited
resources and operational capabilities.

• The ability to support highly distributed systems span-
ning large geographic areas.

• Support for security and privacy measures.
• Support for reliability and fault tolerance.
• Support for device mobility.
• The ability to integrate and interoperate with other
systems.

17578 VOLUME 5, 2017



N. Mohamed et al.: SmartCityWare: A SOM for Cloud and Fog-Enabled Smart City Services

TABLE 1. Examples of smart city applications that can benefit from CoT and Fog computing.

The integration of CoT and Fog computing along with
the right software architectures can leverage many of these
challenges leading to more effective and efficient smart city
applications.

III. SERVICE-ORIENTED MIDDLEWARE
Middleware technologies have become a necessary part of
any distributed environment [21]. Middleware offers essen-
tial enabling features and functionalities for facilitating the
integration of the distributed environment components and
the operations of the whole distributed and heterogeneous
applications. It simplifies the development and execution of
distributed applications and hides their complexity. It also
provides common services for recurring challenges in the
distributed environment. Middleware also connects any set
of components in a distributed environment to provide bet-
ter functionalities. These components could be hardware
devices such sensors, actuators, robots, UAVs, communi-
cation devices, microcontrollers, cloud servers; or software

components including control modules, monitoring applica-
tions, analytics services, and application specific software
modules. Better functionalities can be defined in terms of
communication, integration, operations, reliability, availabil-
ity, scalability, security, and other value-added functions.

Smart cities are complex and very large distributed systems
that share with other distributed environments their hetero-
geneity, security, and reliability challenges. In addition, they
also have their own unique challenges to provide and sup-
port high scalability, efficiency, safety, real-time responses,
and smartness (intelligence) requirements. These are com-
mon challenges facing most smart city applications including
smart grids, smart water networks, intelligent transportation
systems, infrastructures monitoring and protection, and sev-
eral others. Designing and building applications meeting all
these challenges is extremely complex. As a result, it is almost
impossible to develop and operate smart city applications
without relying on advancedmiddleware technologies to sim-
plify and facilitate the development and operations processes.

VOLUME 5, 2017 17579



N. Mohamed et al.: SmartCityWare: A SOM for Cloud and Fog-Enabled Smart City Services

A new and advanced approach in middleware technolo-
gies is the use of service-oriented middleware (SOM). This
approach has been proven to simplify the implementation
and operations of many applications in diverse industrial
domains [22]. The approach was used to reduce the effort and
cost of development, testing, and operations. Similarly, SOM
can play an important role for developing, operating, and sup-
porting smart city applications. Accordingly, we anticipate a
successful migration of the SOMmodel to utilize the concept
of IoT to support smart city applications and provide a generic
middleware platform that will highly increase productivity
and widen the range of applications that can be designed and
built for smart cities.

SOM extends the capabilities of middleware and provides
high flexibility for adding new and advanced functions to
smart city applications. SOM logically views smart city cyber
and physical components as providers of services for smart
city applications. With SOM, all hardware devices such as
sensors, actuators, storage devices, communication devices,
and processors can be viewed and utilized as services. The
implementation of this SOM is usually achieved through web
services standards, wrapper technologies to map different
devices’ interfaces to web service interfaces, and middle-
ware services to enable the integration among both services
clients and services providers [22]. Furthermore, it can inte-
grate these services with other services provided by Cloud
Computing and Fog Computing Thus, allowing application
developers to view everything as a single large system that
provides basic and advanced services to smart city appli-
cations. Advanced services, such data aggregation, adapta-
tion, security, self-organization, reliability, and management,
can be designed, implemented, and integrated in a SOM
framework through a more flexible and easy to use devel-
opment and execution environment. SOM for smart cities
is necessary to support several, otherwise hard to incorpo-
rate, functionalities in the service-oriented computing (SOC)
model. These functionalities include the functional and non-
functional requirements that different services may need. For
any service-oriented application, there are common function-
alities such as service registry, discovery, communication,
reliability and security that are needed by any of these appli-
cations. These can be easily generalized and made available
via the SOM platform to be used by the applications’ devel-
opers to easily implement smart city applications. Generally,
SOM for smart cities should support several requirements,
some of which (e.g. the first three in the list) are common for
any SOC application, while the rest are enforced by the char-
acteristics of the smart city environment and the challenges
of implementing and operating applications on CoT and Fog
Computing. These requirements include:

1. Runtime support for services deployment and execu-
tion: as all devices in a smart city including components
of supported cloud computing and fog computing are
viewed as a set of services available to support the
applications, SOM should provide mechanisms to link,
load, deploy, and execute these services as needed.

2. Support for different communication methods among
service consumers, services, service registries and bro-
kers that enable reliable and efficient local and remote
services utilization.

3. Support for consumers to discover and use registered
services: SOM should enable client applications to
discover and use registered services when needed.
SOM should also support run-time integration between
applications and registered services.

4. Support for service transparency to client applications:
SOM should allow client applications to transparently
use available services without exposing services imple-
mentation details or, in some situations, their detailed
components locations.

5. Suitable abstractions to hide the heterogeneity of
the underlying environments: all heterogeneity details
of a smart city’s physical devices and networks
should be hidden from the applications. SOM
should provide high-level interfaces to utilize cyber
and physical smart city resources without requir-
ing application developers to deal directly with the
heterogeneity.

6. Support for configurable services: SOM should provide
mechanisms for client applications to configure smart
city services to meet specific applications’ require-
ments such as QoS, security or reliability. Configuring
smart city services usually requires dealing with details
and parameters of some hardware, network compo-
nents, cloud and fog configurations. Doing this for
configuring QoS requirements, for example, will be
a complex task for regular users. However, SOM can
provide mechanisms to be used easily by client applica-
tions to configure smart city resources for their specific
requirements.

7. Support for self-organization mechanisms: this
includes self-x properties such self-management,
self-healing, self-configuration, auto-discovery, self-
adaptation, and self-optimization of service providers.
Smart cities are dynamic distributed environments
where resources can be added, changed, or removed
anytime. In addition, some resources may be mobile
like the UAVs. The availability of services for
such devices is also dynamic. Therefore, SOM
should support self-management, auto-discovery, self-
optimization and auto-change mechanisms for effi-
cient utilization of all available services. For example,
when a sensor provides a service for sensing a certain
attribute, the SOM should discover that service and
allow the client applications to use it when they need it.
When that senor fails, SOM should automatically
switch the application to a similar service currently
available in the area. Furthermore, the SOM should
be able to notify the application if nothing matching
their needs is currently available. This helps solve the
scalability, heterogeneity, and network organization
challenges.

17580 VOLUME 5, 2017



N. Mohamed et al.: SmartCityWare: A SOM for Cloud and Fog-Enabled Smart City Services

8. Support for interoperability with a variety of devices:
This requirement helps solve the heterogeneity chal-
lenge in smart cities by supporting different interoper-
ability mechanisms to match available devices. Some
smart city applications require a variety of devices to
be operated. SOM for smart cities can be designed to
be interoperable with different devices such as devices
with different types of sensors, RFID, vehicles, UAVs,
cloud and fog services to enable easy application devel-
opment and operations.

9. Efficient handling of large volumes of data and high
communication loads: many smart city applications
involve large volumes of data and high communi-
cation loads as they operate in data-rich environ-
ments and handle a large amount of data generating
services. As some of the used systems and devices
may have limited resources, SOM should efficiently
and carefully deal with that load through trade-offs
between smart city applications requirements in terms
of accuracy, bandwidth, delay, and energy consump-
tion. SOM should also be capable of reallocating data
as necessary while maintaining proper access to the
applications using it.

10. Support for secure communication and execution: as
most smart city applications involve sensitive and crit-
ical information, secure communication and execution
becomes a very important aspect in SOM for smart
cities. SOM should provide mechanisms to secure the
utilization and operations of both CoT and Fog Com-
puting services. All communications and execution for
supporting these services should be also secured.

11. Support for QoS requirements: some smart city appli-
cations have specific QoS requirements. Mechanisms
are needed to configure and satisfy these requirements
in the CoT and Fog computing systems utilized by
these applications. An example of QoS requirements
in a smart city can be observing and reporting a current
traffic situation in a certain road intersect within a given
time frame and within a specific error margin. In some
situations, the QoS requirements can come from multi-
ple applications such as safety and collaborative sens-
ing. SOM for smart cities should provide uniform
interfaces to configure the QoS requirements for these
applications and ensure achieving these requirements.

12. Support for integration with other systems: smart city
applications usually do not operate in isolation thus the
SOM should enable the integration of smart city appli-
cations with other systems such as enterprise or web
systems. For example, some web applications rely on
smart city applications for their current information
such as information on traffic conditions. In this case,
SOM should enable that integration such that these
applications can fulfill their goals.

In addition to these requirements, there are other advanced
and specialized requirements that are needed for some smart
city applications. Examples are support for context awareness

and location-based services. Generally, SOM is designed to
best suit the underlying environments it will serve. Therefore,
many of the existing SOM designs may provide some of
the requirements described above, but most do not support
all smart city applications requirements and do not provide
complete solutions for their challenges.

IV. SMARTCITYWARE
SmartCityWare is a service-oriented middleware platform
designed specifically to utilize CoT and Fog Computing to
support developing and operating smart city applications.
The main purpose of SmartCityWare is to provide a virtual
environment to be used to develop and deploy smart city
applications. SmartCityWare consists of a set of services and
amulti-agent runtime environment. In this section, we discuss
the services of SmartCityWare while in Section Vwewill dis-
cuss the multi-agent runtime environment of SmartCityWare.

In SmartCityWare, all functions are viewed as a set of
services that can be used to build and support the execution of
different smart city applications. These services are classified
into core services and environmental services. Core services
are those developed specifically for the core operations of
SmartCityWare, such as the broker, security, service invo-
cation, and location aware services. These services provide
overall control for the whole system. Environmental services
provide access to services provided by one or more cloud ser-
vice provider, services provided by multiple distributed fogs,
and services provided by multiple IoT devices including sen-
sors,WSN, actuators, cameras, cars, UAVs, robots, etc. Cloud
services can be Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and Software a Service (SaaS), which can
define different services for smart city applications including
data mining, big data analytics, optimization, and simulation
services. Fog services can be control, processing, storage,
communication, streaming, configuration, monitoring, mea-
surement, and management services. The IoT devices ser-
vices provide interfaces to utilize device functionalities like
sensing, action, or other services. The environmental services
can either provide direct interfaces to access the original
services, provided by a cloud, a fog, or IoT device or they
introduce some added-value for the original services such
as adding reliability and security features. While some IoT
devices can execute on-board code to implement and provide
some services, other IoT devices will be controlled mainly
by a fog that will have services that provide interfaces to
utilize these devices’ functionalities. SmartCityWare services
can be used by smart city applications available on the cloud,
fog, or IoT devices such as a car asking for a certain service
from a smart city application available on the cloud.

Themain functions of SmartCityWare are to enable smooth
integration and operations among all these units to effectively
support smart city applications. The SmartCityWare services
will be distributed among multiple clouds, fogs, and IoT
devices as shown in Figure 3. Each service defines a few sim-
ple interfaces that make it available to other services. Using
SOM concepts for SmartCityWare provides mechanisms to

VOLUME 5, 2017 17581



N. Mohamed et al.: SmartCityWare: A SOM for Cloud and Fog-Enabled Smart City Services

FIGURE 3. SmartCityWare Supporting Smart City Applications.

link available services to build new services. A specific subset
of the available distributed services in SmartCityWare can be
integrated and deployed for the accomplishment of a specific
application in a smart city. In addition, any service can be a
client or consumer of other services. The required services for
a certain application are integrated using SmartCityWare that
aims to achieve loose coupling among interacting services.
SmartCityWare manages service advertisement and discov-
ery, communications, and invocations. In addition, it can
be used to implement collaborative services across multiple
smart city applications and with other SOC type systems.

Although SmartCityWare can include many core services,
the main mandatory services are the broker services, invo-
cation services, location-based service, and security services.
These four services are essential to ensure effective utilization
of other available services and to facilitate the main functions
it offers.

A. BROKER SERVICES
Broker services are responsible for CoT, fog computing, and
IoT services advertisement, discovery, and registration. All
services in all participating platforms and devices are adver-
tised, registered, and discovered using the broker services.
There are two types of broker services: a global broker that
is available on the cloud, and local broker services that are
available in each fog in the environment. While the global
broker service maintains information about all services in
the environment, the local broker service in each fog only
maintains information about the current available services
within the fog and information about services provided by IoT
devices currently associated with the fog. This approach is
used to allow applications and services within a fog to utilize
available services and resources and provide low latency
responses. As a result, the time needed to discover services
is minimized to efficiently and accurately utilize the services.
The global broker service maintains services information for
the whole environment including services available in all
fogs. The local fog brokers regularly update the global broker
about the availability and status of their services. The fog

service brokers maintain description information about local
services. The service description information includes the
standard information using Web Service Description Lan-
guage (WSDL) for each defined service. Each service
information includes the operations that the service can per-
form, the specific types and formats of the message it expects
between the service provider and service consumer, and
where the service can be located on the network.

B. INVOCATION SERVICES
When an application discovers a service it needs, it will
require that service to be invoked with the proper inter-
faces. The invocation services, local and remote, are used
by consumers with SmartCityWare support to start executing
the required services. Local invocation services are limited
within a single system where services needed exist in the
same location. Remote service invocation can be between a
fog service and another fog service, between an IoT device
service and a fog service, between a fog service and a
cloud service, or between a cloud service and a fog service.
SmartCityWare handles message addressing, establishing
communication connections between service consumers and
producers, data marshaling and demarshalling, delivering
requests and responses, and executing services. All these
steps in the invocation process are achieved based on web
services standards.

C. LOCATION BASED SERVICES
SmartCityWare can provide location-based services. Unlike
regular service brokers that are used over the Internet,
SmartCityWare service brokers for fogs maintain additional
information about the current positions of currently con-
nected IoT mobile devices. The main reason for maintaining
current positions is that some of their services can be consid-
ered useful and may be utilized only if the provider device
is in a specific location; otherwise, there is no usefulness in
utilizing these services. One example is using a sensor service
on a robot if the robot is available within a specific location.
A service consumer in a fog can look up a certain service
within a specific location through its fog service broker. If this
service is available within the fog’s range then WSDL infor-
mation about the service is sent to the service consumer to
utilize the service using a local service invocation. Otherwise,
the fog service broker will forward the lookup request to
the global service broker on the cloud and if the service is
available then the service consumer utilizes the service using
a remote service invocation.

D. SECURITY SERVICES
Various security mechanisms can be used by various clouds,
fogs, and IoT devices in smart city applications. The main
functions of security services in SmartCityWare are to inte-
grate and regulate security mechanisms among all these
components and ensure that the required security measures
are applied appropriately to protect the smart city appli-
cations, provided services, and the physical environments.

17582 VOLUME 5, 2017



N. Mohamed et al.: SmartCityWare: A SOM for Cloud and Fog-Enabled Smart City Services

The security services include authorization and authentica-
tion services and access control services for the smart city
applications, SmartCityWare services, and the physical envi-
ronment. These services can be provided with varying levels
of protection measures, such that different applications can
use the suitable set for their security requirements.

E. OTHER CORE SERVICES
SmartCityWare is comprised of a collection of services, thus
it becomes possible to introduce other specialized services
that implement common solutions for smart city applications
to the SmartCityWare platform. These specialized services
can cover additional requirements from those discussed in
Section III. One example is adding reliability and fault tol-
erance features. For example, Alho and Mattila [42] pro-
posed, developed, and evaluated a service-oriented approach
to address reliability and fault tolerance in cyber-physical sys-
tems. This approach can be employed as a collection of ser-
vices and added to SmartCityWare. Furthermore, additional
core features and services can be added to further customize
SmartCityWare for specific smart city applications like the
ones listed in Section II. Some examples can be services
to support high mobility for vehicular applications or dis-
tributed resource management services for large-scale smart
applications such as smart grids. In addition, SmartCityWare
services can use advanced functions provided by the network
used for connecting the smart city’s distributed components.
One example is to utilize Software Defined Networking
(SDN) features which provide abstractions for the under-
lying networks and systems to programmatically control
and configure the networks to achieve the required network
performance [43]. This requires integrating SmartCityWare
with SDN controllers such as OpenDaylight [44]. The details
of this option are left for future investigation. Generally,
SmartCityWare offers a middleware infrastructure where ser-
vices and resources provided by Cloud Computing and Fog
Computing can be added to help in solving the diverse issues
of smart city applications.

V. SMARTCITYWARE MULTI-AGENT
RUNTIME ENVIRONMENT
The main function of SmartCityWare multi-agent runtime
environment is to manage the Smart city’s IoT, fogs and
cloud distributed services. It provides a distributed run-
time environment to securely execute these services as
shown in Figure 3 earlier. This runtime environment is based
on our earlier implementation of a multi-agent middle-
ware infrastructure environment developed for heterogeneous
systems [34], [35]. We customized that middleware to sup-
port the SOC model of SmartCityWare. This SmartCityWare
multi-agent runtime environment is a pure Java infrastructure
based on a distributed memory model. This makes it portable,
secure, and capable of handling different heterogonous envi-
ronments that consist of heterogeneous fogs, clouds, and
IoT devices. The agents are deployed in the participating
fogs and cloud machines to support SmartCityWare services

runtime requirements. The infrastructure has various compo-
nents that collectively provide the runtime support for both
the core and environmental services of SmartCityWare.

A. AGENTS
Software agents’ technology has been used in many systems
to enhance the performance and quality of their services [47].
Our middleware infrastructure utilizes software agents to
provide flexible and expandable middleware services for
high-performance distributed service-oriented environments.
The main functions of the agents are to deploy, schedule,
and support the execution of the service codes in different
fogs, in addition to managing, controlling, monitoring, and
scheduling the available resources on a single fog or on a
set of related distributed heterogeneous fogs. When a smart
city application is executed, an agent performs the following
tasks:

1. Examine available fog resources and schedule the ser-
vices for execution.

2. Convert scheduled user services into threads, then
remotely upload and execute them directly from the
main memories on the remote fog machines.

3. Monitor and control resources and provide monitoring
and control functions to the user.

For high throughput, the agents are designed to be multi-
threaded, where each thread serves a client’s service request.
Once user threads are deployed, they directly communicate
with one another to perform their distributed tasks, thus free-
ing the agents and reducing the overhead on the user pro-
grams. Agents’ communication mechanisms are employed
using sockets and each agent consists of several components
that implement different functions:

1. The Request Manager handles user job requests such as
deploying services’ classes, starting/stopping a service,
and checking agents/services/threads status. Requests
come from client services or from agents of other
fogs or clouds.

2. The Resource Manager provides methods to manage,
schedule, and maintain the resources of the machine
where the agent resides. It keeps records of executing
threads, machine and communication resources’ uti-
lization, and performance information. In addition, it is
responsible for reclaiming system resources after each
service’s completion or termination.

3. The Security Manager provides security measures for
the system (see next subsection for details).

4. The Service Class Loader remotely loads user service
classes on the remote machines preparing for execu-
tion.

5. The Scheduler selects the fogs/cloud machines to exe-
cute a user service based on the its requirements.

B. MULTIUSER AND SECURITY ISSUES
The multi-agent middleware infrastructure allows mul-
tiple users to execute multiple services simultaneously.

VOLUME 5, 2017 17583



N. Mohamed et al.: SmartCityWare: A SOM for Cloud and Fog-Enabled Smart City Services

To properly manage these services, each service has mul-
tiple levels of identification, starting with a unique service
ID assigned by the system. The user ID and the program
name further distinguish different services. Within each ser-
vice, thread IDs are used to identify the remote threads of
the service. Executing user threads on remote fog machines
exposes these fogs to many ‘‘alien’’ threats, raising security
and integrity worries. Therefore, these machines must be
protected to ensure safe execution. Java’s default security
manager offers some security mechanisms of protection by
checking executions against certain defined security policies
before execution. However, the security manager in Java has
some limitations, thus many features were updated for our
middleware infrastructure. More specifically, two modes of
operation are used to offer a secure and reliable environment:

1. The Agent Mode, in which no limitations are enforced.
A thread running in this mode has full access and
control of all the operations, services, and resources in
the corresponding fog.

2. The User Mode, in which limitations are enforced to
limit users’ access to the fog operations, services, and
resources. Some operations, such as removing files,
initiating a process, using system calls, and changing
system properties are inactive in this mode.

With the security modes in place, the user services have
full access to operations and resources on their local machines
(where the user job was initiated), but limited and controlled
access to all remote machines’ resources (since they are run-
ning in user mode). Nevertheless, this policy can be adapted
to offer other levels of access control, when needed, on the
available fog machines. For example, a user can be given to
access to certain fogs while he/she is disabled on other fogs.

VI. APPLICATION EXAMPLES
SmartCityWare can be utilized for building and operating
smart city applications. Here we present two potential and
relevant smart city applications for the SmartCityWare: an
intelligent traffic light control system; and smart buildings
collaborative data analytics.

A. INTELLIGENT TRAFFIC LIGHT CONTROL SYSTEM
Intelligent traffic light controls can be facilitated by
SmartCityWare. This implies that the traffic light controls
will feature monitoring devices at numerous locations to
accurately capture and model traffic patterns and utilize this
information to adjust traffic lights to optimize flow. This type
of application can, furthermore, utilize global positioning,
vehicle-to-vehicle and vehicle-to-infrastructure communica-
tion systems to enhance the granularity of data collection.
For example, individual vehicles can be observed from vari-
ous perspectives (road sensors, cameras, on vehicle sensors,
neighboring vehicles, etc.) to create a more accurate models.
This enhanced granularity of data can be utilized to achieve
global urban traffic control optimizations. We expect this
application to yield shorter traffic delays, higher through-
put, shorter vehicles travel times, higher vehicles average
velocity, and improved prioritization of emergency vehicles’

FIGURE 4. SmartCityWare application for intelligent traffic light control
systems.

movements in urban areas. Typical algorithms that can be
utilized to enhance urban traffic control optimization are
learning and adaptation algorithms. Projects that exemplify
this are discussed in [23], [24], and [25].

SmartCityWare can support the development and opera-
tions of intelligent traffic light control systems. All involved
devices within the reaching area of the traffic light, such as
the vehicles, road sensors, and communication devices, are
considered as services that observe the status of the traffic
in that area. These processes and elements are illustrated in
high-level in Figure 4. In each traffic light, a fog can be
used to perform various services, as well as provide local
optimization. The information gathered through the relevant
devices will be utilized by the fog to make informed opti-
mizing decisions about specific traffic lights. A collection
of services on a cloud can also monitor the global traffic
status within the smart city by observing the status of the
fogs operations and local conditions. This information will
be utilized by the cloud services to provide global optimiza-
tions for decreasing traffic delays, enhancing vehicles’ flow,
and prioritizing emergency traffic on a larger scale, covering
urban locations more thoroughly. The status of the traffic
in a smart city can be gathered through these services in
regular periods. This status can then be used to analyze,
assess and enhance the traffic, as well as configure the fog
services correspondingly. Furthermore, cloud services can
facilitate synchronization mechanisms among multiple fogs
to organize multiple traffic lights available within a short
distance of each other or positioned at a significant street
in a smart city. With the change in traffic conditions, all
fogs will fine-tune their operations using the locally collected
information along with the global view delivered by the cloud
services.

B. SMART BUILDINGS DATA ANALYTICS
Another potential application of SmartCityWare is enabling
collaborative data analytics for optimizing smart buildings

17584 VOLUME 5, 2017



N. Mohamed et al.: SmartCityWare: A SOM for Cloud and Fog-Enabled Smart City Services

energy performance. As it has been stated repeatedly, build-
ings in urban areas account for around 40% of the overall
energy consumption [45]. Thus, their energy performance
optimization represents a significant opportunity to reduce
the overall energy consumption. A large part of commercial
buildings is run by Building Management Systems (BMS),
and the utilization of Information and Communication Tech-
nologies (ICT) enables for utilization of sophisticated algo-
rithms and methods to enhance buildings’ performance.
Furthermore, smart buildings encompass many sensing and
monitoring devices, as well as various types of actuators. As it
has been demonstrated in [46], that collaborative data ana-
lytics of smart buildings can positively impact the accuracy
and quality of results, decisions and actions, as compared to
isolated buildings data analytics, in which cases it would need
long times of data collection before their data becomes useful.
SmartCityWare can be utilized to enhance the collaborative
data analytics among large numbers of smart buildings.

FIGURE 5. SmartCityWare application for collaborative data analytics for
smart buildings.

The availability and quality of security services would be
highly relevant for participating buildings’ owners, as we
are talking about commonly confidential data. Therefore,
SmartCityWare will be responsible for providing adequate
mechanisms for anonymizing and protecting data. It will also
provide mechanisms to transfer data to the cloud, as well as
machine learning algorithms for development of models. The
cloud will be providing these learning algorithms and it will
perform global optimization, also taking into consideration
information from the smart grid power generation. Further-
more, SmartCityWare will offer mechanisms for transferring
decisions and recommendations to smart buildings, which
can then act upon them to enhance their performances. These
processes and main participants are illustrated in Figure 5.
Here, as shown in the figure, a fog can be used for each build-
ing to execute many recommendations and to provide local
optimization. SmartCityWare will enable development of
much more accurate models, as yielded by the collaborative
data analytics. These models can serve different purposes,
such as: timely and accurate fault detection and diagnosis

(cloud services), generation of (nearly) optimal preventive
maintenance schedules (fog services), optimization of match-
ing of demand and response (cloud services), generation of
optimal set points for each building (fog services), etc.

Using SmartCityWare to enable utilizing cloud computing
for collaborative data analytics for smart building can pro-
vide faster mechanisms to discover faults. As shown in [46],
energy savings can be achieved with connecting two or more
smart buildings to the cloud. The savings can be increased by
connecting more buildings as faults can be discovered faster
and energy losses will be discovered and avoided earlier.
Although, some overhead and extra cost will be involved in
this connection, energy savings from experiences collected
from multiple buildings can significantly exceed the extra
costs specially with multiple buildings. More analysis and
information on this approach can be found in [46].

VII. IMPLEMENTATION AND EXPERIMENTS
A SmartCityWare prototype was implemented including the
multi-agent runtime environment discussed in Section V.
In addition, most of the core services of SmartCityWare
mentioned in Section IV were implemented. These include
the broker services, invocation services, and location-based
services. Two types of broker services were implemented:
the global broker that will be deployed on the cloud and
the local brokers that will be deployed on all fogs. A dis-
tributed process to update the global broker, with new infor-
mation from the local brokers, is executed periodically every
30 seconds. This update may include adding a new service,
removing a service, or changing the location of a service.
A mechanism is also implemented to allow a local broker
to forward a service lookup request to the global broker if
it does not have the requested service. Both local and remote
service invocations were also implemented and added to the
prototype implementation.

For the IoT side, we used the Arduino board [36] which
is open source hardware for embedded systems. For this
prototype implementation, the Arduino was used as the
IoT payload subsystem that is the onboard device request-
ing services. Some sensors were connected to the Arduino
such as DHT11 sensor [37] for temperature and humidity
measurements. Furthermore, some LEDs and a buzz were
installed to represent actuators. In addition, we installed an
Adafruit CC3000 Wi-Fi board [38] to connect the Arduino
to a local area network that has a fog. The Arduino code
was developed using the Arduino IDE [39] with the Adafruit
CC3000 library [40]. Each IoT service was implemented with
a RESTful API.

At the fog side, there is a service that represents each sensor
or actuator attached to the Arduino. The main function of
these services is to map and bridge a call from the SOAP
APIs to RESTful APIs. All sensor and actuator services are
registered with the local broker. In addition, the global broker
is periodically updated with these services.

For the experiments, we used three computers; one rep-
resents the cloud and two represent two fogs. In addition,

VOLUME 5, 2017 17585



N. Mohamed et al.: SmartCityWare: A SOM for Cloud and Fog-Enabled Smart City Services

we used WAN emulators among the machines to introduce
the effects of using long distances and/or the Internet to
connect them. Experiments were conducted with different
configurations:

• LSC: a local IoT service call within the corresponding
fog.

• RSCCF: a remote IoT service call from the cloud.
• RSCFF: a remote IoT service call to another fog where
both fogs are connected using a WAN and not involving
the cloud.

• RSCFCF: a remote IoT service call to another fog
through the cloud.

The experiment was repeated for two types of services. The
first service is to get the current temperature (CurTemp) while
the second is to turn on the LED (LEDon). The average results
of 10 runs of multiple service calls are shown in Figure 6.
These recoded times for these calls do not include the service
lookup times. The response time for a service call from fog
to another fog and from cloud to fog is similar as the service
call that is directly done between the client fog and the server
fog without involving the cloud.

FIGURE 6. IoT device service calls response times.

The average service lookup time for local services (Local),
remote services between a fog and the cloud or between a
fog and another fog where they are connected by a WAN
(Remote-direct), and remote services between a fog and
another fog through the cloud (Remote-cloud) as there is
no direct network between both fogs are shown in Figure 7.
As shown, there is a big difference between local and remote
service lookup times. The local services can look for and
utilize the local fog services and local IoT device services
faster. This enables having low latency services supported
by the available fogs for IoT applications. At the same time,
local services can utilize services at the cloud or at other fogs
including their IoT device services. Any cloud service can
also utilize any services available at any fog.

VIII. RELATED WORK
Several middleware platforms were proposed and developed
to solve different challenges in smart cities. Some examples

FIGURE 7. Service lookup times.

of these middleware platforms are Civitas [26], SOFIA [8],
VITAL [27], SmartUM [28], SMArc [29], GAMBAS [30],
and CityHub [31]. One of the main differences between
SmartCityWare and other proposed middleware platforms is
that SmartCityWare is a completely service-oriented middle-
ware that utilizes both emerging CoT and Fog Computing
to provide different services for smart cities. The represen-
tation of all components and tools as services allow for a
smooth integration of services using a common integration
and deployment mechanism. An advantage of using SOM is
allowing the middleware to be open for unlimited extensions
including utilizing services provided by other systems as well
as integrating and utilizing future developed technologies as
part of the middleware.

Different engineering issues such as developing generic
computational models for smart city platforms and the dif-
ficulty of developing a common platform for smart cities
were discussed in [32] and [33]. Our work in this paper
utilizes the flexibility and extensibility of the service-oriented
architecture to add the needed flexibility and extensibility
to the SmartCityWare middleware platform. As a result,
SmartCityWare can be built using current available technolo-
gies, yet it can evolve over time to include more services and
utilize state-of-the-art algorithms, tools and models as they
are developed.

IX. CONCLUSION
Smart city applications provide numerous enhancements to
the smart city features and capabilities leading to enhanced
operations, optimized resources utilization and ultimately a
better quality of life for the residents. These applications
often require using multiple ICT components and the inte-
gration of various systems and services. IoT, Fog and Cloud
computing can be integrated to support these applications,
yet this imposes multiple challenges on the development
and operations of these applications. Middleware support is
essential for such applications tomeet the challenges imposed
such as heterogeneity, mobility, and real-time support. In this

17586 VOLUME 5, 2017



N. Mohamed et al.: SmartCityWare: A SOM for Cloud and Fog-Enabled Smart City Services

paper, we outlined the functions and features needed in a
middleware infrastructure to support smart city applications.
Based on these functions, a service-oriented middleware that
integrates and utilizes the cloud of things (CoT) and fog
computing and provides a set of services to support smart
city applications was proposed. This middleware is named
SmartCityWare, where all system resources are viewed as a
set of services to be used to develop smart city applications.
One of the main advantages of this approach is the flexibility
of extending the middleware itself to include new and more
advanced services to support smart city applications as they
develop. In addition, it provides the flexibility to add more
devices, components, and services as the city grows or more
services are needed. In addition, the proposed middleware
can be easily extended to utilize emerging technologies, other
than Cloud of Things and Fog Computing, for supporting
smart city applications in the future. In addition, we dis-
cussed the design and architecture of SmartCityWare and its
runtime environment. We also offered some implementation
details and experimental results showing the validity of the
approach. In the future, we plan to enhance the implemen-
tation of SmartCityWare, include more features and services
common to many smart city applications and demonstrate its
features through actual implementations of specific smart city
applications.

REFERENCES
[1] P. Parwekar, ‘‘From Internet of Things towards cloud of things,’’ in

Proc. 2nd Int. Conf. Comput. Commun. Technol. (ICCCT), Sep. 2011,
pp. 329–333.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, ‘‘Fog computing and its
role in the Internet of Things,’’ in Proc. 1st Ed. MCC Workshop Mobile
Cloud Comput., 2012, pp. 13–16.

[3] T. Clohessy, T. Acton, and L. Morgan, ‘‘Smart city as a service (SCaaS):
A future roadmap for e-government smart city cloud computing initia-
tives,’’ in Proc. IEEE/ACM 7th Int. Conf. Utility Cloud Comput., 2014,
pp. 836–841.

[4] S. Yamamoto, S. Matsumoto, and M. Nakamura, ‘‘Using cloud technolo-
gies for large-scale house data in smart city,’’ in Proc. IEEE 4th Int. Conf.
Cloud Comput. Technol. Sci. (CloudCom), Dec. 2012, pp. 141–148.

[5] Z. Khan and S. L. Kiani, ‘‘A cloud-based architecture for citizen services
in smart cities,’’ in Proc. IEEE/ACM 5th Int. Conf. Utility Cloud Comput.,
2012, pp. 315–320.

[6] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and Q. Yang, ‘‘A hierar-
chical distributed fog computing architecture for big data analysis in smart
cities,’’ in Proc. ASE BigData SocialInformat., 2015, pp. 1–28.

[7] A. Giordano, G. Spezzano, and A. Vinci, ‘‘Smart agents and fog comput-
ing for smart city applications,’’ in Proc. Int. Conf. Smart Cities, 2016,
pp. 137–146.

[8] L. Filipponi, A. Vitaletti, G. Landi, V. Memeo, G. Laura, and P. Pucci,
‘‘Smart city: An event driven architecture for monitoring public spaces
with heterogeneous sensors,’’ in Proc. 4th Int. Conf. Sensor Technol.
Appl. (SENSORCOMM), Jul. 2010, pp. 281–286.

[9] T. Watteyne and K. S. J. Pister, ‘‘Smarter cities through standards-based
wireless sensor networks,’’ IBM J. Res. Develop., vol. 55, nos. 1–2,
pp. 7:1–7:10, Jan./Mar. 2011.

[10] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, ‘‘Internet of
Things for smart cities,’’ IEEE Internet Things J., vol. 1, no. 1, pp. 22–32,
Feb. 2014.

[11] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, ‘‘An information frame-
work for creating a smart city through Internet of Things,’’ IEEE Internet
Things J., vol. 1, no. 2, pp. 112–121, Apr. 2014.

[12] L. Gurgen, O. Gunalp, Y. Benazzouz, andM. Gallissot, ‘‘Self-aware cyber-
physical systems and applications in smart buildings and cities,’’ in Proc.
Conf. Design, Autom. Test Eur., 2013, pp. 1149–1154.

[13] G. Ermacora, S. Rosa, and B. Bona, ‘‘Sliding autonomy in cloud robotics
services for smart city applications,’’ in Proc. 10th Annu. ACM/IEEE Int.
Conf. Hum.-Robot Interact., 2015, pp. 155–156.

[14] F. Mohammed, A. Idries, N. Mohamed, J. Al-Jaroodi, and I. Jawhar,
‘‘UAVs for smart cities: Opportunities and challenges,’’ in Proc. Int. Conf.
Unmanned Aircraft Syst. (ICUAS), 2014, pp. 267–273.

[15] F. Mohammed, A. Idries, N. Mohamed, J. Al-Jaroodi, and I. Jawhar,
‘‘Opportunities and challenges of using UAVs for Dubai smart city,’’ in
Proc. 1st IEEE Commun. Int. Workshop Architectures Technol. Smart
Cities (SmartCity), Mar./Apr. 2014, pp. 1–4.

[16] R. Kitchin, ‘‘The real-time city? Big data and smart urbanism,’’ GeoJour-
nal, vol. 79, no. 1, pp. 1–14, 2014.

[17] E. Al Nuaimi, H. Al Neyadi, N. Mohamed, and J. Al-Jaroodi, ‘‘Applica-
tions of big data to smart cities,’’ J. Internet Services Appl., vol. 6, no. 1,
p. 25, 2015.

[18] M. Aazam and E.-N. Huh, ‘‘Fog computing and smart gateway based
communication for cloud of things,’’ in Proc. Int. Conf. Future Internet
Things Cloud (FiCloud), Aug. 2014, pp. 464–470.

[19] S. Dirks, C. Gurdgiev, and M. Keeling, ‘‘Smarter cities for smarter growth:
How cities can optimize their systems for the talent-based economy,’’
IBM Inst. Business Value, Somers, NY, USA, Tech. Rep., 2010.

[20] T. Bhattasali, R. Chaki, andN. Chaki, ‘‘Secure and trusted cloud of things,’’
in Proc. NDICON, Dec. 2013, pp. 1–6.

[21] J. Al-Jaroodi and N. Mohamed, ‘‘Middleware is STILL everywhere!!!’’
Concurrency Comput., Pract. Exper., vol. 24, no. 16, pp. 1919–1926,
Nov. 2012.

[22] J. Al-Jaroodi and N. Mohamed, ‘‘Service-oriented middleware: A survey,’’
J. Netw. Comput. Appl., vol. 35, no. 1, pp. 211–220, Jan. 2012.

[23] A. Salkham, R. Cunningham, A. Garg, and V. Cahill, ‘‘A collaborative
reinforcement learning approach to urban traffic control optimization,’’ in
Proc. IEEE/WIC/ACM Int. Conf. Web Intell. Intell. Agent Technol., vol. 2.
Dec. 2008, pp. 560–566.

[24] I. Arel, C. Liu, T. Urbanik, and A. G. Kohls, ‘‘Reinforcement learning-
based multi-agent system for network traffic signal control,’’ IET Intell.
Transp. Syst., vol. 4, no. 2, pp. 128–135, 2010.

[25] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, ‘‘Multiagent rein-
forcement learning for integrated network of adaptive traffic signal con-
trollers (MARLIN-ATSC): Methodology and large-scale application on
downtown toronto,’’ IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3,
pp. 1140–1150, Sep. 2013.

[26] F. J. Villanueva, M. J. Santofimia, D. Villa, J. Barba, and J. C. López,
‘‘Civitas: The smart city middleware, from sensors to big data,’’ in Proc.
7th Int. Conf. Innov. Mobile Internet Services Ubiquitous Comput. (IMIS),
Jul. 2013, pp. 445–450.

[27] R. Petrolo, V. Loscri, and N. Mitton, ‘‘Towards a smart city based on cloud
of things, a survey on the smart city vision and paradigms,’’ Trans. Emerg.
Telecommun. Technol., vol. 28, no. 1, pp. 1–12, 2015.

[28] H.-S. Jung, C.-S. Jeong, Y.-W. Lee, and P.-D. Hong, ‘‘An intelligent
ubiquitous middleware for U-city: SmartUM,’’ J. Inf. Sci. Eng., vol. 25,
no. 2, pp. 375–388, 2009.

[29] J. Rodríguez-Molina, J.-F. Martínez, P. Castillejo, and R. de Diego,
‘‘SMArc: A proposal for a smart, semantic middleware architecture
focused on smart city energy management,’’ Int. J. Distrib. Sensor Netw.,
vol. 9, no. 12, p. 560418, 2013.

[30] W. Apolinarski, U. Iqbal, and J. X. Parreira, ‘‘The GAMBAS middleware
and SDK for smart city applications,’’ in Proc. IEEE Int. Conf.
Pervasive Comput. Commun. Workshops (PERCOM Workshops),
Mar. 2014, pp. 117–122.

[31] R. Lea and M. Blackstock, ‘‘City Hub: A cloud-based IoT platform
for smart cities,’’ in Proc. IEEE 6th Int. Conf. Cloud Comput. Technol.
Sci. (CloudCom), Dec. 2014, pp. 799–804.

[32] S. Pradhan, A. Dubey, S. Neema, and A. Gokhale, ‘‘Towards a generic
computation model for smart city platforms,’’ in Proc. 1st Int. Workshop
Sci. Smart City Oper. Platforms Eng. (SCOPE), Apr. 2016, pp. 1–6.

[33] M. Lehofer et al., ‘‘Platforms for smart cities-connecting humans, infras-
tructure and industrial IT,’’ in Proc. 1st Int. Workshop Sci. Smart City Oper.
Platforms Eng. (SCOPE), Apr. 2016, pp. 1–6.

[34] J. Al-Jaroodi, N. Mohamed, H. Jiang, and D. Swanson, ‘‘Middleware
infrastructure for parallel and distributed programming models in hetero-
geneous systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 14, no. 11,
pp. 1100–1111, Nov. 2003.

[35] J. Al-Jaroodi, N. Mohamed, H. Jiang, and D. Swanson, ‘‘An agent-based
infrastructure for parallel java on heterogeneous clusters,’’ in Proc. 4th
IEEE Int. Conf. Cluster Comput. (CLUSTER), Sep. 2002, pp. 19–27.

VOLUME 5, 2017 17587



N. Mohamed et al.: SmartCityWare: A SOM for Cloud and Fog-Enabled Smart City Services

[36] (Mar. 17, 2017). Arduino. [Online]. Available: https://www.arduino.cc/
[37] (Mar. 17, 2017). DHT Sensor Library. [Online]. Available: https://

github.com/adafruit/DHT-sensor-library
[38] (Mar. 17, 2017). Adafruit CC3000 Wi-Fi Board. [Online]. Available:

https://www.adafruit.com/products/1469
[39] (Mar. 17, 2017). Arduino IDE. [Online]. Available: http://

arduino.cc/en/main/software
[40] (Mar. 17, 2017). Adafruit CC3000 Library. [Online]. Available:

https://github.com/adafruit/Adafruit_CC3000_Library
[41] N. Mohamed, S. Lazarova-Molnar, and J. Al-Jaroodi, ‘‘Cloud of things:

Optimizing smart city services,’’ in Proc. 7th Int. Conf. Modeling,
Simulation Appl. Optim., Apr. 2017, pp. 1–5.

[42] P. Alho and J. Mattila, ‘‘Service-oriented approach to fault tolerance in
CPSs,’’ J. Syst. Softw., vol. 105, pp. 1–17, Jul. 2015.

[43] D. Kreutz, F. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, ‘‘Software-defined networking: A comprehensive survey,’’
Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[44] J. Medved, R. Varga, A. Tkacik, and K. Gray, ‘‘OpenDaylight: Towards a
model-driven SDN controller architecture,’’ in Proc. IEEE 15th Int. Symp.
World Wireless, Mobile Multimedia Netw. (WoWMoM), Jun. 2014, pp. 1–6.

[45] C. A. Balaras, A. G. Gaglia, E. Georgopoulou, S. Mirasgedis, Y. Sarafidis,
and D. P. Lalas, ‘‘European residential buildings and empirical assessment
of the Hellenic building stock, energy consumption, emissions and poten-
tial energy savings,’’Building Environ., vol. 42, pp. 1298–1314,Mar. 2007.

[46] S. Lazarova-Molnar and N. Mohamed, ‘‘Towards collaborative data ana-
lytics for smart buildings,’’ in Proc. Int. Conf. Inf. Sci. Appl., 2017,
pp. 459–466.

[47] F. D. Ahmed, M. A. Majid, M. Sharifuddin, and A. N. Jaber, ‘‘Software
agent and cloud computing: A brief review,’’ Int. J. Softw. Eng. Comput.
Syst., vol. 2, no. 1, pp. 108–113, 2016.

NADER MOHAMED received the Ph.D. degree
in computer science from the University of
Nebraska-Lincoln, Nebraska, USA, in 2004. From
2004 to 2006, he was an Assistant Professor of
computer engineering with the Stevens Institute
of Technology, NJ, USA. He taught graduate
and undergraduate courses in networks, enterprise
computing, software, data management, computer
systems, and digital systems. He was with the
College of Information Technology, United Arab

Emirates University, Al-Ain, UAE, as an Assistant Professor from 2006
to 2009, and an Associate Professor from 2009 to 2015. He is currently
an independent Computer and Information Research Scientist, Pittsburgh,
Pennsylvania, USA. In addition, he has eight years of industry experience
in the information technology field. His current research interest focuses
on middleware, cloud computing, cyber-physical systems, unmanned aerial
vehicles, and cyber security. He served as a Guest Editor of several interna-
tional journal special issues in the area of middleware, such as the Elsevier
Journal of Network and Computer Applications and the Wiley Journal of
Concurrency and Computation: Practice and Experience.

JAMEELA AL-JAROODI received the B.Sc.
degree in computer science from the University
of Bahrain, the M.Sc. degree in computer sci-
ence fromWestern Michigan University, the Ph.D.
degree in computer science from the University
of Nebraska-Lincoln, and the M.Ed. degree in
higher education management from the University
of Pittsburgh. She was a Research Assistant Pro-
fessor with the Stevens Institute of Technology,
Hoboken, NJ, USA, then as an Assistant Profes-

sor with United Arab Emirates University, UAE. She was an independent
Researcher in the computer and information technology field. She is cur-
rently an Associate Professor and a Coordinator of the software engineering
concentration with the Department of Engineering, Robert Morris Univer-
sity, Pittsburgh, PA, USA. She is involved in various research areas, including
middleware, software engineering, and distributed and cloud computing,
in addition to UAVs and wireless sensor networks.

IMAD JAWHAR (M’86) received the B.S. and
M.S. degrees in electrical engineering from the
University of North Carolina at Charlotte, USA,
and the M.S. degree in computer science and
the Ph.D. degree in computer engineering from
Florida Atlantic University, USA. He served as
a faculty member for several years with Florida
Atlantic University. He was with Motorola as an
Engineering Task Leader involved in the design
and development of IBM PC-based software used

to program the world’s leading portable radios, and cutting-edge commu-
nication products and systems, providing maximum flexibility and cus-
tomization. He was also the President and Owner of Atlantic Computer
Training and Consulting, which is a company based on South Florida (USA)
that trained thousands of people, and conducted numerous classes in the
latest computer system applications. Its customers included small and large
corporations, such as GE, Federal Express, and International Paper. He is
currently a Professor with the College of Information Technology, United
Arab Emirates University. He has authored numerous papers in international
journals, conference proceedings, and book chapters. His current research
focuses on the areas of wireless networks and mobile computing, sensor
networks, routing protocols, and distributed and multimedia systems. He is
a member of the ACM and ACS organizations. He served on numerous
international conference committees and reviewed publications for many
international journals, conferences, and other research organizations, such
as the American National Science Foundation.

SANJA LAZAROVA-MOLNAR received the
Ph.D. degree in computer science from Uni-
versity Otto-von-Guericke Magdeburg, Germany.
She was a member of the Simulation Group,
Institute of Simulation and Graphics, University
Otto-von-Guericke Magdeburg. She is currently
an Associate Professor with the Center for Energy
Informatics, Faculty of Engineering, University of
Southern Denmark. Her current research interests
include modeling and simulation of stochastic

systems, reliability modeling, decision support for decentralized energy
systems, energy informatics, and data-based approaches to fault detection
and diagnosis.

SARA MAHMOUD received the B.Sc. degree
(Hons.) in electrical and electronic engineer-
ing from the University of Khartoum, Sudan,
in 2011, and the master’s degree in soft-
ware engineering from United Arab Emi-
rates University, UAE, in 2015. She is cur-
rently a Software Engineer, a Researcher, Al
Ain, UAE, and a Young Entrepreneur from
UAE. She is also the Founder of Lino-
vate, an online community to link researchers

with their compliments from the industry to collaborate in innova-
tive projects. She has authored a number of papers in the field of
UAV-Cloud computing. She received a number of awards for her achieve-
ments in information technology innovations.

17588 VOLUME 5, 2017


