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ABSTRACT Most off-the-shelf subspace learning methods directly calculate the statistical characteristics
of the original input images, while ignoring different contributions of different image components. In fact,
to extract efficient features for image analysis, the noise or trivial structure in images should have little
contribution and the intrinsic structure should be uncovered. Motivated by this observation, we propose
a new subspace learning method, namely, discriminant manifold learning via sparse coding (DML_SC)
for robust feature extraction. Specifically, we first decompose each input image into several compo-
nents via dictionary learning, and then regroup the components into a more important part (MIP) and
a less important part (LIP). The MIP can be considered as the clean portion of the image residing on
a low-dimensional submanifold, while the LIP as noise or trivial structure within the image. Finally,
the MIP and LIP are incorporated into manifold learning to learn a desired discriminative subspace. The
proposed method is general for both cases with and without class labels, hence generating supervised
DML_SC (SDML_SC) and unsupervised DML_SC (UDML_SC). Experimental results on four benchmark
data sets demonstrate the efficacy of the proposed DML_SCs on both image recognition and clustering
tasks.

INDEX TERMS Subspace learning, manifold learning, dictionary learning, feature extraction, image
decomposition.

I. INTRODUCTION
In the areas of image processing and pattern recognition,
the input image is always of quite high dimensionality,
which makes it difficult to apply statistical techniques to
conduct image analysis. Hence, it is of great importance to
seek an efficient subspace representation (i.e., feature) with
lower-dimensionality to represent the original image data.
To this end, subspace learning methods, which lower down
the dimensionality of the input images, have attracted con-
siderable attentions in recent years [1]–[5].

One plausible assumption is that naturally occurring high-
dimensional data probably lie on or close to a lower dimen-
sional submanifold of the ambient space [6]. Benefiting from

above assumption, manifold learning has been studied as one
type of the most successful subspace learning techniques
in past decade [7]–[14]. Typical manifold learning methods
include locality preserving projection (LPP) [7], marginal
fisher analysis (MFA) [10], locality sensitive discrim-
inant analysis (LSDA) [11] and neighborhood sensi-
tive preserving embedding (NSPE) [14] etc. Furthermore,
to reserve useful structural information embedded in the
original images, a series of tensor based manifold learn-
ing methods [15]–[18], e.g., two dimensional locality
preserving projection (2DLPP) [15], tensor subspace analy-
sis (TSA) [16] and two dimensional neighborhood preserving
projection (2DNPP) [17], have been developed to work on
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natural high-order of the input image data. Overall speak-
ing, these manifold learning methods can achieve good
performances for image recognition or clustering task. How-
ever, almost all above manifold learning methods directly
compute the statistical characteristics of the original input
images without eliminating the noise or trivial structure in
advance, which would hinder the discovery of the intrin-
sic structure of images. Therefore, it is significant to
find an efficient technique to conduct image decompo-
sition and consider the characteristics of different image
components.

Previous study has found that natural images can be
represented by a small number of bases chosen from an
over-complete code set [19], which provides the theoreti-
cal feasibility for image decomposition. Recently, with the
rapid progress of norm minimization techniques [20]–[22],
a variety of sparse coding (SC) and dictionary learn-
ing (DL) methods [23]–[27], e.g., sparse representation clas-
sifier (SRC) [23], Laplacian sparse coding (LapSC) [24],
metaface learning (MFL) [25] and Fisher discrimination
dictionary learning (FDDL) [26] have been developed to
achieve sparse representations of original images under some
learnt or pre-given bases. Furthermore, Zhang et al. [28]
introduced dictionary learning techniques to decompose
each image into several image components, and employed
Fisher criterion to regroup these components into new
representations for subspace learning. Tang et al. [29] pre-
sented a new face recognition framework by utilizing low-
rank matrix recovery [30] to decompose each image into
a low-rank part and a sparse error part, then combining
them to encode a query face image with sparsity constraint
for recognition. Although the ideas in [28] and [29] are
encouraging and inspiring, the underlying structures of the
regrouped representations in [28] and the decomposed parts
in [29] have not been further studied. Besides, the regrouped
representations in [28] cannot provide explicit intuitive
explanations.

To exploit the contributions of different image components
and meanwhile uncover the intrinsic structure in images,
we propose a new subspace learning method called discrim-
inant manifold learning via sparse coding (DML_SC) for
robust feature extraction. DML_SC is a two-step method,
i.e., 1) dictionary learning and feature regrouping and
2) graph embedding. In the first step, we leverage an effi-
cient dictionary learning algorithm and utilize a regrouping
criterion to decompose each input image into a more impor-
tant part (MIP) and a less important part (LIP). One should
note that the learnt MIP and LIP have explicit meaning.
That is, the MIP can be viewed as the clean portion of the
original image residing on a low-dimensional submanifold,
and the LIP as trivial structure or noise. In the second step,
we embed the MIP and LIP into a spectral graph [10] to
learn a desired discriminative subspace, where the MIP is
preserved while the LIP is suppressed. Also of note, since
the regrouping criterion can be designed in both a super-
vised and an unsupervised way to tackle image recognition

and clustering problems, we denote our DML_SC as super-
vised DML_SC (SDML_SC) and unsupervised DML_SC
(UDML_SC), respectively. The contributions of our work can
be summarized as follows:

• We propose an effective subspace learning method
called DML_SC by integrating image decomposition
and manifold learning into a unified model for robust
feature extraction. In DML_SC model, the noise or triv-
ial structure (i.e., LIP) and the clean portion (i.e., MIP)
of images can be successfully separated, and their differ-
ent contributions are both considered to learn a desired
discriminative subspace.

• We develop two graph embedding algorithms in corre-
spondence with the supervised regrouping and unsuper-
vised regrouping criteria, and implement DML_SC in
both the supervised form (SDML_SC) and unsupervised
form (UDML_SC).

• We evaluate DML_SC on four benchmark image and
face datasets. Experimental results demonstrate that our
method achieves better performances on image recogni-
tion and clustering tasks than classical subspace learning
methods and state-of-the-art sparse coding and dictio-
nary learning methods.

Preliminary results of the method have been published
in [31]. Compared with the conference version, this paper has
made three major extensions. 1) The detailed description of
dictionary learning procedure and the corresponding conver-
gence curve are presented. 2) The parameter sensitivity of the
proposedDML_SC is studied. 3)More extensive experiments
are conducted to evaluate the recognition and clustering per-
formances of the proposed method and compare with other
state-of-the-art methods.

The rest of this paper is organized as follows: In Section 2,
wewill introduce the proposedDML_SC algorithm in details.
The experimental results are presented in Section 3. Finally,
we conclude this paper in Section 4.

II. DISCRIMINANT MANIFOLD LEARNING VIA
SPARSE CODING (DML_SC)
A. MOTIVATION AND FLOWCHART
Given a matrix with N images X = [x1, · · · , xN ] ∈ <M×N ,
each column of the matrix is aM-dimensional sample vector
corresponding to an image. For each image xi, we expect to
decompose it into two different parts, i.e., a more important
part (MIP) xmi and a less important part (LIP) xli . Specifically,
the MIP reserves main features of the images and contains
vital discriminant information. In contrast, the LIP indicates
noise or trivial structure containing interference information.
As a result, the training image set X can also be split into
two parts, i.e., Xm and Xl , and rewritten as X ≈ Xm

+ Xl .
Moreover, we aim to seek a desired discriminative subspace
to enhance the MIP and suppress the LIP, so that the recogni-
tion and clustering performances can be improved. To this
end, we attempt to learn a projection P to project X into
a lower dimensional subspace, where the intrinsic structure
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TABLE 1. The related symbols and the corresponding definitions.

Fig. 1. The flowchart of the supervised DML_SC (SDML_SC). The points
with same color indicate the MIP of images from the same
class.

and energy of Xm on the manifold is preserved while the
energy of Xl is suppressed. In what follows, the DML_SC
is presented by posing it as a two-step scheme: 1) dictionary
learning and feature regrouping and 2) graph embedding. The
flowchart of the supervised DML_SC (SDML_SC) is shown
in Fig. 1.

B. DICTIONARY LEARNING AND FEATURE REGROUPING
The detailed structure of dictionary learning and fea-
ture regrouping process can be stated formally as
follows.

1) DICTIONARY LEARNING
In this phase, the key issue is how to decompose the training
images X into different representation components. Moti-
vated by the success of sparse coding and dictionary learn-
ing in image processing [23], [25], we expect to learn an
adaptive over-complete dictionary 8 to represent X under
sparse coding constraints. Note that, since the dimensionality
of the input image xi is often very high, it is difficult to
directly learn an over-complete dictionary for X. To address
the above issue, Zhang et al. [28] adopted the strategy by
partitioning each image into several overlapped patches and
thus learning a patch-based dictionary. In our work, instead

of following the strategy described in [28], we prefer to
generate Eigenfaces [1] to perform dimensionality reduction
and also learn a sample-based dictionary. The reasons are
twofold:

• First, since the atom number of patch-based dictionary is
far larger than that of sample-based dictionary, learning
a sample-based dictionary can be more beneficial to
computational tractability.

• Second, the primary purpose in dictionary learning
step is to decompose each image into several image
components, while patch-based dictionary learning
tends to find the representation components of each
partitioned patch. Although we can use the partitioned
patches to reconstruct the image, the global structure of
the whole image cannot be well captured. Worse still,
when handling the image that is corrupted or contami-
nated, some patches may be meaningless.

Hence, as stated above, we attempt to learn a k-atom
over-complete sample-based dictionary with normalized
columns, i.e., 8̂ = [̂d1, d̂2, · · · , d̂k ] ∈ <d×k where
d̂Ti d̂i = 1, for the low-dimensional image data, i.e., X̂ =
[̂x1, · · · , x̂N ] ∈ <d×N . According to [1], X̂ is obtained as
follows:

X = �X̂→ �TX = �T�X̂
�T�=I
−−−−→ X̂ = �TX, (6)

where X ∈ <M×N represent the original high-dimensional
image data, � ∈ <M×d (d � M ) indicate Eigenfaces with
orthonormal columns (�T� = I). Therefore, the optimiza-
tion problem is defined as:

J (8̂,3) = argmin
8̂,3

(||X̂− 8̂3||2F + γ ||3||1), (7)

where 3 = [α1, α2, · · · , αN ] ∈ <k×N is the sparse coeffi-
cients matrix of X̂ over dictionary 8̂, and γ is the regulariza-
tion parameter. The related symbols and the corresponding
definitions are listed in Table 1. It is worth noting that,
the optimization problem in Eq. (2) is not jointly convex
to 8̂ and 3, but it is convex to 8̂ or 3 when the other
is fixed. Thus, we prefer to solve Eq. (2) by optimizing
8̂ and 3, respectively. In this paper, we employ metaface
learning (MFL) [25] to work it out. The detailed procedure
is presented in Algorithm 1.

After obtaining 8̂ and 3, the dictionary 8 ∈ <M×k for
the original image data X ∈ <M×N can be estimated by
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Algorithm 1 Metaface Learning to Solve Problem (2)

Input: X̂ = [̂x1, · · · , x̂N ] ∈ <d×N : image data after dimensionality reduction
Output: 8̂ = [̂d1, d̂2, · · · , d̂k ] ∈ <d×k : k-atom dictionary; 3 = [α1, α2, · · · , αN ] ∈ <k×N : sparse coefficient of X̂ over 8̂
1: Initialize 8̂ : each column of 8̂ is initialized as a random unit vector under l2-norm constraint;
2: repeat
3: Fix 8̂ , solve 3 : by fixing 8̂ , problem (2) becomes

J (3) = argmin
3

(||X̂− 8̂3||2F + γ ||3||1), (1)

where ||.||F is the Frobenius norm. The solution of (3) can be easily obtained by fast l1-ls algorithm [20].
4: Fix 3, update 8̂: by fixing 3, problem (2) becomes

J (8̂) = argmin
8̂

||X̂− 8̂3||2F s.t. d̂Ti d̂i = 1, ∀i. (2)

Here, 8̂ is updated column by column. Let 3 = [β1;β2; · · · ;βk ] ∈ <
k×N , where β i ∈ <

1×N is a row vector. When
updating d̂i, we fix all the other d̂j(j 6= i). Thus, (4) is converted to

J (̂di) = argmin
d̂i

||X̂−6j 6=îdjβ j − d̂iβ i||
2
F s.t. d̂Ti d̂i = 1, ∀i. (3)

Let S = X̂−6j 6=îdjβ j, problem (5) can be rewritten as the following lagrange multiplier function:

J (̂di, θ) = argmin
d̂i,θ

||S− d̂iβ i||
2
F − θ (̂d

T
i d̂i − 1). (4)

By calculating the partial derivative of J with respect to d̂i and setting it to 0, we obtain dJ
d̂di
= 0 H⇒ d̂i = SβTi (β iβ

T
i −θ )

−1.

Note that β iβ
T
i − θ is a constant, and d̂i should be a unit vector, so we have the following normalization step:

d̂i = SβTi /||Sβ
T
i ||2. (5)

Repeating the above procedures for different i, i = 1, 2 · · · , k , then we can update all the dictionary basis d̂i, i = 1, 2 · · · , k ,
and hence the whole set 8̂ is updated.

5: until the difference of J (8̂,3) in adjacent iterations is smaller than a predefined threshold, or the maximum number of
iterations is reached

8 ≈ �8̂, which is derived as follows:

X̂ ≈ 8̂3→ �X̂ ≈ �8̂3
X=�X̂
−−−−→ X ≈ (�8̂)3. (8)

Moreover, each column of 8, i.e., di, also satisfies dTi di =
d̂Ti �

T�d̂i = 1. Hence, for each original image {xi}Ni=1,
we have xi ≈ 8αi =

∑k
z=1 dzαi,z, and αi,z is the zth element

of αi. Let xi,z = dzαi,z, then xi ≈
∑k

z=1 xi,z. Thus each xi can
be approximately rewritten as the summation of k parts and
each part is denoted by xi,z.

2) FEATURE REGROUPING
Considering whether the category information of training
images is available or not, we leverage two reasonable cri-
teria, i.e., unsupervised representation regrouping and super-
vised representation regrouping, to group each image into a
MIP and LIP for effective graph embedding.

In the scheme of unsupervised learning, the representa-
tions are regrouped by their variances following the idea
of principal component analysis (PCA) [1]. In general,
if one representation part has a relative larger variance in
image, then this part is more likely to cover the intrinsic
features in image and can be more informative; whereas,
the representation part with smaller variance is more likely to

be noise. Accordingly, the variance of the zth representation
xi,z is defined as:

vz =
N∑
i=1

(xi,z − µz)T (xi,z − µz), (9)

whereµz denotes themean of zth representation of all images,
i.e., µz = 1

N

∑N
i=1 xi,z.

To implement unsupervised representation regrouping,
we expect to put the decomposed representations with larger
vz into the MIP xmi , and the remaining into the LIP xli . To this
end, we first reorder the decomposed k representations of
xi according to their variances vz in a descending order. Then
the first bτ · kc representations, e.g., {xi,1, xi,2, · · · , xi,bτ ·kc},
are regrouped into the MIP xmi , and the remaining representa-
tions, i.e., {xi,bτ ·kc+1, xi,bτ ·kc+2, · · · , xi,k}, are regrouped into
the LIP xli . τ is a scalar (e.g., τ = 0.8) which decides the
truncated threshold to generate the MIP and LIP of original
image. Thus, the MIP xmi and LIP xli can be calculated as
follows:

xmi = xi,1 + xi,2 + · · · + xi,bτ ·kc (10)
xli = xi,bτ ·kc+1 + xi,bτ ·kc+2 + · · · + xi,k . (11)
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For supervised learning, the category information can be
leveraged to measure the discriminant capability of each
representation part. In this scenario, the supervised feature
regrouping criterion is designed to extract more discrimina-
tive features of image by ranking the discriminant capability
of all representation parts. Considering that the maximum
margin criterion (MMC) [32] can be employed to evalu-
ate the discriminant capability of labeled samples, then the
discriminative factor dfz of xi,z is defined as:

dfz =
C∑
c=1

(µcz − µz)
2
−

C∑
c=1

1
N c

∑
xi∈Xc

(xi,z − µcz)
2, (12)

where Xc denotes image set of the cth class, µz is the mean
vector of xi,z, µcz is the mean vector of xi,z belongs to the
cth class, and N c indicates the number of the cth class.
Similarly for unsupervised representation regrouping,

the representations possessing larger dfz are superposed to
construct the MIP xmi and the remaining to form the LIP xli of
each face image xi. Finally, for whole image set, we obtain the
MIP Xm

= [xm1 , · · · , x
m
N ], and the LIP Xl

= [xl1, · · · , x
l
N ].

C. GRAPH EMBEDDING
After representation regrouping, the important issue is how
to utilize the MIP and LIP of the input images to learn a
desired subspace for recognition or clustering. In general,
the MIP Xm plays a more important role than the LIP Xl on
image recognition. However, the contribution of the LIP Xl

should not be ignored, because the LIP is also useful to deter-
mine the projection directions. To summarize, it is desired to
learn a discriminative subspace where the intrinsic structure
and energy of the MIP Xm are both preserved, while the
energy of the LIP Xl is suppressed simultaneously.
Inspired from LPP [7] and LSDA [11] methods, we respec-

tively develop locality preserving graph embedding (LPGE)
and locality discriminant graph embedding (LDGE), to keep
consistency with above unsupervised representation regroup-
ing and supervised representation regrouping. The illustra-
tions of LPGE and LDGE are presented in Fig. 2.

1) LPGE
It is an unsupervised graph embedding, which aims to pre-
serve the geometrical structure as well as the energy of the
MIP, while suppressing the energy of the LIP. Similar to the
strategy in LPP [7], we first construct two graphs Gm and Gl

to depict the geometrical structure of theMIPXm and LIPXl ,
respectively. Accordingly, the affinity weight matrices Wm

andWl are computed in a ‘‘simple-minded" way [8]; namely,
Wm

ij = 1 if xmi and xmj are connected in graph Gm, and
Wm

ij = 0 otherwise. The diagonal matrices Dm, Dl and the
Laplacian matrices Lm, Ll of the MIP Xm and LIP Xl are
also defined by Dm

ii = 6jWm
ij , D

l
ii = 6jWl

ij, L
m
= Dm

−Wm

and Ll = Dl
−Wl .

Suppose the linear projection vector is p, to preserve
the geometrical structure of the MIP, we consider to map the
connected MIP points in graphGm into a subspace, where the

Fig. 2. (a) and (b) are illustrations of locality preserving graph
embedding (LPGE) and locality discriminant graph embedding (LDGE),
respectively. The points with same color belong to the same class.

TABLE 2. The motivations and the corresponding terms in LPGE.

similarity of these points are maintained. Therefore, we need
to minimize the following objective function:∑

i,j

(pT xmi − pT xmj )
2Wm

ij = pTXmLm(Xm)Tp. (13)

Moreover, LPGE also aims to preserve the global vari-
ance (i.e., energy) of the MIP Xm on the manifold, while
suppressing the variance of the LIP Xl . Suppose the MIP
Xm and LIP Xl both have zero means, then the variance of
Xm and Xl can be estimated as follows:∑

i

||pT xmi ||
2Dm

ii = pTXmDm(Xm)Tp (14)∑
i

||pT xli ||
2Dl

ii = pTXlDl(Xl)Tp. (15)

In a nutshell, LPGE seeks for a projection p to minimize
the variance ofXl , while maximizing the variance ofXm, and
at the same time preserving the geometrical structure of Xm

(refer to Table 2). Finally, we obtain the following objective
function:

min
p

pTXmLm(Xm)Tp+ ρpTXlDl(Xl)Tp
(1− ρ)pTXmDm(Xm)Tp

, (16)

where ρ is a balance parameter controlling the variance of
the LIP. The projection vector p that minimizes the objective
function in (16) is given by the minimum eigenvalue solution
to the generalized eigen-problem [10]:

9p = λ(1− ρ)XmDm(Xm)Tp, (17)

where 9 = {XmLm(Xm)T + ρXlDl(Xl)T }. Obviously, when
ρ = 0, LPGE degenerates to LPP.
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2) LDGE
It is a supervised graph embedding, which aims to capture
both the geometrical structure and the hidden discriminant
information of the MIP, while suppressing the energy of
the LIP. Similar to LSDA [11], we first construct two graphs,
i.e., within-class graph Gmw and between-class graph Gmb to
represent the MIP Xm of all training images. Meanwhile,
we also construct a graph Gl to represent the LIP Xl of all
training images. Let l(xmi ) be the class label for xmi of the
MIP. For each xmi , its k nearest neighborhood set N (xmi ) =
{xmi,1, x

m
i,2, · · · , x

m
i,k} are split intoNw(x

m
i ) andNb(x

m
i ).Nw(x

m
i )

contain the neighbors sharing the same class label with xmi ,
whileNb(xmi ) contain the neighbors with different class labels
of xmi .

Let Wm
w and Wm

b be the weight matrices of Gmw and Gmb ,
respectively. Wm

wij = 1 if xmi ∈ Nw(x
m
j ) or xmj ∈ Nw(x

m
i ) and

Wm
b ij = 1 if xmi ∈ Nb(x

m
j ) or xmj ∈ Nb(x

m
i ). Let W

l be the
weight matrix of Gl . Then, the Laplacian matrices Lmw , L

m
b

and Ll are defined by Lmw = Dm
w −Wm

w , L
m
b = Dm

b −Wm
b and

Ll = Dl
−Wl .

Now, we consider to preserve the geometrical structure and
extract discriminant information of the MIP by mapping the
MIP sample points in Gmw and Gmb into a low-dimensional
subspace, where the connected points inGmw (i.e., within-class
points) stay as close as possible while the connected points
in Gmb (i.e., between-class points) stay as distant as possible.
Hence, for the MIP, we have the following two objective
functions:

min
∑
i,j

(pT xmi − pT xmj )
2Wm

wij (18)

max
∑
i,j

(pT xmi − pT xmj )
2Wm

b ij, (19)

with the constraint pTXmDm
w(X

m)Tp = 1. The objective
function in Eq. (18) can be derived as follows:∑

i,j

(pT xmi − pT xmj )
2Wm

wij

=

∑
i,j

pT (xmi − xmj )(x
m
i − xmj )

TpWm
wij

= 2tr{pTXmDm
w(X

m)Tp− pTXmWm
w(X

m)Tp}

= 2tr{pTXm(Dm
w −Wm

w)(X
m)Tp}

= 2tr{pTXmLmw(X
m)Tp}.

In a similar way, the objective function in Eq. (19) can
also be rewritten as 2tr{pTXmLmb (X

m)Tp}. Hence, the min-
imization problem in Eq. (18) and the maximization problem
in Eq. (19) can be converted to maxpTXmWm

w(X
m)Tp and

maxpTXmLmb (X
m)Tp, respectively.

Furthermore, we also aim to minimize the variance of the
LIPXl , which is expressed asmin pTXlDl(Xl)Tp. Intuitively,
the motivations and the corresponding terms of LDGE are
summarized in Table 3. Consequently, the final optimization

TABLE 3. The motivations and the corresponding terms in LDGE.

problem becomes:

max
p

pT {Xm(ηWm
w + βL

m
b )(X

m)T − εXlDl(Xl)T }p

s.t. pTXmDm
w(X

m)Tp = 1, (20)

where η, β, ε are trade-off parameters with η + β+

ε = 1. The optimization problem in Eq. (20) leads to solving
the following generalized eigenvalue problem:

ϒp = λXmDm
w(X

m)Tp, (21)

where ϒ = Xm(ηWm
w + βL

m
b )(X

m)T − εXlDl(Xl)T . When
ε = 0, LDGE reduces to LSDA. Also of note, in the follow-
ing recognition experiments, the optimal hyper-parameters,
i.e., α, β, and ε, are chosen via grid search based cross
validation.

III. EXPERIMENT RESULTS
In this section, several experiments are conducted to show the
efficacy of the proposed method. For simplicity, we denote
the proposed supervised DML_SC as SDML_SC, and
unsupervised DML_SC as UDML_SC. We conduct face
recognition experiments on three benchmark face datasets,
i.e., CMU PIE, Extended YaleB and FERET, to evalu-
ate the classification performance of SDML_SC. Further-
more, we also conduct image clustering experiments on
COIL20 image library and Extended YaleB face database to
test the clustering ability of UDML_SC. All experiments are
conducted on a PC (CPU: Intel Core i7-4790K 4.00GHz,
RAM: 16GB). The data preparation and representation are
described below.

A. DATA PREPARATION AND REPRESENTATION
The CMU PIE dataset [33] consists of 68 subjects with
41,368 face images, and each subject involves 43 differ-
ent illumination conditions, 13 different poses, and 4 dif-
ferent expressions. Following the experimental settings
in [12] and [14], we also selected a subset of 1700 images
of 10 subjects that contain five near frontal poses (C05, C07,
C09, C27, C29) and all the images involve different expres-
sions and illuminations. In the experiment, we randomly
selected 85 images per subject include 850 images in total
for training and the other images for testing.
The Extended YaleB (E-YaleB) dataset [34] consists

of 38 subjects with 2,414 frontal face images under 9 poses
and 64 illumination conditions, which is more challeng-
ing than CMU PIE dataset. In recognition experiment,
we randomly took 32 images of 20 subjects thus in total
640 images as the training set and the remaining face images
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Fig. 3. Some sample images of four benchmark datasets: (a) CMU PIE;
(b) E-YaleB; (c) FERET; (d) COIL20.

(nearly 32 images per subject) as the testing set. All face
images were cropped and normalized to 32× 32 pixels.
The FERET dataset [35] contains 14,126 images from

1199 subjects. Similar to the previous work in [36] and [37],
we selected a subset of 700 face images of 100 subjects who
have the same set of poses from the FERET dataset. For
each subject, there are seven different images whose names
are marked with two character strings: ‘‘ba’’, ‘‘bj’’, ‘‘bk’’,
‘‘be’’, ‘‘bf’’, ‘‘bd’’, and ‘‘bg’’ to denote different facial poses,
illuminations and expressions. Each image in this subset was
manually cropped and resized to 40 × 40 pixels. For recog-
nition experiment, we randomly took 4 images per subject to
form the training set, i.e., 4× 100. The rest 300 images were
taken to form the testing set.

The COIL 20 image library [38] contains gray scale images
of 20 objects viewed from varying angles and each object has
72 images. The COIL20 is one of the most common datasets
to test clustering performance of algorithms. Fig. 3 presents
some sample images in the CMU PIE, E-YaleB, FERET and
COIL20 datasets, respectively.

For recognition experiments, to learn an over-complete
dictionary for SDML_SC, Eigenface [1] was first applied
to reduce the dimensionality of face images to 300. In each
face dataset, in order to prove the convergence of the dic-
tionary learning (DL) procedure in Algorithm 1, we make
a drawing where the objective function J (8̂,3) versus
the iteration number is illustrated. It can be seen from
Fig. 4 that the DL technique in SDML_SC achieves
fast convergence speed over three tested face datasets.
Moreover, to provide an intuition of the MIP and LIP,
we also conduct a face representation experiment using the

supervised representation regrouping criterion to show the
MIP and LIP of a given face image. The MIP and LIP
of given face images on three face datasets using super-
vised representation regrouping criterion (τ = 0.8) are
shown in Fig. 5. We observe that, the dictionary learning
and feature regrouping procedure in the proposed DML_SC
method can successfully separate the noise or trivial
structure (e.g., illumination or shadow) and the relatively
clean portion of the original image. As a result, the learnt
MIP and LIP both have explicit intuitive explanations.

B. FACE RECOGNITION RESULTS
In this subsection, three benchmark face datasets: CMU PIE,
E-YaleB and FERET are adopted to evaluate the classification
performance of the proposed SDML_SC method. For each
dataset, the recognition experiments are repeated 5 times with
different training-testing partitions.

1) COMPARING ALGORITHMS
To demonstrate how the face recognition performance can be
improved by the proposed SDML_SC method, ten popular
subspace learning methods including PCA [1], graph-based
LDA [7], supervised LPP (sLPP) [7], supervised neighbor-
hood preserving embedding (sNPE) [9], sparsity preserving
projection (SPP) [39], LSDA [11], NSPE [14], discriminative
sparsity preserving projections (DSPP) [40] and two ten-
sor based manifold learning methods, i.e., 2DLPP [15] and
2DNPP [17] are used for comparison. Moreover, we also
compare SDML_SCwith recent dictionary learningmethods,
i.e., SRC [23], MFL [25] and the state-of-the-art FDDL [26].

2) PARAMETER SETTING
For PCA and SPP, the only parameter is the subspace dimen-
sion. The model parameters for sLPP, sNPE, LSDA and
NSPE are empirically configured according to [31]. For
DSPP, we set the value of trade-off parameter ρ as 0.0005
to obtain optimal recognition results. The values of regu-
larization parameter λ for SRC and MFL are fixed to 0.01.
For FDDL, the parameters are chosen via cross-validation as
depicted in [26]. Moreover, to conduct a fair comparison with
dictionary learning methods (i.e., SRC, MFL and FDDL),
the above dictionary learning methods and SDML_SC all
generate Eigenfaces to perform DR, the reduced dimension
of each feature is set as 300. The atom numbers of the over-
complete dictionaries for SDML_SC on CMU PIE, E-YaleB
and FERET datasets are set as 680, 500 and 300, respectively.

3) RECOGNITION RESULTS
Table 4 lists the top average recognition rates of SDML_SC
and the comparing subspace learning methods, while
Table 5 reports the performances of SDML_SC and the com-
paring dictionary learning methods. We highlight the best
and comparable results in bold font and underline the sec-
ond best ones. From Table 4, we can observe that the top
average recognition rates of SDML_SC are higher than
other comparing subspace learning methods. Particularly on
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Fig. 4. Convergence of the dictionary learning process on (a) CMU PIE; (b) E-YaleB; (d) FERET.

Fig. 5. (a) to (c) are the results on the CMU PIE, E-YaleB and FERET datasets. From left to right are: a face sample; the MIP and
the LIP after supervised feature regrouping.

TABLE 4. Top average recognition rates (%) of different subspace
learning methods (Best; Second Best).

E-YaleB and FERET datasets, SDML_SC boosts over 4%
recognition rates compared to DSPP and NSPE methods,
and even improves the recognition rates of sLPP and sNPE
by a margin as large as 4.8%-25.7%. Regarding the tensor
based manifold learning methods, 2DLPP and 2DNPP per-
form close to their 1D versions (i.e., sLPP and sNPE) on
CMUPIE and E-YaleB datasets, and obtain better recognition
results on FERET dataset. Furthermore, we are interested to
find that, although SPP and PCA are unsupervised methods,
PCA performs modestly well on FERET dataset, and SPP
even obtains comparable recognition results compared to
supervised methods (i.e., LDA and sLPP) on CMU PIE and
E-YaleB datasets.

As shown in Table 5, the proposed SDML_SC still
obtains promising recognition results among the com-
paring sparse coding and dictionary learning methods.
In addition, FDDL ranks the first and the second on CMUPIE
and E-YaleB datasets, respectively, while performing worse
than SDML_SC and other two dictionary learning meth-
ods on FERET dataset. MFL performs stably across all the

TABLE 5. Top average recognition rates (%) and corresponding number of
dictionary atoms of different dictionary learning methods (Best;
Second Best).

datasets and gets goodish results next to DML_SC. Although
SRC achieves similar recognition accuracy to SDML_SC
and MFL on CMU PIE dataset, it is not competitive with
SDML_SC and MFL on E-YaleB dataset.

Fig.6 (a)-(c) present the top average recognition rates
of the involved subspace learning methods (except tensor
based methods) versus the variation of feature dimensions
on CMU PIE, E-YaleB and FERET datasets, respectively.
We observe that SDML_SC outperforms other comparing
methods almost across all the dimensions, which confirms the
effectiveness and rationality to leverage the contributions of
different image components for image recognition.

4) EXPLANATION OF ABOVE EXPERIMENTAL RESULTS
• PCA is a typical unsupervised subspace learning
method, which usually performs much worse than other
discriminative subspace learning methods. Hence, PCA
is usually applied as a baseline method in different face
recognition tasks. However, when few samples of each
person are available (e.g, FERET), most supervised sub-
space learning methods, such as LDA, sLPP, sNPE and
LSDA, suffer serious performance drop and reduce to
baseline PCA or even worse [41].

• SPP is also an unsupervised subspace learning method,
which aims to preserve the sparse reconstructive
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Fig. 6. (a) to (c) are the top average recognition rates of all comparing subspace learning methods versus dimensions on the CMU PIE, E-YaleB and FERET
datasets, respectively.

relationship of the image samples. Although category
information is not needed, SPP tends to find the discrim-
inative mapping since the sparse representation (SR)
has natural discriminating power. Consequently, SPP
obtains comparable or even better recognition results
compared to supervised methods (e.g., LDA and sLPP)
over three tested datasets.

• DSPP, LSDA, NSPE, sNPE and sLPP are supervised
graph-based manifold learning methods. Specifically,
DSPP, LSDA and NSPE are all two-graphs based super-
vised methods, which construct within-class adjacency
graph and between-class penalty graph, to find a projec-
tion maximizing the margin between data points from
different classes. Notably, DSPP even applies the core
idea of SPP [39] by minimizing a l1-regularization
related objective function to preserve the sparse
reconstruction relationships of within-class samples.
By contrast, sLPP and sNPE only construct within-
class adjacency graph, while neglecting the relationship
between classes. Consequently, DSPP, LSDA and NSPE
generally perform better than sLPP and sNPE on three
tested datasets.

• 2DLPP and 2DNPP are developed to directly work on
input image matrix rather than concatenated vectors,
which generally require extra coefficients for represent-
ing an image as compare to other vector-based meth-
ods [42]. Moreover, by exploiting the spatial structure
information embedded in limited training data, 2DLPP
and 2DNPP outperform their 1D versions (i.e., sLPP and
sNPE) on FERET dataset.

• SRC, MFL and FDDL are three recent dictionary learn-
ing methods. SRC straightforwardly uses the original
training images to construct dictionary, while MFL tries
to learn an enriched but more representative dictionary
based on training images. Compared to the two former
dictionary learning methods, FDDL pays attention to
training a class-specific dictionary with discriminative

representation coefficients, by reducing the within-class
variation and expanding the between-class differences
correspondingly [26]. Hence, FDDL can be more robust
against facial variations in training images than SRC
and MFL. One should note that, since FDDL aims
to distinguish the reconstructive ability of within-class
image samples and between-class image samples in its
objective function, the scarcity of training samples per
subject (refer to FERET dataset) would still be a key
factor to undermine the performance of FDDL.

• DML_SC is designed as a two-step subspace learn-
ing method, i.e., 1) dictionary learning and feature
regrouping and 2) graph embedding. In the first step,
DML_SC attempts to separate the noise or trivial struc-
ture (i.e., LIP) from original data, and obtain rela-
tively clean portion of image (i.e., MIP). Subsequently,
SDML_SC tires to learn a desired discriminative sub-
space where the intrinsic structure and the hidden dis-
criminant information of the MIP are both captured,
while the energy of the LIP is suppressed simultane-
ously. These procedures enable SDML_SC be robust
against severe variation of illuminations and image
noises existed in raw image data. Therefore, SDML_SC
consistently outperforms the comparing subspace learn-
ing methods with NN classifier, and even obtains better
recognition results compared to recent dictionary learn-
ing methods over three face datasets.

5) STUDY OF PARAMETER SELECTION
In this subsection, we probe further the effects of two key
parameters of the proposed SDML_SC: the balance parame-
ter ε in locality discriminant graph embedding (LDGE) and
the control parameter τ in feature regrouping phase, over
CMU PIE, E-YaleB and FERET three benchmark datasets.

In SDML_SC model, we observe that the value of param-
eter ε is controlled by the constraint ε = 1 − (η + β).
Inspired from the strategy in LSDA [11], we consider the

13986 VOLUME 5, 2017



M. Pang et al.: Discriminant Manifold Learning via Sparse Coding for Robust Feature Extraction

Fig. 7. (a) to (c) are the recognition rates versus the parameter ε (from 0.0 to 0.9) of SDML_SC on the CMU PIE, E-YaleB and FERET datasets.

Fig. 8. (a) to (c) are the recognition rates versus the parameter τ (from 0.1 to 1.0) of SDML_SC on the CMU PIE, E-YaleB and FERET datasets.

combination of η and β as a single parameter, and regard
it as a function of ε. Hence, we choose to evaluate the
performance of SDML_SC on the effect of ε separately.1

Furthermore, the control parameter τ decides the truncated
threshold to generate the MIP and LIP of original image in
feature regrouping phase, which can also be a key factor to
affect the classification performance of SDML_SC.

Fig. 7 and Fig. 8 present the effects of two parameters ε
and τ on the recognition rates of SDML_SC over CMU PIE,
E-YaleB and FERET three datasets, respectively. As shown
in Fig. 7, the balance parameter ε of SDML_SC that controls
the energy of the LIP is playing roles for face recognition.
Specifically, when 0 < ε ≤ 0.6, the recognition results of
SDML_SC are higher than that of LSDA (ε = 0, SDML_SC
degrades to LSDA). When the value of ε is extremely large,
i.e., 0.8 or 0.9, the SDML_SC performs worse than LSDA.
A reasonable explanation could be that ε controls the energy

1Through experiments, we observed that when the value of ε was fixed,
we always obtained stable recognition results when tuning different combi-
nations of η and β.

of the LIP in SDML_SC, the excessive weights on the LIP
may cover up the influence of graph embedding by the MIP
and bring about negative effect on learning desired discrim-
inative subspace. It is worth mentioning that, SDML_SC
consistently achieves goodish performance with the ε varying
from 0.1 to 0.3 over three tested datasets. Regarding the
parameter τ , as shown in Fig. 8, the recognition rates of
SDML_SC present a rising tendency with the increase of the
value of τ , and achieve best results ranging from 0.7-0.9 on
CMU PIE and E-YaleB datasets. By contrast, SDML_SC
obtains stable recognition results across different values of
parameter τ , and performs especially well at both ends of
values of parameter τ on FERET dataset.

6) SUMMARY
• SDML_SC consistently outperforms classical subspace
learning methods, and obtains comparable or better
recognition results compared to state-of-the-art dictio-
nary learning methods.

• SDML_SC is, to some extent, sensitive to the vari-
ation of parameters ε and τ . However, in practical
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TABLE 6. Database description.

applications, we can leverage model selection tech-
niques, e.g., grid search-based cross validation,
to choose the optimal ε and τ .

C. IMAGE CLUSTERING RESULTS
In this subsection, we conduct clustering experiment on
COIL20 and more challenging E-YaleB face database (listed
in Table 6). In order to randomize the experiments, we eval-
uate the clustering performance with different number of
clusters (k = 4, 8, 12, 16, 20). For each given cluster number,
5 tests are conducted on different randomly chosen classes.

1) COMPARING ALGORITHMS
Nine popular clustering algorithms including K-means, non-
negative matrix factorization (NMF) [43], LapSC [24], graph
regularized nonnegative matrix factorization (GNMF) [44],
nonnegative local coordinate factorization (NLCF) [45],
sparse concept coding (SCC) [46], graph regularized
nonnegative matrix factorization with sparse coding
(GRNMFSC) [47] and the state-of-the-art low rank rep-
resentation (LRR) [48] and latent low rank representa-
tion (LatLRR) [49] are selected as the comparing algorithms.

2) PARAMETER SETTING
About the parameter setting, we report the matrix factoriza-
tion based methods (except for Kmeans, LRR and LatLRR)
with the number of basis vectors equal to the number of
clusters. For LRR and LatLRR, the ranks of adjacency graph
(i.e., the number of subspaces) are also set as the number of
clusters. For GNMF, NLCF and GRNMFSC, the maximum
iterations are both set as 500 and the sparse regularization
parameter λ of GRNMFSC is set as 0.01. The parame-
ters of SCC and LapSC are configured according to [46].
For UDML_SC, the dimensions of images are reduced to
200 in DR process on COIL20 and E-YaleB datasets. Con-
sequently, to construct over-complete dictionary for each
test (atom number ≥ 200), we select 80% number of samples
to be the atom numbers of the over-complete dictionary in
dictionary learning phase. Note also that, there are three
parameters in UDML_SC algorithm: the number of nearest
neighbors km in graph Gm, the balance parameter ρ and the
threshold τ to divide the MIP and LIP. We empirically set
km = 5, ρ = 0.3 and τ = 0.7.

3) CLUSTERING EVALUATION METRICS
The clustering result is evaluated by comparing the obtained
label of each sample with the label provided by the dataset.
Two metrics, the accuracy (AC) and the normalized mutual
information metric (NMI) are used to measure the clustering

performance. According to [50], the clustering accuracy (AC)
is defined as follows:

AC =
6N
i=1δ(ci,map(li))

N
, (22)

where N is the total number of samples, ci stands for the
provided label, map(li) is a mapping function that maps the
obtained cluster label li to the equivalent label from the data
corpus. δ (x, y) is the delta function that equals 1 if x = y and
equals 0 otherwise.

Let C denote the set of clusters obtained from the ground
truth and Ĉ obtained from our algorithm. Their mutual infor-
mation metric MI (C, Ĉ) is defined according to [44], [45]:

MI (C, Ĉ) =
∑

ci∈C ,̂cj∈Ĉ

p(ci, ĉj).log
p(ci, ĉj)
p(ci)p(̂cj)

, (23)

where p(ci) and p(̂cj) denote the probabilities that a sam-
ple arbitrarily selected from the data set belongs to the
clusters ci and ĉj, respectively. p(ci, ĉj) is the joint probability
that the arbitrarily selected sample belongs to the clusters
ci and ĉj at the same time. In our experiment, we also use
normalized mutual information (NMI) to evaluate clustering
performance:

NMI (C, Ĉ) =
MI (C, Ĉ)

max(H (C),H (Ĉ))
, (24)

where H (C) and H (Ĉ) are the entropies of C and Ĉ , respec-
tively. NMI metric reflects the similarity of the distribution of
C and Ĉ , if the two sets of clusters are identical, NMI = 1,
otherwise NMI falls in between 0 and 1. The worst case is
that the two sets are independent, then NMI = 0.

4) CLUSTERING RESULTS
Table 7 and Table 8 show the clustering results on the
COIL20 and E-YaleB, respectively, the average clustering
performances of different number of clusters are reported in
two tables. We also highlight the best and comparable results
in bold font and underline the second best ones.

As shown in Table 7 and Table 8, the proposed UDML_SC
always result in the best performance in all the cases.
On COIL20 dataset, the average clustering accuracies
obtained by Kmeans, NMF, GNMF, NLCF, LapSC, LRR,
LatLRR, GRNMFSC, SCC, and UDML_SC are 67.6%,
66.3%, 81.9%, 72.9%, 74.0%, 76.4%, 72.3% 84.0%, 81.1%,
and 88.6%, respectively. Comparing with the second best
method, that is, GRNMFSC, UDML_SC delivers 4.6%
accuracy improvement. For mutual information, it can be
seen that UDML_SC also achieves 3.4% improvement over
GRNMF_SC. On E-YaleB dataset, the average cluster-
ing accuracies obtained by Kmeans, NMF, GNMF, NLCF,
LapSC, LRR, LatLRR, GRNMFSC, SCC, and UDML_SC
are 18.4%, 24.9%, 25.7%, 25.8%, 17.8%, 57.0%, 59.5%,
49.2%, 43.0%, and 63.8%, respectively. On this dataset,
it is clear to find that UDML_SC makes greater advantages
with respect to clustering accuracy. Specifically, UDML_SC
improves 4.3% and 6.8% clustering accuracy compared to
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TABLE 7. Clustering performance on COIL20 (Best; Second Best).

TABLE 8. Clustering performance on E-YaleB (Best; Second Best).

LatLRR and LRR, respectively. Moreover, UDML_SC even
boosts 14.6% clustering accuracy compared to GRNMFSC.
The significant improvement could be explained by that
UDML_SC aims to separate the noise or trivial structure
from original image and seek an efficient subspace represen-
tation (i.e., feature), which considers the intrinsic structure as
well as the importance of different image components; con-
sequently, by simply using k-means on the low-dimensional
feature, UDML_SC can achieve impressive clustering per-
formance even when the target image data are contaminated
by illumination or shadow. In addition, LatLRR and LRR are
both multi-subspace learning methods with error correction,
so they perform especially well on this face dataset. In addi-
tion, GRNMFSC obtains better clustering results than SCC
and GNMF, while LapSC and K-means perform the worst
amidst all comparing methods.

5) SUMMARY
• UDML_SC achieves the best clustering results in both
datasets compared with the state-of-the-art LatLRR,
LRR and other comparing clustering methods.

• UDML_SC shows high resistance to images that
are contaminated with severe variations of illumina-
tion or shadow.

IV. CONCLUDING REMARKS
In this paper, we have proposed a new subspace learning
method, namely discriminant manifold learning via sparse
coding (DML_SC). DML_SC aims to decompose the original

image into a more important part (MIP) and a less important
part (LIP), and learn a desired discriminative subspace where
the intrinsic structure and energy of the MIP are preserved,
while the energy of the LIP is simultaneously suppressed.
Hence, DML_SC can exploit different contributions of differ-
ent image components for robust feature extraction. Experi-
mental results on image recognition and clustering tasks have
demonstrated that DML_SC performs better than classical
subspace learning methods and state-of-the-art sparse coding
and dictionary learning methods.

It is worthmentioning that, since theDML_SC algorithm is
directly applied on the original pixel intensity, the accuracy of
image recognition and clustering in our experiments has still
a room to make an improvement towards the practical pattern
classification and clustering applications. For example, one
feasible way is to replace the input features by local features,
such as Gabor, LBP, super-pixel [51] or even latest deep
features [52]. We will leave it as our future work.
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