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ABSTRACT Wireless local area network fingerprint-based indoor localization schemes have been widely
studied because of the increasing requirements of location-based services (LBSs). The features of fingerprint-
based localization are known to have higher precision in indoor environments than traditional methods, such
as triangulation. However, the precision depends on the amount of pre-created received signal strength (RSS)
fingerprints, which is associated with the number of reference points (RPs) of the RSS measurements and
the available signal sources in the environment. In this paper, we consider the resource limitations of todays’
wireless environment and propose an improved fingerprint-based localization approach that adapts a path
loss model for fingerprint creation and localization. Based on the proposed approach, we present two related
localization schemes. The first is a path-loss-based fingerprint localization (PFL) scheme and the second is a
dual-scanned fingerprint localization (DFL) scheme. The PFL attempts to improve positioning precision, and
the DFL attempts to guarantee positioning reliability. Several simulations are performed, and they show that
the proposed schemes improve the positioning precision and reliability in resource-limited environments,
which would improve the practicability of fingerprint-based localizations in indoor LBSs.

INDEX TERMS Location based services, wireless local area networks, fingerprint localization, path loss.

I. INTRODUCTION
In the Internet of Things (IoT) era, indoor location-based
services (LBSs) have rapidly increased to improve the con-
venience of human life in areas such as healthcare monitor-
ing and personal tracking. However, the widely-used Global
Positioning System (GPS) does not work well in indoor envi-
ronments [1]. Hence, with the increased public deployment
of Wireless Local Area Networks (WLANs), WLAN-based
indoor localization techniques have been widely stud-
ied to achieve the localization requirements of various
LBSs [2]–[4]. Compared with GPS localization, which
measures the absolute coordinates of wireless devices,
WLAN-based localization is a scheme that measures relative

coordinates from particular reference points (RPs), such as
WLAN Access Points (APs), or from pre-measured location
information.

WLAN-based localization has flexible adaptability
because WLANs have become a universal civilian network.
However, such localization also faces technical difficulties
because of irregular indoor signal propagation factors. For
example, to use well-known distance-based localization tech-
niques, such as Time of Arrival (TOA) [5], Time Differ-
ence of Arrival (TDOA) [6], Angle of Arrival (AOA) [7]
and Received Signal Strength (RSS) [8], signal propagation
distances among unknown targets and neighboring RPs must
be determined. However, complex indoor environments cause
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None-Line of Sight (NLOS) and multi-path signal propa-
gations, which generate various losses of signal and leads
to inaccurate distance evaluations [9], [10]. Additionally,
fingerprint localization [11]–[13], which is another typical
indoor localization scheme, requires the creation of an RSS
fingerprint database (RSS-map) with a site survey. Normally
this process is time consuming and complex, and it usually
requires sufficient signal sources to guarantee the fingerprint
resolution.

Our research targets WLAN fingerprint-based localiza-
tion schemes, which have been a research focus in recent
years because of their high precision and adaptability.
Generally, fingerprint-based localization includes two
phases. The first phase is an off-line phase, which creates
a fingerprint database by measuring RSS in a batch of
known locations (RPs), and the second phase is an on-line
phase, which analyzes the similarity of RSS patterns
(fingerprint scan) of unknown targets against the information
in a fingerprint database.

Currently, the major challenge associated with fingerprint
localization is how to decrease the positioning cost [14]–[17].
Normally, the cost of fingerprint-based localization can be
categorized into one of two types. The first is the database
creation cost, which includes the site survey and human
resources for collecting RSS data at RPs, and the second is the
cost of installing signal sources that provide the RSS informa-
tion to the RPs (e.g. APs). The resolution of the fingerprint in
each RP depends on the number of available signal sources;
thus, the number of signal sources installed in a build-
ing becomes a critical factor in fingerprint-based localiza-
tions. However, according to studies on wireless
interference [18]–[21], the performance of the wireless
network decreases if too many signal sources share the
same area because of the increasing co-channel interfer-
ence among transmissions. Therefore, an increased number
of signal sources in a building may improve the position-
ing precision while decreasing the performance of wireless
networks. Recent research to improve the performance of
WLAN-applied mechanisms has examined the implementa-
tion of a sleep function for idle APs [22] or a decrease in
the transmission range of APs [23], which implies that the
practicability of WLAN fingerprinting may encounter issues
with signal source limitations.

In most LBSs, reliable positioning is another important
localization demand in personal tracking and room-level
monitoring. Hence, in this article, positioning evaluation
factors are classified as positioning precision and posi-
tioning reliability. The positioning reliability refers to the
probability of positioning precision under a particular
positioning requirement. The relationships among posi-
tioning precision, positioning reliability and positioning
resources in fingerprint-based localizations are described as
follows:
• Positioning precision usually depends on the number
of RPs; however, when the number of RPs reaches a
certain value, the effects of other factors will be reduced,

such as the number of signal sources and the fingerprint
method used.

• Positioning reliability increases with the number of
signal sources because the number of signal sources
indicates the resolution of each RPs fingerprint.

• Less investment in deploying RPs decreases the
positioning precision but has a weaker effect on the
positioning reliability with a sufficient number of signal
sources.

• Limited signal sources cause unreliable positioning pre-
cision, even if the number of RPs is sufficient.

This article proposes a localization approach that improves
the positioning precision under limited signal sources.
In fingerprint-based localizations, additional dimensions of
analyzable factors would theoretically increase the finger-
print resolution and improve the positioning precision under
the same resources, which would decrease the cost of signal
sources required to guarantee a certain positioning precision.
In the article, we utilize the path-loss exponent (PLe) of
the path loss model in fingerprint-based localizations. The
PLe is a sensitive factor related to the signal propagation
distance and signal fading factors, which means that the
PLe can represent an environmental identification factor in
indoor positioning. According to such a feature, an extended
WLAN fingerprint-based localization approach that uses the
PLe is presented in this article, and it is referred to as Path-
loss based Fingerprint Localization (PFL). The PFL utilizes
PLe to create a fingerprint database in the off-line phase,
and it matches the patterns of calculated signal propagation
distances in positioning unknown targets the on-line phase.

We analyzed the traditional fingerprint scheme and the
PFL via simulations, and our results indicate that the
PFL has higher precision. However, several unexpected out-
lier cases indicate high positioning errors and low posi-
tioning reliability. Hence, we proposed another scheme that
combines the RSS and PLe in a fingerprint scan, which is
referred to as Dual-scanned Fingerprint Localization (DFL).
The DFL scheme works as follows: in an on-line phase,
a set of potential locations of an unknown target is esti-
mated by clustering algorithms (e.g., Nearest Neighbor) by
scanning RSS values and analyzing the physical distances
among referenced RPs. Using the same method employed
in PFL, the PLe is then scanned among the potential loca-
tions set to locate unknown targets. The first scan of the
DFL is performed to remove outlier estimates to guarantee
positioning reliability, and the second scan is performed to
precisely locate the unknown target.With several simulations,
we proved that the the DFL provides improved positioning
reliabilities in resource-limited wireless environments.

The first contribution of this article is the proposed PFL.
Traditional research for improving WLAN-fingerprint-
based localization have primarily investigated effective
RSS analysis schemes, such as by improving scanning
algorithms [10], [24], specifying devices [12], or detecting
activity [13]. The PFL adapts a novel environmental path-
loss factor in the fingerprint estimation in addition to RSS,
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which improves the positioning precision by increasing
the specificity of the fingerprint analysis and reducing the
resources required to guarantee a certain positioning preci-
sion. The second contribution is the proposal of the DFL.
The DFL attempts to improve positioning reliability to meet
the universal requirements of todays LBSs. Simulations with
the proposed approaches showed that the PFL has high
positioning precision, whereas others produced outlier esti-
mates. The DFL has lower precision than the PFL but shows
higher positioning reliability, although the precision of the
DFL is still higher than that of traditional fingerprint-based
localizations.

The remainder of this paper is structured as follows.
Section II provides a brief survey of traditional
WLAN-based indoor localizations and presents a per-
formance analysis of triangulation and fingerprint-based
localizations. Section III introduces the path-loss-based fin-
gerprint approaches and two related localization schemes,
PFL and DFL. Section IV presents a performance analysis
of the PFL and DFL via simulations. Section V presents the
conclusions.

II. BACKGROUND ON WLAN-BASED
INDOOR LOCALIZATION
Table 1 lists the traditional WLAN-based localization
approaches for universal LBSs studied in recent years.
The approaches can be categorized into two types by the
studied methods, which are distance-based geometric calcu-
lations and pattern-based data analyses. Localizations based
on TOA, TDOA, AOA and RSS include distance-based
calculations, and they estimate unknown locations through
geometric calculations, such as triangulation with propaga-
tion model [25]. Fingerprint-based localization is a pattern-
based analysis that estimates unknown locations by analyzing
the signal environment via data mining methods, such as
similarity analysis, clustering, etc.

In this section, we discuss the practicability and limi-
tations of conventional WLAN-based localization schemes
in indoor environments. We focus on propagation model
based RSS triangulation and fingerprint-based localization,
which are typical and widely studied localization schemes for
todays LBSs.

RSS-based triangulation normally involves two phases.
The first phase is the collection of RP location informa-
tion (signal sources, usually APs) in a target region. For
example, a GPS andWLAN-equipped vehicle travels through
all the streets in a city, records the coordinates in a certain
period, and collects RSS data from all nearby APs. When
the trip is over, the LBS server integrates the information
and calculates the signal propagation distances from each of
the recorded coordinates to nearby APs via the RSS data
collected for the coordinates, and it then triangulates the
locations of all detected APs with the distance and coordinate
information. The second phase is the localization of unknown
targets. An unknown target sends RSS information from
three or more nearby RPs to a localization server, and then

TABLE 1. WLAN based localization schemes.

the server triangulates the location of the target by calculating
the signal propagation distances according to the received
RSS information. Based on the phases, the major challenge
associated with the scheme is determining how to precisely
calculate the signal propagation distance.

Fingerprint-based localization utilizes RSSs from dif-
ferent signal sources to identify each location, pre-create
a RSS-based fingerprint database and then localize unknown
targets by matching RSS patterns from the database. This
process also involves two phases, known as the off-line and
on-line phase. Both phases use RPs to create a RSS map and
localizing unknown targets. However, the RPs in fingerprint-
based localization are fundamentally different from the RPs
in triangulation because they represent a number of known
locations but not signal sources. The locations of RPs are
relative coordinates in a building, and the patterns of RSS
information for each RP generate a RSS map in the off-
line phase. Then, the unknown targets can be localized by
analyzing the similarities between the sensed RSS informa-
tion and RSS patterns in the RSS-map in the on-line phase.
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In fingerprint-based localizations, the density of RPs and the
number of signal sources are the key factors that improve the
practicability of localization.

A. PERFORMANCE ANALYSIS OF RSS-BASED
INDOOR TRIANGULATION
We present positioning simulations to compare the practi-
cability of RSS-based triangulation and WLAN fingerprint-
based localization in indoor environments. The simulations
are based on a RSS-map dataset created by the KIOS research
center [12]. The training data of the dataset include Wi-Fi
RSS data collected at 105 locations among 9 APs in a 560 m2

typical office environment, and the test data include RSS data
collected at 96 locations. The locations of unknown targets
are calculated by following path loss model [26]:

RSS = TXPWR + GAINTX − PL + GAILRX (1)

PL = PLREF + 10log(dn)+ s (2)

where TXPWR is the transmission power of APs; GAINTX and
GAINRX are the antenna gains in the sender and receiver
sides, respectively; PLREF is the path loss at a determined
distance, which is usually 1 meter; d is the signal propa-
gation distance; n is the PLe (path-loss exponent); and s is
the standard deviation associated with the degree of shadow
fading. We set TXPWR, GAINTX and GAINRX to 12 dBm,
2 dBi and 2 dBi, respectively, which refers to the currently-
populated AP and smartphone specifications. We also set n
to 4 and s to 5 dB (averaged values introduced in [26]).
PLREF is obtained experimentally, and the value is 20 dB
in 1 meter. The locations of unknown targets are triangulated
by the calculated distance among 3 random APs by solving
equation (3), where X and Y are the target’s coordinates,
XRPi and YRPi are the ith RPs coordinates and d is the distance
between the target and RP. (XRP1 − X )2 + (YRP1 − Y )2

(XRP2 − X )2 + (YRP2 − Y )2

(XRP3 − X )2 + (YRP3 − Y )2

 =
 dRP12

dRP22

dRP32

 (3)

Fig. 1 shows the results of the simulations. Only 39%
of the 96 training samples showed positioning errors under
5 meters, which indicates a lack of reliability in the position-
ing. The reason for the lack of reliability is that the distance
information is sensitive to the triangulation factors and an
average PLe value must be used in the distance calcula-
tions because the PLe cannot be predicted if the location is
unknown. Therefore, the deviations in PLe lead to unreliable
distance information in the triangulations which also lead to
difficulties in AP selections for most precise triangulations.
The precision can be improved by increasing the dimensions
of multilateration [equation (3)] or performing multiple tri-
angulations. As shown in Fig. 2, in this case we localize the
targets by calculating the midpoint of multiple triangulations,
using 6 and 9 APs for dual and triple triangulations respec-
tively. However, the unpredictable environmental factors still
limit the practicability of distance-based geometrical posi-
tioning schemes in indoor environments.

FIGURE 1. Distribution of positioning errors by RSS-based triangulations.

Because traditional RSS-based triangulations are not prac-
ticable in indoor environments in reason of the irregular
signal propagation factors, research has focused on advanced
methods of improving adaptability in indoor environments,
such as mitigating the signal fading impact [9] and increasing
the triangulation dimension [27].

Here, we analyze the WLAN-fingerprint-based localiza-
tion and create the RSS fingerprint database for the off-line
phase according to the training data of the KIOS dataset.
In the on-line phase, we evaluate the similarity of RSS pat-
terns between unknown samples and RPs according to the
following steps. First, we create a database that contains the
minimum and maximum RSS values of every RP among
all APs. It is noted that the RSS values vary with the time
duration at each RP because of the irregular variation of
indoor signal fading factors. Hence, measuring RSS values
over different time periods or collecting user feedback would
help enhance the serviceability of the fingerprint database.
Second, we calculate the sum of the Manhattan distance from
the training samples minimum and maximum RSS values to
each RPs minimum and maximum RSS values from all APs
as similarity values. Finally, we set the coordinate of the RP
that has the smallest similarity value as the location of the
sample.

Laoudias et al. [12] used the Euclidean distance of multidi-
mensional RSS values to evaluate the RSS similarity, which
is a simple, practical and easily adaptable similarity analysis.
In this article, we used the cumulative Manhattan distance
according to the minimum and maximum RSS values in
each RP, which is a simpler similarity analysis. The following
equation explains the method, where k represents the index
of RPs and n is the number of signal sources:

sim(k) = (
n∑
i=1

(|RSSRP(i)min − RSSmin|

+|RSSRP(i)max − RSSmax |))/n (4)

And the following pseudo-code 1 explains the localization
process.
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FIGURE 2. Distribution of positioning errors by RSS-based multiple triangulations.

Pseudo-code 1 RSS Based Fingerprint Localizations
Input: Location target; FingerprintSet RPs;
APSet APs;
double temp, sim = POSITIVE_INFINITY ;
Output: Coordinates c;

1 forall the p ∈ RPs do
2 temp = 0;
3 forall the r ∈ APs do
4 temp +=

Abs(p.RSSMin(r)− target.RSSMin(r))+
Abs(p.RSSMax(r)− target.RSSMax(r));

5 end
6 temp = temp/APs.getSize();
7 if temp < sim then
8 sim = temp;
9 target = p;
10 end
11 end
12 c = target.getCoordinates();

Fig. 3 shows the result of the simulations. Our results
indicate that 80% of 96 test samples show positioning error
under 5meters, which represents a considerable improvement
in positioning reliability. These results are similar to that of
the original experiments in [12], which demonstrates that our
similarity calculation method is simple but reliable.

Compared with the RSS-based triangulation method,
the fingerprint-based localization approach showed a much
higher practicability in our simulations. However, based on
the resources used, the fingerprint simulations used 9 APs
while the triangulation simulations only used 3 APs to reach
the same positioning reliability. Hence, we ran the following
simulations to determine the reliability of the fingerprint-
based localization under limited resources. In this simulation,
we used 6 and 3 APs in our analysis of the fingerprint-based

FIGURE 3. Distribution of positioning errors by fingerprint-based
localization.

localization scheme. The APs are selected by considering
whether they are sufficiently spaced apart to measure dissim-
ilar RSS patterns.

Fig. 4 shows that 68% and 59% of the test samples reach
positioning error under 5 meters, which implies that the
practicability of fingerprint-based localization depends on the
number of available signal sources. However, an unknown
target can sense multiple signal sources because it is placed
in a signal-overlapped area. As mentioned in Section I,
a signal-overlapped area causes mutual interference among
signal sources and decreases the performance of wireless
networks. Currently, studies to improve wireless perfor-
mance are focused on reducing the signal-overlapped area,
which means fingerprint-based localizations may encounter
additional problems associated with resource limitations
and implies that studies on fingerprint-based localization
should focus on improving localization schemes under lim-
ited resources.

Fig. 5 compares the positioning precision by cumulative
distribution function (CDF) of positioning errors between
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FIGURE 4. Distribution of positioning errors by fingerprint-based localization (6 and 3 APs).

FIGURE 5. Comparisons of the CDF of positioning errors between triangulations and fingerprint-based localizations.

triangulations and fingerprint-based localizations. We see the
positioning precision of triangulations is slightly improved by
multiple triangulation method with an increased number of
APs; and in case of fingerprint-based localizations the posi-
tioning precision is improved significantly. Thus, the results
suggest that fingerprint-based localizations may have better
practicability than triangulations in indoor environments.

B. RELATED WORKS
The above simulations show that fingerprint-based localiza-
tion has a higher precision and reliability in indoor envi-
ronments than traditional WLAN triangulations; thus, it has
been applied in many studies of state-of-the-art technolo-
gies for todays indoor LBSs. Torres et al. [28] demon-
strated the practicability of fingerprint-based localizations
in room-level positioning via exhaustive experiments and
claimed that the scheme is a robust and affordable solution for
in-home monitoring problems. Zhou et al. [29] pointed to

the effects of irregular environmental factors on fingerprint-
based localizations and characterized the theoretical relation-
ship between the positioning error and RSS distribution by
using a Fisher Information Matrix. Hernandez et al. [30]
developed a continuous space estimator via support vector
regression to cover positions not stored in the fingerprint
database, and it decreased the cost of site surveying in the
off-line phase. Wang et al. [31] presented a deep-learning-
based fingerprinting scheme that analyzed the features of
channel state information and obtained the optimal weights
as fingerprints. D’Souza et al. [32] extended the finger-
print localizations by using context-aware information on
mobile users, and they built a floor plan with the information
and reduced the required number of signal sources and the
effect of wireless interference. Chen et al. [33] presented a
cooperative fingerprint localization method that utilized the
RSS fingerprint database and pair-wise distances measured
by mobile users. The method targeted multi-user indoor
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environments and effectively improved the positioning pre-
cision, which presents tolerance to large-ranging errors and
out-of-date fingerprint databases. Kanaris et al. [34] fused
Bluetooth technologies in WLAN fingerprint localizations,
and they presented a localization algorithm that filters the
WLAN fingerprint database by Bluetooth beacon data and
locates targets in fragments of the initial fingerprint dataset,
which improved the computational performance in the
on-line phase. Li et al. [35] proposed a fingerprint collabo-
ration and assistant-node-based localization method, which
utilizes distance information among assistant nodes and
unknown targets in similarity analyses andmitigates the rang-
ing errors with an adaptive Kalman filter using colored noise.
Niu et al. [36] attempted to avoid the site survey cost
and developed a crowdsourcing-based fingerprint localiza-
tion system, and they also designed an algorithm that com-
bines calibrations and multi-dimensional scaling to position
unknown targets.

The localization schemes with millimeter wave (MMW)
communications and the approaches of simultaneous local-
ization and mapping (SLAM) with WLANs deserve special
mention as the state-of-the-art techniques for indoor local-
izations. MMW communications are introduced as shorter
propagation distances but less path-loss impacts, which
implies a beneficial distance-based localization approaches
for indoor environments. According to the MMW properties,
Guidi et al. [37] proposed an idea that embedding massive
antenna arrays at MMW to next generation Smatphones
and presented a state-space model with Baysian mapping
approach. With numerical simulations, they proved that the
indoor positioning precision can reach centimeter levels.
Olivier et al. [38] noted that the path loss of MMW can
easily exhibit 30 to 40 dB more attenuation (30 to 100+ dB
in case of 802.11 WLANs), and they proposed improved
triangulation, AOA and fingerprinting schemes which
achieved sub-meter positioning precisions by experiments
with 60GHZ MMW. SLAM is a localization approach that
recognizes an unknown environment while simultaneously
keeping track of locations of automatically/randomly mov-
ing targets, which provides a solution to the challenges of
reducing cost forWLANfingerprint-based localizations [39].
Mirowski et al. [40] proposed a method named SignalSLAM
which simultaneously generates the WLAN signal map
with referenced RSS from different types of signal sources
(Bluetooth, NFC and etc.) from participated users.
Zhou et al. [41] proposed an SLAM method named EDGES.
It includes three steps, firstly measures RSS and creates
clustered RSS graphs, then assembles them into a logical
graph and finally maps the logical graph into ground-truth
graph which realizes the indoor WLAN SLAM.

Our work is highly motivated by above contributions. The
practicability of fingerprint-based localizations depends on
the resolution allocated in each fingerprint, which is related
to number of available signal sources. However, few of the
related researches target the resource limited indoor environ-
ment such as building floors with only 3-5 available APs.

Therefore, our works utilized the path-loss exponent as fin-
gerprint factor via RSS in order to improve the quality of the
fingerprints in resource-limited environments for the practi-
cability of fingerprint-based localizations in modern LBSs.

III. PATH-LOSS-BASED WLAN FINGERPRINT
APPROACHES: PFL AND DFL
We describe the proposed path-loss-basedWLANfingerprint
approach in this section. The approach aims to improve the
practicability of fingerprint-based localizations under limited
signal sources. Traditional WLAN-fingerprint-based local-
ization utilizes RSSs from multiple signal sources to cre-
ate a fingerprint database and to position unknown targets.
However, RSSs are sensitive to signal propagation factors;
therefore, fingerprint-based localization methods are usually
associated with high costs because of the need to guarantee a
certain level of positioning precision, such as through a high
density of RPs and a sufficient number of signal sources. Our
approach can exploit additional environmental factors when
scanning fingerprints to improve the analyzability of each
fingerprint, which are PLe and signal propagation distance.
The path-loss model [equation (1), (2)] shows that the path
loss among signal transmissions is the major influencing
factor for RSSs and may also represent the signal propagation
pattern in irregular indoor environment.

A. THEORETICAL ANALYSIS
The practicability of the fingerprint-based localizations
depends on the analyzability of the fingerprint database
which is related to the deviations of the fingerprint values
in every RP. Therefore, theoretically the fingerprint database
with clearer fingerprint variations should represent the envi-
ronmental differences more specifically and leads improved
indoor localizations.

In order to prove the advantage of the proposed approaches,
we compared the RSS, PLe and signal distance values from
a fingerprint dataset, the dataset includes RSS data and phys-
ical locations of RPs, values of PLe and signal distance are
calculated by path-loss model. Fig. 6(a) shows a comparison
of the variations of RSS and PLe values in several RPs with an
assigned AP; and Fig. 6(b) is about RSS values and physical
distances. The Fig. 6 only shows the differences of variations,
values in X axis are not related to each other, same points
in X axis may represent different RP samples.

From Fig. 6(a), we see the variations of RSS and PLe
values showed similar patterns. It is because both the
RSS and PLe values follow the path-loss model [equa-
tion (2)], and the result suggests that the analyzability would
not be significantly improved if only the PLe is used as
fingerprint. The variation patterns of RSS and signal distance
in Fig. 6(b) clearly showed a different result. The signal
distances showed clearer variations than measured RSSs.
The reason is, the location of RPs were artificially deter-
mined that the physical distances from RPs to a signal source
follow uniform distribution compare to the measured RSS
and PLe values which depend on signal propagation factors.
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FIGURE 6. Comparisons of the variations of the RSS, PLe and signal distance values in a fingerprint dataset.

The comparison in Fig. 6 implies that the signal distances
calculated by RSS and PLe should result a higher analyzabil-
ity, and the fingerprint localization approaches with the path-
loss-based signal distance calculation would provide higher
localization practicability for indoor LBSs.

B. PROPOSAL OF A PATH-LOSS-BASED
FINGERPRINT LOCALIZATION
The first scheme of the proposed approach is the PFL scheme.
In this scheme, we categorize RPs into two levels because the
scheme requires two types of location information. The first
level (RPL1) is defined as the coordinates of sensible signal
sources (APs), and the second level (RPL2) is defined as the
coordinates of known locations during RSS collections. The
optimized number of installed RPL1s should be one per room
in the building because the walls between rooms are themajor
influencing factor producing RSS differences. For RPL2s,
the number should be area / required positioning precision2.
The PFL works as follows.

1) In the off-line phase, a fingerprint database is creased
by sets of PLe values in every RPL2. The PLe set
in each RPL2 is calculated according to the measured
RSSs and the distance from the current location to
every RPL1.

2) In the on-line phase, sets of estimated signal prop-
agation distances are utilized in fingerprint scans to
localize unknown targets. The set of signal propagation
distances between an unknown point and every RPL1 is
estimated according to the measured RSSs and the set
of PLe values in the fingerprint database.

The distance (d) and PLe (n) can be calculated by
equations (5) and (6), which are reversed from the path loss
model [equations (1) and (2)]. The shadow fading devia-
tion (s) can use an averaged constant because it has a limited
influence on the calculations (approximately ±2 dB devia-
tions in the path loss calculations). And equation (7) is about

the similarity calculations.

d = 10
TXPWR−RSS+GAINTX−PLREF+GAINRX+s

10n (5)

n = TXPWR−RSS+GAINTX−PLREF+GAINRX+s
10logd (6)

sim_d(k) =

√√√√ n∑
i=1

(dRP(i) − d)2 (7)

The following pseudo-code 2 explains the positioning pro-
cesses of the PFL.

In the off-line phase, the PLe in each RPL2 is calculated
by the averaged RSS value and then stored in a fingerprint
database. In the on-line phase, the signal propagation dis-
tances from the unknown targets to all RPL1s are calcu-
lated as the fingerprint of the target. Then, the distances
from every RPL2 to RPL1s are calculated by the PLe fin-
gerprint in the database. Finally, the similarity of the two
distance sets are analyzed by minimizing the Euclidean dis-
tances according to the Nearest Neighbour (NN) method.
We used Euclidean distances in the similarity analysis
instead of Manhattan distances because the latter require
ranged values, and the distances among RPL2 to RPL1 are
constant.

The PFL method improves the positioning precision
compared with that of RSS fingerprint-based localiza-
tions because the PLe is influenced by both RSSs and
the signal propagation distance, which is a more mean-
ingful fingerprint factor for representing the environment
than RSS.

C. PROPOSAL OF A DUAL-SCANNED
FINGERPRINT LOCALIZATION
We focus on positioning reliability in this subsection. Nor-
mally, positioning reliability depends on positioning preci-
sion; however, it also is highly influenced by the analyzable
fingerprint resolution, which is related to the number of avail-
able signal sources. A lack of signal sources leads the RPs to
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Pseudo-code 2 Path-loss based fingerprint localizations
Input: Location target; LocationSet RPL1, RPL2;
Fingerprint f ;
double d, n, temp, sim = POSITIVE_INFINITY ;
Output: FingerprintSet fDATABASE;
Coordinates c;
// Off-line phase

1 forall the p ∈ RPL2 do
2 forall the r ∈ RPL1 do
3 d = getDis(p.getCoordinate(),
4 r .getCoordinate());
5 n = CalcPLe(p.getRSSAvg(r), d);
6 p.add(r, n);
7 end
8 f = newFingerprint(p);
9 fDATABASE .add(f );

10 end
// On-line phase

11 forall the p ∈ fDATABASE .getRPL2() do
12 forall the r ∈ RPL1 do
13 temp +=

(getDis(p.getCoordinate(), r .getCoordinate())
14 −CalcDis(p.getPLe(r), target.getRSSAvg(r)))2;
15 end
16 temp =

√
temp;

17 if temp < sim then
18 sim = temp;
19 target = p;
20 end
21 end
22 c = target.getCoordinates();

receive similar RSS data in different locations, which leads to
decreased positioning reliability. However, freely increasing
the signal sources in indoor environments is difficult because
of several issues, such as personal privacy and interference
problems.

Therefore, to improve positioning reliability under limited
resources, we propose the DFL scheme. The off-line phase
in the DFL is same as that in the PFL. In the on-line-phase,
the fingerprint scanning processes are separated into two
steps as follows.
1. Set a threshold of RSS differences (rt) according to

the number of signal sources [equation (8)], and scan
the RSS of an unknown target via RPL2s, then esti-
mate a set of potential points (PP) of the unknown
target (Fig. 7).

2. Calculate the central point of the PPs and set a distance
threshold (dt) according to the distribution of distances
from the central point to PPs [equation (9)]. Remove the
PPs that are further than dt . The remaining PPs consist
of a set of candidate points (CPs) (Fig. 8).

3. Scan the PLe via CPs using the same method
applied in the PFL. Locate the unknown

FIGURE 7. Estimating potential points using the DFL.

FIGURE 8. Clustering candidate points using the DFL.

FIGURE 9. Locating a target using the DFL.

target (Fig. 9).

rt =
PLREF − RS

n× c
(8)

dt =

∑n
i=0 dis(PPi,CentralPoint)

N
(9)

The values rt and dt are calculated using equations (8)
and (9), where n is the number of signal sources, RS is the
Receive Sensitivity of the wireless ends, c is a weighted
coefficient related to the required positioning reliability
(2 in normal) and N is the number of estimated PPs in the
first scan. The following pseudo-code 3 explain the on-line
phase of the DFL.

The DFL scheme focuses on positioning reliability to meet
the universal requirements of todays LBSs. The underlying
concept is to remove the most unreliable fingerprints instead
of locating the most similar fingerprint, which is important
because a resource-limited environment may create multi-
ple reference locations that have similar fingerprints despite
being located far apart. Therefore, considering location sim-
ilarity and fingerprint similarity during positioning would
help to improve the positioning reliability. The positioning
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FIGURE 10. Comparisons of CDF of positioning errors between the PFL and DFL.

FIGURE 11. Comparisons of the positioning errors between the PFL and DFL.

precision of the DFL may be lower than that of the PFL
because the first scan uses a traditional RSS analysis, which
is because the RS is used to cluster the CPs, and RSSs are
used in this analysis. An improved scheme for defining the
threshold and clustering CPs represents a future focus of our
research.

Table 2 summarizes the features of traditional RSS-based
localization schemes and the proposed path-loss based local-
ization schemes.

IV. PERFORMANCE ANALYSIS OF THE PATH-LOSS
BASED LOCALIZATION APPROACH
In this section, we present positioning simulations to deter-
mine the performance of the proposed schemes. In the

simulations, the fingerprint database for the off-line phase
is created based on RSS data from the KIOS dataset. For
the on-line phase, we simulate a randomly-moving target and
generate RSS data according to the locations of signal sources
and the PLe calculated for all RPs with a random deviation.
The simulation environment is a 20 m × 30 m area where
9 available APs share the same wireless coverage. In the
simulations, we target three factors for analysis: 1) influence
of resources on the positioning, 2) positioning precision and
3) positioning reliability. The simulations are written with the
Eclipse IDE by Java languages.

Fig. 10 shows the simulation results of CDF of positioning
errors for cases with 3, 6 and 9 APs applied by the PFL and
DFL, the CDFs in Fig. 10 give the probabilities of positioning
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Pseudo-code 3 Double Scanned Fingerprint Localiza-
tions (Online-Phase)
Input: Location target; LocationSet RPL1, RPL2;
FingerprintSet fDATABASE; Coordinates cPoint;
double rt, dt, temp, sim = POSITIVE_INFINITY ;
Output: Coordinates c;

1 rt = setThreshold(RPL1.size());
// Start 1st scanning

2 forall the p ∈ fDATABASE .getRPL2() do
3 temp = 0; forall the r ∈ RPL1 do
4 temp +=

Abs(p.RSSMin(r)− target.RSSMin(r))+
Abs(p.RSSMax(r)− target.RSSMax(r));

5 end
6 temp = temp/APs.getSize();
7 if temp < rt then
8 PP.add(p);
9 end
10 end
11 cPoint = PP.calcCenter();
12 dt = setThreshold(PP); forall the p ∈ PP.getRPL2() do
13 if getDis(p.getCoordinate(), cPoint) < dt then
14 CP.add(p);
15 end
16 end

// Start 2nd scanning
17 forall the p ∈ CP.getRPL2() do
18 forall the r ∈ RPL1 do
19 temp +=

(getDis(p.getCoordinate(), r .getCoordinate())
20 −CalcDis(p.getPLe(r), target.getRSSAvg(r)))2;
21 end
22 temp =

√
temp;

23 if temp < sim then
24 sim = temp;
25 target = p;
26 end
27 end
28 c = target.getCoordinates();

TABLE 2. Comparison of traditional and proposed fingerprint schemes.

errors are under x values, while the y values correspond to the
CDF percentiles.

Fig. 10 shows that the positioning precision is improved
significantly by using an increased number of APs, which

is related to the analyzable fingerprint resolution. Thus,
the results suggest that the number of signal sources should
be considered a major factor for indoor localization, Table 3
shows the mean and variation of positioning errors.

From Table 3, we see the PFL shows higher positioning
precision than the DFL. The PFL positions are closer by
approximately 0.5 m on average in the cases of 3 and 6 APs,
which suggests that the PFL improves the positioning pre-
cision in resource-limited environments. However, we can
also see that the DFL reaches higher positioning reliability
faster than the PFL by comparing the CDFs of 6 and 9 APs
in Fig. 10. Fig. 11 provides detailed results on the positioning
errors for each positioning sample.

TABLE 3. Comparison of mean and variation of errors.

Fig. 11 shows the positioning errors of the position-
ing samples. In order to prove the reliability of our
simulations, we compared our simulation results with the
positioning experiments presented in [12] which adapted
a self-calibration (SC) method, and the results in the case
of 9 APs showed similar patterns as expected. As shown
in Fig. 11, certain positioning samples in the PFL show
positioning errors of more than 10 meters, which indi-
cates that increasing the positioning precision does not
always guarantee the positioning reliability. As expected, the
DFL presents improved positioning reliability where all sam-
ples show positioning errors lower than 10 meters; however,
its positioning precision is lower than that of the PFL as
shown in Fig. 10.

The positioning precision between traditional RSS-based
models and the PFL and DFL is compared in Fig. 12. For
the RSS-based fingerprint localization scheme, we used the
cumulative Manhattan distance according to the minimum
and maximum value of the RSS in the similarity analysis,
which is presented in Section II-A. The positioning precision
is compared according to the average positioning errors of all
samples with an increasing number of APs. The simulation
results show that the PFL has the highest positioning preci-
sion and the precision of DFL is lower than that of the PFL
but higher than that of the RSS-based scheme. These findings
demonstrate that the proposed a path-loss based localization
approach would help to improve the positioning precision of
indoor localizations and reduce the cost of installing signal
sources. This conclusion is based on the similar precision
between the 5 AP case of the PFL scheme and the 7 AP
case of the traditional RSS-based scheme and the equivalent
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FIGURE 12. Comparison of the positioning precisions between RSS-based
schemes and the proposed schemes.

FIGURE 13. Comparisons of the positioning reliability between the
RSS-based and proposed schemes.

precision between the 6 AP case of the PFL scheme and
the 8 AP case of the RSS-based scheme. Fig. 13 shows a
comparison of the reliability of the RSS-based scheme and
the proposed approaches.

The positioning reliability is compared for the 6 AP case to
analyze how the proposed schemes work in resource-limited
environments. The RSS-based traditional scheme and PFL
showed similar reliability, with 68% of the samples showing
a positioning precision of less than 5 meters. The increased
precision of the PFL over the traditional scheme is because it
can locate unknown targets more precisely by analyzingmore
specified environmental fingerprints. However, the irregu-
larity of indoor environments creates similar environmental
fingerprints if the dimensions of the analyzable factors are
limited; therefore, the positioning reliability is more depen-
dent on the signal source resources than observed in the
similarity analysis schemes. The DFL showed the highest
reliability, with 78% of the samples showing a precision
under 5 meters, which was expected because the DFL locates

targets not only by scanning the similarity of fingerprints
but also by analyzing the location differences of multiple
similar points. Finally, the histogram of Fig. 14 summarizes
the advancements of the proposed schemes, which compares
the PFL, DFL, triple triangulations with propagation model
and RSS based fingerprint presented in Section II. All of the
fingerprint based localizations (RSS, PFL and DFL) result
higher positioning precision and reliability than triangula-
tions as expected. The PFL results in the highest positioning
precision, with the highest number of samples showing posi-
tioning errors under 3 meters. The DFL resulted in the highest
positioning reliability, with the lowest number of samples
with positioning errors above 10 meters.

FIGURE 14. Comparisons of the positioning performance between the
traditional and proposed schemes.

V. CONCLUSION
WLAN fingerprint-based localization schemes have been
proposed for indoor LBSs because of their high precision
and easy adaptability. However, the practicability of finger-
print localization depends on the cost invested in fingerprint
creation and the available signal source resources. In this
article, we propose a path-loss based fingerprint localization
approach and present two related localization schemes, PFL
and DFL. The PFL improves the positioning precision by
analyzing environmental path-loss factors instead of RSSs,
which reduces the costs associated with guaranteeing a cer-
tain level of precision. The DFL improves positioning relia-
bility in resource-limited environments in two steps. The first
step is clustering similar potential locations and removing
unreliable ones. The second step is positioning targets from
a CP set. The proposed schemes target positioning preci-
sion and reliability, respectively, which may be adopted in
different situations. For instance, device tracking systems
for industrial environments may adopt PFL to reach higher
positioning precision, and employee tracking applications for
office buildings may adopt DFL to guarantee less precise but
more reliable room-level positioning. The simulation results
suggest that the proposed approach would help to improve
the practicability of fingerprint-based localizations for
indoor LBSs.
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