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ABSTRACT Optimal allocation of distributed generation units is essential to ensure power loss
minimization, while meeting the real and reactive power demands in a distribution network. This paper
proposes a solution to this non-convex, discrete problem by using the hybrid grey wolf optimizer, a new
metaheuristic algorithm. This algorithm is applied to IEEE 33-, IEEE 69-, and Indian 85-bus radial
distribution systems to minimize the power loss. The results show that there is a considerable reduction
in the power loss and an enhancement of the voltage profile of the buses across the network. Comparisons
show that the proposed method outperforms all other metaheuristic methods, and matches the best results
by other methods, including exhaustive search, suggesting that the solution obtained is a global optimum.
Furthermore, unlike for most other metaheuristic methods, this is achieved with no tuning of the algorithm
on the part of the user, except for the specification of the population size.

INDEX TERMS Distributed generation (DG), optimal DG location, optimal DG size, loss minimization,
radial distribution system, metaheuristic algorithm.

I. INTRODUCTION
Recent developments such as the advances in power electron-
ics, renewable energy sources, liberalization of electric power
markets, and the need for environment protection have dras-
tically necessitated and made possible the decentralization of
power networks. This has led to new sets of problems and
opportunities, and the proliferation of distributed generation
systems.

Distributed generation (DG) units can be classified into
different types, based on whether they generate or con-
sume reactive power along with generation of real power:
(a) P-type or Type-I DG units, which supply real power
alone, such as photovoltaic cells (b) Q-type or Type-II DG
units which supply reactive power alone, like capacitor banks
(c) PQ+-type or Type-III DG units which supply real power
and can either generate or consume reactive power, like syn-
chronous generators, and (d) PQ−-type or Type-IV DG units
which produce real power and consume reactive power, like
induction generators for wind power.

The optimal DG allocation problem is to determine the
optimal bus location, and the optimal size of the DG units,
to minimize the total power loss in the system network.

The importance of this problem has been highlighted by sur-
veys such as [1] and [2], and a large number of papers, using a
variety of approaches that can be broadly classified into four
categories:(a) classical (b) analytical (c) metaheuristic and
heuristic, and (d) hybrid. The latest works in each of these
categories are reviewed next.

Classical approaches to solving the DG allocation problem
include mixed integer nonlinear programming (MINLP) [3],
and the use of bifurcation analysis and dynamic program-
ming [4]. Considering the analytical approaches next, [5]
presents an analytical method (AM) using loss sensitivity
factor (LSF) that is claimed to be simpler and faster than
other classical methods in it. Reference [6] proposes an ana-
lytical expression, [7] an improved analytical (IA) method,
and [8] a dual index analytical approach. Other works that
use the analytical approach include [9] which uses sensitivity
approaches, [10] which uses sensitivity analysis, [11], [12],
which uses efficient analytical (EA) method and EA with
optimal power flow (EA-OPF).

The metaheuristic and heuristic methods used for solving
the DG allocation problem outnumber the analytical and
classical approaches. Some of these methods are: artificial
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bee colony (ABC) [13], heuristic curve-fitted technique [14],
modified honey bee mating [15], improved particle swarm
optimization (IPSO) [16], modified teaching learning-based
optimization (MTLBO) algorithm [17], multi-objective har-
mony search [18], Pareto front differential evolution [19],
particle swarm optimization (PSO) with constriction factor
approach [20], backtracking search algorithm (BSA) [21],
big bang big crunch [22], krill herd algorithm (KHA) [23],
improved PSO [24].

Given the relative advantages and disadvantages of the
four categories of approaches, some hybrid methods to
eliminate the disadvantages and combine the advantages
too have been tried out on the DG allocation problem.
Hybridization of metaheuristic approaches with analytical
approaches has been tried in [25] which uses LSF and simu-
lated annealing (LSFSA), [26] which uses sensitivity analysis
and PSO, and [27] which uses the analytical method and PSO
(named as ’Hybrid’ in [27]). Another kind of hybridization
is combining operators of one metaheuristic algorithm with
those of another. Examples of such methods are [28] which
uses an imperialist competitive algorithm and genetic algo-
rithm, [29] which uses ant colony optimization and artifi-
cial bee colony (HACO) and [30] which combines harmony
search and particle ant bee colony (PABC).

The cost function in the DG allocation problem, the total
power loss in the system, is subject to nonlinear equality
constraints. This makes the problem non-convex. The bus
numbers and the DG capacities can assume only discrete
values, hence making the problem a discrete one. Classical
methods have the advantage of small computation time but
assume that the problem is a convex programming prob-
lem, while the optimality of analytical methods is an open
issue [1].

The contribution of this paper is to find the globally optimal
solution of the non-convex, discrete DG allocation problem,
using the hybrid grey wolf optimizer (HGWO), a hybrid
metaheuristic method. The HGWO outperforms or performs
as well as all the other methods -including the other meta-
heuristic methods and exhaustive search - in terms of opti-
mality of the solution, thereby suggesting that the solution
is a globally optimal one. Further, unlike for most other
metaheuristic methods, this is achieved with no tuning of the
algorithm on the part of the user, except for the specification
of the population size.

The remainder of this paper is constituted as follows.
Section II explains the statement of the problem of loss
optimization in a distribution network. Section III summa-
rizes the grey wolf optimizer, and Section IV gives a brief
review of the hybrid grey wolf algorithm (HGWO). Section V
explains how the HGWO is applied to solve the DG allocation
problem. Section VI contains the results and discussion, and
Section VII concludes the paper.

II. PROBLEM FORMULATION
The problem involves identifying the location, the size and
the type of distributed generators or distributed generation

units (DG units) to be introduced at different nodes of the dis-
tribution network while ensuring the operational constraints
are met to ensure system integrity.

FIGURE 1. Single line diagram of an RDS.

A. OBJECTIVE FUNCTION
Fig. 1 shows the single line diagram of the main feeder of
a radial distribution system (RDS) with N number of buses.
The real power or I2R loss in the line section between buses
i and i+ 1 is given by

PLoss
i,i+1
=
P2i,i+1 + Q

2
i,i+1

|Vi|2
Ri,i+1. (1)

The total power loss of the feeder, which is the sum of losses
in all the line sections of the feeder is given by

PTLoss =
N−1∑
i=0

P2i,i+1 + Q
2
i,i+1

|Vi|2
Ri,i+1 (2)

where Pi,i+1,Qi,i+1 are the real and reactive power flow
between buses i and i + 1, in kW and kVAr, Ri,i+1 is the
resistance of the line between the buses i and i + 1, and
Vi is the voltage at bus i.

Similarly, the reactive power loss in the line section
between buses i and i + 1 is given
by

QLoss
i,i+1
=
P2i,i+1 + Q

2
i,i+1

|Vi|2
Xi,i+1 (3)

where Xi,i+1 is the reactance of the line between buses i and
i+ 1.
The objective is to minimize the total real power loss

incurred by placing the DG units at optimal bus locations and
choosing the optimal sizes of the DG units. With the addition
of the DG units, (2) becomes

PTLossDG

=

N−1∑
i=0

(
Pi,i+1−αpDGPDG,i+1

)2
+
(
Qi,i+1−αqDGQDG,i+1

)2
|Vi|2

×Ri,i+1 (4)

where αpDG, αqDG are the real and reactive power multiplier,
set to 1 if DG unit is present, and 0 if DG unit is absent,
PDG,i+1,QDG,i+1 are the size of the DG unit or active and
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reactive power injections at bus i + 1 in kW and kVAr,
respectively.

B. CONSTRAINTS
The inequality constraints of the problem are given by

1) The voltage at each bus should be well within the
permissible limits:

Vi,min ≤ Vi ≤ Vi,max (5)

2) The size of individual DG units is to be maintained
within the set limits [13]:

SDG,i,min ≤ SDG,i ≤ SDG,i,max (6)

3) The operating power factor of the DG unit has to be
within the set limits [13]:

pfDG,i,min ≤ pfDG,i ≤ pfDG,i,max (7)

4) At every bus in the system, the following nonlinear
equality constraints must be satisfied (see Fig. 1) [13]:

Pi+1,i+2 = Pi,i+1 − PLossi,i+1 − PL,i+1 + αpDGPDG,i+1
(8)

Qi+1,i+2 = Qi,i+1 − QLoss
i,i+1 − QL,i+1 + αqDGQDG,i+1

(9)

|Vi+1|2 = |Vi|2 − 2
(
Ri,i+1Pi,i+1 + Xi,i+1Qi,i+1

)
+

(
R2i,i+1 + X

2
i,i+1

)(P2i,i+1 + Q2
i,i+1

|Vi|2

)
(10)

where PL,i+1 andQL,i+1 are the real and reactive power loads
at bus i+ 1.

C. BUS VOLTAGE DIFFERENCE WITH DG UNIT
For DG units of the P-type, Q-type and PQ+-type consid-
ered in this paper, the real and reactive powers are to be
injected such that the bus voltages are maintained within
their lower and upper limits. The bus voltage difference after
the addition of the DG units is approximately given by [26]
(see Fig. 1)

Vi − Vi+1 =
(
PL,i+1 − αpDGPDG,i+1

)
Ri,i+1

+
(
QL,i+1 ± αqDGQDG,i+1

)
Xi,i+1 (11)

whereRi,i+1,Xi,i+1 are the resistance and reactance of the line
between the buses i and i+ 1.

III. THE GREY WOLF OPTIMIZER
The grey wolf optimizer (GWO) is a swarm intelligence
algorithm introduced by Mirjalili, Mirjalili, and Lewis
in 2014 [31], that does not require any tuning on the part
of the user. It employs the two operators for its working:
(i) encircling prey, and (ii) hunting. These are given by [32]:

A. ENCIRCLING PREY
The distance between any wolf and the prey is given by

ED =
∣∣∣ EC ⊗ EXp(t)− EX (t)∣∣∣ (12)

EC = 2Er1 (13)

where EXp is the position vector of the prey, EX is the position
vector of a wolf, and t indicates the iteration number. Er1 is
a vector of random numbers in the range [0, 1], of the same
dimensions as EXp and EX . The ⊗ between EC and EXp corre-
sponds to component-wise multiplication.

B. HUNTING
Hunting involves moving closer to the prey using the infor-
mation obtained in encircling, given by (12) and (13). This is
given by

EX (t + 1) = EXp(t)− EA⊗ ED (14)
EA = a(2Er2 − 1) (15)

where a is linearly decreased from 2 to 0 over the course
of iterations, and Er2 a vector of random numbers in the
range[0, 1], and of the same dimensions as EXp, EX and ED. The
⊗ between EA and ED means corresponding component-wise
multiplication, as in (12).

The position of the prey EXp, or the optimizer being
searched for in the solution landscape is unknown, it is
assumed that the α, β and δ wolves [32] have the best knowl-
edge of the prey. Hence their positions are used for updating
the positions of all the other (omega) wolves. Using these
three best solutions in the decreasing order of their fitness,
the distances between any wolf EX and these three best wolves
are given by

EDα =
∣∣∣ EC1 ⊗ EXα − EX

∣∣∣ , EDβ =
∣∣∣ EC2 ⊗ EXβ − EX

∣∣∣ ,
EDδ =

∣∣∣ EC3 ⊗ EX δ − EX
∣∣∣ (16)

These distances can be used to obtain the new position of the
wolf EX (t + 1) using the following equations.

EX1 = EXα − EA1 ⊗ EDα, EX2 = EXβ − EA2 ⊗ EDβ ,
EX3 = EX δ − EA3 ⊗ EDδ (17)

EX (t + 1) =
EX1 + EX2 + EX3

3
(18)

Applying the two operators of encircling and hunting
repeatedly, the prey or the best solution is located.

IV. THE HYBRID GREY WOLF OPTIMIZER (HGWO)
The DG allocation problem is inherently discrete owing to
the discrete values of bus numbers and the DG unit capac-
ities, and it is also non-convex due to the nonlinear power
balance equality constraint. To enhance the search capability
in this kind of non-convex solution spaces, [32] proposed
hybridization of the GWO with operators from evolutionary
algorithms. These are given next.
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A. CROSSOVER
The uniform or binomial crossover proposed in [33] is used
here. The jth component of the ith wolf applying the crossover
operator is given by

X ij =

{
X rj if randij < Cr

X ij else
j = 1, 2, . . . ,D,

i = 1, 2, . . . ,Nw (19)

where r ∈ [1, 2, . . . ,Nw], chosen randomly, r 6= i, and
rand ij ∈ [0, 1] is randomly generated ∀j, i. D is the dimen-
sionality of each solution vector, and Nw is the number of
solutions or wolves.

For the work reported in this paper, the crossover probabil-
ityCr is varied dynamically unlike in the classical differential
evolution. This is given by [34]

Cr = 0.2× F̂ i,best (20)

F̂ i,best =
F i − Fbest

Fworst − Fbest i = 1, 2, . . . . ,Nw (21)

where F i is the fitness value of the ith wolf. The best and the
worst fitness values in the wolf pack for the current iteration
are termed as Fbest and Fworst respectively. (20) and (21)
ensure that the best wolf vector remains unchanged, and the
crossover probability is directly proportional to the relative
fitness of the vector.

B. MUTATION
The mutation scheme used is as in [34]. After mutation, the
jth component of the ith wolf is given by

x ij =

{
xgBest,j + rr

(
xpj − x

q
j

)
if rand ij < µ

x ijelse

j = 1, 2, . . . , D, i = 1, 2, . . . ,Nw (22)

µ = 0.05× F̂ i,best (23)

where p, q ∈ [ 1, 2, . . . , Nw], randomly generated, p 6= q 6= i,
and rr , rand ij ∈ [0, 1] both randomly generated ∀j, i. µ is
the mutation probability or mutation rate, xgBest,j is the
jth component of the global best wolf in the whole of the
iterative process so far, across the iterations, up to the current
iteration. The best wolf in the pack in any given iteration is
compared with this global best wolf. If the best wolf is better
than the global best wolf, it becomes the new global best wolf.
Equations (21) and (23) mean that the mutation probability or
mutation rate µ is 0 for the best wolf and 0.05 for the worst
wolf in the pack of the current iteration.

V. IMPLEMENTATION OF THE HGWO
FOR OPTIMAL DG ALLOCATION
The allocation of DG units in appropriate locations reduces
the losses and improves the voltage profile. The control vari-
ables of the problem are the (a) the locations, (b) capacity, and
(c) operating power factor of DG units. A set of these control
variables forms a grey wolf (or solution vector). The fitness of
each solution is determined by substituting this in the fitness
function given by (4) and executing a load flow by the direct
approach proposed by Teng [35]. The grey wolves which
give the best fitness values (the least or minimum losses) are
chosen as the α, β and δ wolves respectively.

The step by step procedure of HGWO to solve the optimal
DG allocation problem is given below.
Step 0: Choose the population size Nw, maximum number

of iterations, total number of locations for DG units to be
installed NDG,loc, capacity of DG unit S in kVA, and the
operating power factor pf, set as

pf =


1 for P-type
0 for Q-type
[0.7, 1] for PQ+-type

Generate the initial population of Nw number of wolves or
feasible solution vectors, that satisfy all the constraints listed
in Section 2.2, (24), as shown at the bottom of this page,
where i = 1, 2, . . . ,NDG,loc is the location or the bus number.
DG can take values of 1, 2 and 3 for 1 no DG, 2 no DG and
3 no DG locations respectively.
Step 1: Run the load flow for each grey wolf and find the

power loss in the distribution system. Evaluate the fitness
using the fitness or objective function (4). Identify the α, β
and δ wolves and the global best solution PgBest. In the very
first iteration, PgBest = Pα .
Step 2: Apply the encircling operator (12) to compute

EDα =
∣∣∣ EC1 ⊗ EPα − EPi

∣∣∣ , EDβ =
∣∣∣ EC2 ⊗ EPβ − EPi

∣∣∣ ,
EDδ =

∣∣∣ EC3 ⊗ EPδ − EPi
∣∣∣ (25)

Apply the hunting operator (14), to compute EP1, EP2 and EP3.
For this problem, using the distances calculated by (25), these
are given by

EP1 = EPα − EA1 ⊗ EDα, EP2 = EPβ − EA2 ⊗ EDβ ,
EP3 = EPδ − EA1 ⊗ EDδ (26)

Compute the population of the next generation P(t + 1),
comprising Nw number of solutions or wolves each

P =


P1

P2
...

PNw

 =

l11 . . . l1NDG,loc

S11 . . . S1NDG,loc
pf 11 . . . pf 1NDG,loc

l21 . . . l2NDG,loc
S21 . . . S2Nc

pf 11 . . . pf 2NDG,loc
... . . .

...
... . . .

...
... . . .

...

lNw
1 . . . lNw

NDG,loc
SNw
1 . . . SNw

NDG,loc
pf Nw

1 . . . pf Nw
NDG,loc

 (24)
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TABLE 1. Comparison of simulation results of HGWO for P-type or type-I, and Q-type or type-II DG units for 33-bus RDS.

given by

EPi(t + 1) =
EP1 + EP2 + EP3

3
(27)

Step 3: Apply the crossover operator (19) and mutation
operator (22), replacing X ij with P

i
j.

Step 4: Check if DG unit kVA limits and operating power
factor limits are violated. Fix the generation at the limit(s)
violated.
Step 5: Is the stopping criterion satisfied? If yes, stop. Else,

repeat steps 1 to 4.

VI. RESULTS AND DISCUSSION
The problem considered in this paper, the optimal alloca-
tion of distributed generation using HGWO is applied and
tested on three test cases comprising IEEE-33-, IEEE-69- and
85-bus Indian RDSs, to the three different types of DG units
mentioned in Section I. The scope of this paper is restricted
to P-type, Q-type and PQ+-type DG units.

The population size of the herd or the number of wolves
or trial solutions is fixed as 20. The stopping criterion used is
themaximum number of iterations. For the work in this paper,
this value is fixed as 200. The minimum and maximum bus
voltage limits are set at 0.9 p.u. and 1.05 p.u. respectively,
as in [7]. The lower and upper kVA limits of the DG unit are
respectively set as 20% and 100%of the total load plus losses
incurred in the system. The operating power factor is set as
explained in Step 0 in Section V. All calculations are done in
per unit (p.u.) system.

The HGWO approach and the load flow solution used are
implemented inMATLAB R© software on a personal computer

with a 64-bit, 3.0 GHz, i7 processor and 6 GB RAM. The
results of these test cases are presented and discussed next.

A. IEEE 33-BUS RDS
This RDS has 33 buses and 32 distribution lines. The total real
and reactive power demands are 3,715 kW and 2,300 kVAr
respectively [36]. The base values are 10 MVA and 12.66 kV.
The voltage goes on decreasing as one proceeds from the
source to the end, due to the presence of loads at the buses.
The voltage profiles of the buses may be improved by con-
necting DG units to the buses to take up part of the load
demand, thereby reducing the current flow and losses.

The uncompensated or base case power loss for this system
is 210.98 kW. This RDS is solved for P-type, Q-type and
PQ+-type DG units, using the proposed HGWO algorithm.
Each type is applied to the three Cases, of 1 no. DG unit, 2 no.
DG unit, and 3 no. DG unit. The methods compared against
include all the other four categories of classical, analytical,
metaheuristic methods and hybrid approaches. Table 1 shows
the comparison of simulation results for P-type DG units (real
power injection only), and Q-type DG units (reactive power
injection) for the all these three Cases.

For the 1 DG unit Case, the proposed HGWO algorithm
determined the optimal location and size as bus no. 6, and
2,590 kVA. At 111.018 kW, it is seen that this is the best
result, matched only by MINLP, EA-OPF, and Exhaustive
OPF. It is to be noted that Exhaustive OPF method is
an exhaustive search method, and hence, can be only be
matched, and not outdone. An exhaustive search is naturally
expected to produce the best results, given the nature of, and
computational load of the method. It is to the credit of the

VOLUME 5, 2017 14811



R. Sanjay et al.: Optimal Allocation of Distributed Generation Using Hybrid Grey Wolf Optimizer

TABLE 2. Comparison of simulation results of HGWO for PQ+-type or type-III DG units, 33-bus RDS.

other methods like MINLP, EA-OPF, and HGWO that they
produce results that match those of exhaustive search, with
a lower computational burden. Of these three, HGWO is the
only metaheuristic method. The optimal location of the DG
unit for minimal power loss is the same (bus no. 6) for all the
methods.

For the 2 DG units Case, the optimal bus locations are the
same at 13 and 30 for all the algorithms, except for IAmethod,
for which it is 12 and 30. However, the HGWO solution of
87.164 kW of power loss, is the least of all the methods. The
optimal DG unit sizes by HGWO differs from those by the
other methods, except those by EA-OPF and Exhaustive OPF.

For the 3 DG units Case, the power loss by the HGWO is
the least of all methods, with the exception of MINLP, which
produces the same value for loss, with the same bus locations.

From Table 1, it is also seen that, as the number of DG units
increases, the power loss reduces. Thus, for the HGWO, the
power loss reduces to 72.784 kW for the 3 DG units Case,
as compared to 87.164 kW for the 2 DG units Case, and
111.018 kW for the 1 DG unit Case.

For Q-type DG units, for the three Cases of 1, 2 and 3 DG
units, the comparison here is with the Hybrid method of [27],
which is the only work in recent literature for this particular
problem data. The bus locations are the same for both the
methods, but the DG unit sizes are different. However, as with
P-type DG units, the results are marginally better than those
of the Hybrid method, suggesting that the HGWO is superior,
even if only marginally.

As with P-type DG units, the power loss reduces with the
increase in the number of Q-type DG units, as can be seen in
Table 1. The power loss for the HGWO reduces to 138.25 kW
for the 3 DG units Case, as compared to 141.83 kW for the
2 DG units Case, and 151.36 kW for the 1 DG unit Case.

Table 2 shows the results for PQ+-type (injection of both
real and reactive power), for the three Cases of 1, 2 and 3
DG units. In this Type, the optimal location, size and power
factor of the DG units are to be determined. For the Case 1,

the HGWO produces the least power loss of all methods, with
the exception of the MINLP. The bus location is the same for
all methods.

In Case 2, the HGWO produces the least power loss with
the exception of the EA-OPF method. This is better than
the MINLP solution. The bus locations of 13 and 30 of the
other methods that produce results comparable to the HGWO
are all the same as those of the HGWO. For Case 3, as in
Case 2, the HGWO produces the least power loss (11.74 kW)
of all methods, with the exception of EA-OPF. Thus, it can
be concluded that the HGWO matches the other best results
in the literature.

Aswith the other Types of DG units, the power loss reduces
with the increase in the number of PQ+-type DG units, as can
be seen in Table 2. The power loss for the HGWO reduces
from 67.855 kW for 1 DG unit, to 28.50 kW for 2 DG units,
to 11.74 kW for 3 DG units.

FIGURE 2. Voltage profile improvement of the IEEE 33-bus RDS with the
addition of PQ+-type DG units.

The addition of DG units improves the voltage profile of
the buses across the network, as given approximately by (11).
Expectedly, this improvement is the most for PQ+-type DG
units. Fig. 2 shows the improvement in voltage profile, with
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TABLE 3. Least and highest bus voltages for the 33-bus RDS after DG allocation.

FIGURE 3. Convergence characteristics of GWO and HGWO for IEEE 33-bus RDS, with
the addition of 3 DG units of P-type.

the addition of PQ+-type DG units. It can be seen that the
addition of more DG units results in more improvement of
the voltage profile. Hence, the 3 DG units Case has the least
drop in voltage and an almost flat voltage profile.

Table 3 shows the least and highest bus voltages in the
RDS after DG allocation. It is seen that these are within the
pre-specified lower and upper limits of 0.9 p.u. and 1.05 p.u.
respectively. It is also seen that, for each type, as the number
of DG units increase, there is an improvement in the least
bus voltages (column 4). The effect of power factor as a
variable in the problem formulation shows up as a marked
improvement in both the least and highest voltages for
PQ+-type (Columns 4 and 6 of the last three rows, compared
to the same columns of the first six rows).

Fig. 3 shows the convergence characteristics of the GWO
and HGWO for the sample case of P-type, 3 DG units RDS
for the 33-bus system. It can be seen that hybridization of
the GWO, by the addition of the evolutionary operators of
crossover and mutation, produces considerable improvement
in both the speed of convergence and optimality of the
solution.

B. IEEE 69-BUS RDS
This system is made up of 69 buses and 68 distribution lines.
The base values are 10 MVA and 12.66 kV. The system has a
total real power demand of 3,801.89 kW and a total reactive
power demand of 2,694.1 kVAr [37]. Bus 3 has three branches
and buses 4, 7, 9, 11 and 12 have two branches, while the other
buses have only one branch connected to their next bus.

The uncompensated or base case power loss for this system
is 224.99 kW. This RDS is solved for P-type, Q-type and
PQ+-type DG units, using the proposed HGWO algorithm.
Each type is applied to the three Cases, of 1 no. DG unit, 2 no.
DG units, and 3 no. DG units. The methods compared against
include all the other four categories of classical, analytical,
metaheuristic methods and hybrid approaches. Table 4 shows
the comparison of simulation results for P-type and Q-type
DG units, for the all these three Cases.

For the 1 DG unit Case, the optimal location of the DG
unit for minimal power loss is the same (bus no. 61) for all
the methods. The proposed HGWO algorithm determines the
optimal size as 1,872 kVA, and the loss is 83.222 kW, that
matches with the loss by other methods.
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TABLE 4. Comparison of simulation results of HGWO for P-type or type-I and Q-type or type-II DG units for 69-bus RDS.

For the 2 DG units Case, the optimal bus locations are the
same at 17 and 61 for all the algorithms, except the HACO.
The power loss of 71.674 kW by HGWO is the least of all
methods, matched by the EA-OPF and HACO.

For the 3 DG units Case, the power loss of 69.425 kW by
the HGWO is the least of all methods, with the exception
of MINLP, which produces 69.426 kW. The bus locations of
these two methods too are the same but differ from those by
other methods.

In summary, MINLP, EA-OPF, Exhaustive OPF and
HGWO produce comparable results. It is to be noted that
Exhaustive OPF method is an exhaustive search method, and
hence, can only be matched, and not outdone. An exhaustive
search is naturally expected to produce the best results, given
the nature of, and computational load of the method. It is to
the credit of the other methods like MINLP, EA-OPF, and
HGWO that they produce results that match those of exhaus-
tive search, with a lower computational burden. Of these
three, HGWO is the only metaheuristic method.

From Table 4, it is also seen that, as the number of DG units
increases, the power loss reduces. Thus, for the HGWO, the
power loss reduces to 69.425 kW for the 3 DG units Case,
as compared to 71.674 kW for the 2 DG units Case, and
83.222 kW for the 1 DG unit Case. For Q-type DG units, for
the three Cases of 1, 2 and 3 DG units, the comparison here
is with the Hybrid method of [27], which is the only work in
recent literature for this particular problem data. The results
by HGWO are marginally better than those by the Hybrid
method. For these almost comparable solutions, there is a
variation in either the bus numbers or DG sizes, suggesting
that there is more than one globally optimal solution, in
finding which the HGWO is better at.

Table 5 shows the results for PQ+-type, for the three Cases
of 1, 2 and 3 DG units, for the IEEE 69-bus RDS. For the 1
DG unit Case, the bus location of 61 is the same for all the
methods. However, the HGWO and the MINLP produce the
least power loss of 23.16 kW.

For Case 2, the HGWO produces the least power loss of
7.20 kW, with the exception of the EA-OPF method, that
matches the HGWO. For Case 3, as in the other Cases, the
HGWO produces the least power loss of 4.26 kW, to be
matched only by MINLP. As with the other Types of DG
units, the power loss reduces with the increase in the number
of PQ+-type DG units, as can be seen in Table 5.

FIGURE 4. Voltage profile improvement of the IEEE 69-bus RDS with the
addition of PQ+-type DG units.

As for the previous 33-bus problem, the addition of
DG units improves the voltage profile of the buses across
the network. Expectedly, this improvement is the most for
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TABLE 5. Comparison of simulation results of HGWO for PQ+-type or type-III DG units, 69-bus RDS.

TABLE 6. Least and highest bus voltages for 69-bus RDS after DG allocation.

TABLE 7. Simulation results of HGWO for P-type and PQ+-type DG units, for 85-bus RDS.

PQ+-type DG units. Fig.4 shows the improvement in the
voltage profile, with the addition of PQ+-type DG units. It
can be seen that addition of more DG units results in more
improvement of the voltage profile. Hence, the 3 DG units
Case has the least drop in voltage, as compared to the other
Cases.

Table 6 shows the least and highest bus voltages in the
RDS after DG allocation. It is seen that these are within the
pre-specified lower and upper limits of 0.9 p.u. and 1.05 p.u.
respectively. It is also seen that, for each type, as the number
of DG units increase, there’s an improvement in the least bus
voltages (Column 4).
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The effect of power factor as a variable in the problem
formulation shows up as a marked improvement in both the
least and highest voltages for PQ+-type (Columns 4 and 6 of
the last three rows, compared to the same columns of the first
six rows). The voltage profile across the RDS is almost flat,
for this Case.

C. INDIAN 85-BUS RDS
This system consists of 85 buses and 84 distribution lines.
The total real power demand of the system is 2,570.28 kW
and the reactive power demand is 2,621.936 kVAr. The base
values are 100MVA, 11 kV [38]. The uncompensated, or base
case power loss is 316.1 kW. This RDS is solved for P-type,
Q-type and PQ+-type DG units, using the proposed HGWO
algorithm. Since there are no other results in the literature for
this problem, the only comparison is the base case.

Table 7 shows the simulation results for P-type and
PQ+-type DG units, for the all these three Cases. The per-
centage reduction in the power loss as compared to the base
case is, 44.48 % for the 1 DG unit Case, 50.48 % for the
2 DG units Case, and 85.32 % for the 3 DG units Case.

The percentage reduction in power loss for the PQ+-type
DG units is 80.18 % for the 1 DG unit Case, 90.72 % for
the 2 DG units Case, and 94.77 % for the 3 DG units Case.
Obviously, among all the Types, it is the PQ+-type that leads
to the maximum reduction of power loss.

VII. CONCLUSION
The work reported in this paper applied the HGWO,
a new metaheuristic algorithm, to solve the non-convex,
discrete, optimal DG allocation problem to the IEEE 33-,
IEEE 69- and Indian 85-bus RDS. The HGWO compares
favorably with other best results in the literature - including
exhaustive search - in terms of optimality of the solution,
thereby suggesting that the solution is a globally optimal one.
A careful study of the tables also shows that, by and large, the
HGWO outperforms all the other metaheuristic methods, and
matches the results by exhaustive search.

Between P-type, Q-type and PQ+-type DG units, the best
results were produced by PQ+-type DG units, for all the
three test cases of IEEE 33-, IEEE 69- and Indian 85-bus
RDSs, considered in this paper. This is easily explained, as
the addition of one more variable (the power factor) in the
solution vector leads to more freedom in the choice of other
variables.

Classical, gradient-based methods are most suitable for
solving convex programming problems. Metaheuristic algo-
rithms are free from the convexity condition required by
classical methods, and hence are inherently capable of find-
ing the global optimum of non-convex problems like the
optimal DG allocation problem. However, this capability is
not automatic; it is dependent on factors like the operators
the algorithm has, to perform an efficient search of the
non-convex solution space. The results in this paper show
that HGWO meets this requirement eminently, thereby out-
performing all the other metaheuristic algorithms on this
problem.

Metaheuristic algorithms being probabilistic in nature, the
solution produced is often nearly the global optimum, but not
the exact global optimum. HGWO performs so well that, the
results produced by it matches those by exhaustive search,
indicating that HGWO is an exceptional performer among
metaheuristic algorithms.

Metaheuristic methods have the limitation that, they often
require tuning on the part of the user, to work correctly. Given
some practical optimization problem, this is can often make
the difference between solving successfully and not solving
the problem. The HGWO is an exception in this respect too:
except for the specification of the population size by the user,
no other tuning is needed for the HGWO.

Future works can consider applying this promising algo-
rithm to other difficult optimization problems in power sys-
tems and other areas. Future refinements of the optimal DG
allocation problem can include other real life objectives like
reliability and robustness, under uncertainties of load and
generation.
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