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ABSTRACT Anon-autonomous second-order memristive chaotic circuit is considered in this paper, which is
comparatively simple, only consisting of a memristor, a capacitor, a resistor, and a sinusoidal voltage source.
Based on the descriptive equation of the memristive circuit, the dynamical behaviors are investigated by
theoretical analyses and numerical simulations. It is noted that the number of AC equilibrium points changes
with the evolution of the time and the circuit exhibits striking dynamical features, including period, chaos,
forward period-doubling, reverse period-doubling, tangent bifurcation, and crisis scenarios. Furthermore,
a hardware circuit is set up by off-the-shelf discrete components, where hardware experiments are performed
to verify the numerical results. Themost significant feature of the proposedmemristive circuit is the inductor-
free realizationwith simplified topology, whichmakes the circuit much simpler andmore intuitive in physical
realization.

INDEX TERMS Chaos, memristive circuit, non-autonomous.

I. INTRODUCTION
As the fourth basic circuit element, memristor, described
by flux and charge [1], brings completely new develop-
ment space in various interdisciplinary areas. Specially, many
researchers started to exploit memristor based application
circuits due to the unique feature of memristor in the past
few years [2]–[16]. Summarily, memristors with versatile
nonlinearities are conveniently integrated into some existing
linear or nonlinear electronic circuits to build various novel
memristive chaotic circuits [17]. Some rich dynamical behav-
iors, such as chaos and hyperchaos [3], [4], hyperchaotic
multi-wing attractors [2], [5], coexisting multiple attrac-
tors [6], [7], hidden attractors [8], complex transient
chaos and hyperchaos [9]–[11], chaotic and hyperchaotic
beats [10], [12], to mention a few, have been revealed from
these memristive chaotic circuits and analyzed by numeri-
cal simulations and hardware experiments. However, due to
technical drawbacks and high cost in fabricating nanoscale
devices, most of the memristors in those application circuits
are equivalently realized by operational amplifiers and analog
multipliers [7], [8], [13], [14], as well as memristive diode
bridges cascaded with RC, LC or RLC filters [6], [15], [16].

Nonlinear electronic circuits have attracted apprecia-
ble attention because they can provide powerful experi-
mental and analytical platforms for people to understand

dynamical behaviors in physics [18], engineering [19], [20],
electronic [21] and neurology [22]. Considering that a sim-
ple nonlinear electronic circuit can serve as a paradigm
for better understanding of bifurcation and chaos, it is a
significant research topic to simplify chaotic circuits by
minimizing the number of dynamic elements and physical
components [23]–[27]. Statistically speaking, non-
autonomous circuits, one of the main forms of chaotic cir-
cuits, contain fewer dynamic elements than autonomous
chaotic circuits since externally driven signals can replace
a dynamic element or an oscillating unit in autonomous
chaotic circuits [25], [26]. Just like many autonomous chaotic
circuits, non-autonomous nonlinear circuits can also exhibit
many interesting dynamical phenomena [10]–[12].

However, in relevant literatures, most of those memristive
chaotic circuits are at least fourth-order autonomous [15] or
third-order non-autonomous [10], [12]. Additionally, when
inductor-free realization without manually winding induc-
tor is presented, the circuit can be regarded as a gadget,
which is more suitable for IC design [27]–[29]. Motivated
by those considerations, by replacing the passive LC filter
with a standard sinusoidal voltage source in the existing
memristive Chua’s circuit [7], the simplest second-order non-
autonomous inductor-free memristive circuit is proposed in
this paper. Dynamical behaviors of limit cycles and strange
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attractors are fortunately obtained by numerical simulations
and hardware experiments. The aim of the present work is
to reveal the unknown features in the proposed memristive
chaotic circuit.

II. NON-AUTONOMOUS MEMRISTIVE CIRCUIT
The schematic diagram of a new non-autonomous second-
order memristive circuit and a memristor equivalent real-
ization circuit are shown in Fig. 1. The proposed circuit is
physically realizable and only consists of a capacitor C1,
a resistor R, a sinusoidal voltage source vs, and a voltage-
controlled W . Compared with the non-autonomous mem-
ristive circuits in [10]–[12], the newly proposed circuit is
second-order and inductor-free realization with a simplified
topological structure outstandingly. Also, the comparisons of
some non-autonomous memrisitve chaotic circuits are given
in Tab.1.

FIGURE 1. Second-order non-autonomous inductor-free memristive
chaotic circuit. (a) Circuit schematic diagram. (b) Equivalent circuit of
memristor.

TABLE 1. Comparison of non-autonomous memristive chaotic circuits.

Memristor is a nonlinear circuit element, which can be used
to realize nonlinearity of the circuit in Fig. 1(a). According
to [7], the equivalent realization circuit of the memristor is
depicted in Fig. 1(b), which is mathematically modeled as

i = W (v0)v = −
1
R3

(1− gv20)v

C0
dv0
dt
= −

1
R1
v−

1
R2
v0 (1)

where v and i are the voltage and current at the input terminal
of thememristor withmemductanceW (v0), respectively. v0 is
the voltage across the integral capacitor C0, and g is the total
gain of the two multipliers M1 and M2.

The proposed circuit in Fig. 1(a) only has two dynamic
elements, which are the capacitor C1 and the active voltage-
controlled memristor with memductanceW (v0), correspond-
ing to two state variables of v1 and v0, respectively. Thus,
the proposed circuit in Fig. 1(a) can be modeled as

dv1
dt
=

vs − v1
RC1

+
(1− gv20)v1

R3C1

dv0
dt
= −

v1
R1C0

−
v0

R2C0
(2)

where vs = Asin(2π ft), and A is the amplitude and f indicates
the frequency.

Taking advantage of the state equations modeled by (2),
theoretical analyses and numerical simulations can be per-
formed for the proposed non-autonomous memristive circuit.
The typical circuit parameters in Fig. 1 are given as R1 =
8 k�, R2 = 4 k�, R3 = 1.4 k�, R4 = R5 = 2 k�,
C0 = 4.7 nF, and g = 0.1 V−2, R = 2.6 k�, C1 = 6.8 nF,
A = 2 V, and f = 7 kHz.

III. EQUILIBRIUM POINTS AND THEIR STABILITIES
By setting the left-hand side of model (2) to zero, an AC equi-
librium point is easily obtained as S̃ = [−R1ṽ0/R2, ṽ0],
in which ṽ0 can be numerically solved by

ṽ30 + pṽ0 + q = 0 (3)

where p = (R3 − R)/(gR) and q = R2R3vs/(gRR1). The roots
of (3) can be derived as

ṽ01 =
−1+ j

√
3

2
×

3

√
−
q
2
+
√
1

+
−1− j

√
3

2
×

3

√
−
q
2
−
√
1 (4)

ṽ02 = 3

√
−
q
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+
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1+ 3

√
−
q
2
−
√
1 (5)

ṽ03 =
−1− j

√
3

2
×

3

√
−
q
2
+
√
1

+
−1+ j

√
3

2
×

3

√
−
q
2
−
√
1 (6)

where 1 = (q/2)2 + (p/3)3.
According to Cardan discriminant [30], when1 > 0, there

exists a real root and two complex roots. Since the equilibrium
point cannot be complex number, one equilibrium point is
obtained from (5). However, when 1 = 0, the two complex
roots in (4) and (6) evolve to one real root, leading to the
fact that two real roots appear in (3). Therefore, the proposed
circuit has two equilibrium points. Similarly, when 1 < 0,
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FIGURE 2. Cradan discriminant and equilibrium points vary with the
evolution of the time under different resisters of R. (a) Cradan
discriminant. (b) Number and values of equilibrium points.

there are three real roots in (3), which manifests that the
proposed circuit has three equilibrium points and can be
obtained from (4) – (6). For the specified circuit parameters,
when R varies from 1.9 k� to 2.8 k�, Cardan discriminant1
and the number of equilibrium points with the evolution of the
time are presented in Fig. 2. It can be seen from Fig. 2(a) that
1 is a periodic function of the time, and the sign of Cardan
discriminant varies with the evolution of the time for each R,
leading to the situation that the number of the equilibrium
points changes from three to two, to one, to two and then
to three in a half period of vs between the two dotted lines,
as shown in Fig. 2(b).

By linearizing (2) around AC equilibrium points, the
Jacobian matrix is given by

J =

−
1
RC1
+

1− gṽ20
R3C1

−2gR1ṽ20
R2R3C1

−
1

R1C0
−

1
R2C0

 (7)

The characteristic equation associated with (7) is

λ2 +

(
1
RC1
+

1
R2C0

−
1− gṽ20
R3C1

)
λ−

1+ gṽ20
R2R3C1C0

= 0 (8)

Depending on the eigenvalues at the AC equilibrium points,
the stabilities are determined by the sign of 1.

(i) When 1 < 0, there are two pairs of complex conjugate
roots with negative real parts and two real roots with opposite
signs for the three equilibrium points.

(ii) When 1 = 0, there are a pair of complex conjugate
roots with negative real parts for one equilibrium point, and
one zero root and one negative real root for the other.

(iii) When 1 > 0, there is a pair of complex conjugate
roots with negative real parts for the unique equilibrium point.

It can be summarized that two stable foci and one unstable
saddle point exist for 1 < 0, one stable focus and a fold
bifurcation point (FBP) appear for 1 = 0, and one stable
focus remains for 1 > 0. The red line denotes the unstable
saddle point and the dots colored in cyan are FBPs in Fig. 2(b)
specially. Note that the characteristic equation for FBP has
one zero root and one negative real root.

In particular, when vs = 0, the circuit in Fig. 1(a) is
degraded into a second-order autonomous circuit. Thus, three
DC equilibrium points for R > R3 are yielded as

S̄0 = (v̄1, v̄0) = (0, 0)

S̄± = (v̄1, v̄0) = (±
R1
R2

√
R− R3
gR

,∓

√
R− R3
gR

) (9)

The stability of each DC equilibrium point is derived by solv-
ing the characteristic equation of (7) with v̄0. For the above
given circuit parameters, the eigenvalues that characterize the
stability of the DC equilibrium points are calculated as

S̄0 : 48481,−53191

S̄± : −26596± j66710 (10)

which indicate that S̄0 is an unstable saddle point and S̄± are
two stable foci.

IV. NUMERICALLY SIMULATED DYNAMICS
In our next work, typical circuit parameters given in Sec. II
are employed and the initial states are taken as v1(0) = 0 V
and v0(0) = 0 V. Furthermore, MATLAB ODE45 algorithm
with time step 10−6 is utilized to draw bifurcation diagrams
and phase portraits, and Wolf’s method proposed in [31] is
used to calculate Lyapunov exponents.

A. DYNAMICS DEPENDING ON PARAMETER R
With R increasing from 1.9 k� to 2.8 k�, single-
parameter bifurcation diagram of the state variable v1 and
Lyapunov exponent spectra are presented, as shown in Fig. 3,
from which the striking dynamical features including
period, chaos, forward period doubling bifurcation (FPDB),
reverse period doubling bifurcation (RPDB), tangent bifur-
cation (TB), and crisis scenarios (CSs) are observed. In the
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FIGURE 3. Single-parameter bifurcation diagram of v1 and Lyapunov
exponent spectrum with R increasing.

considered parameter range of R, the dynamics starts from
period-1, to period-2, to period-4, and then enters into
chaos via the forward period doubling bifurcation route.
Finally, the dynamics settles into period-1 via the reverse
period doubling bifurcation. In the chaotic region, some
periodic windows with different periodicities occur. When
1.9 k� ≤ R ≤ 1.98 k�, 2.19 k� ≤ R ≤ 2.46 k�, 2.51 k� ≤
R ≤ 2.58 k� or 2.69 k� ≤ R ≤ 2.8 k�, the circuit shows
various periodic behaviors with the first Lyapunov exponent
less than zero. However, when 1.98 k� < R < 2.19 k�,
2.46 k� < R < 2.51 k� or 2.58 k� < R < 2.69 k�,
the first Lyapunov exponent is mainly positive, but it is less
than zero in some narrow parameter ranges, which indicates
the occurrence of chaotic behaviors with periodic windows.
Note that the crisis scenarios happen at R = 2.19 k� and
R = 2.58 k� with sudden appearance or disappearance of
the chaotic behaviors, and the tangent bifurcation occurs in a
periodic window with the chaotic state suddenly turning into
period-5 at R = 2.51 k�.

For the arbitrary values of R and same initial states used
in bifurcation diagrams, the trajectories of (2) on the v1 − v0
plane are numerically simulated, as shown in Fig. 4, respec-
tively. The line colored in red denotes the trajectory of the
unstable AC equilibrium point, and the lines colored in cyan
denote the trajectories of stable AC equilibrium points. These
numerical results just emulate the striking dynamical features
of period and chaos emerging from the proposed circuit. From
Fig. 4, it is found that the proposed circuit in Fig. 1 can
generate chaotic attractors with three different topological
structures, which implies that the proposed circuit is chaotic
genuinely.

B. BIFURCATION BEHAVIORS DEPENDING
ON SINUSOIDAL SOURCE
With f increasing from 4 kHz to 9 kHz and A increasing
from 1.5 V to 3.5 V, single-parameter bifurcation diagrams
and Lyapunov exponent spectra are depicted in Figs. 5 and 6,
respectively, which clearly indicate that the dynamical

FIGURE 4. Numerical trajectories under different values of R on the v1–v0
plane. (a) Period-1 limit cycle at R = 1.9 k�. (b) Chaotic attractor at
R = 2.1 k�. (c) Period-3 limit cycle at R = 2.4 k�. (d) Period-5 limit cycle
at R = 2.55 k�. (e) Double-scroll chaotic attractor (R = 2.6 k�).
(f) Chaotic spiral attractor (R = 2.66 k�).

FIGURE 5. Single-parameter bifurcation diagram of v1 and Lyapunov
exponent spectrum with f increasing.

behaviors exist in the proposed circuit, including period,
chaos, periodic window, forward period doubling bifurca-
tion (FPDB), reverse period doubling bifurcation (RPDB),
tangent bifurcation (TB), crisis scenario (CS), and so on.

In Fig. 5, there are periodic behaviors with the first expo-
nent less than zero and chaotic behaviors with positive first
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FIGURE 6. Single-parameter bifurcation diagram of v1 and Lyapunov
exponent spectrum with A increasing.

FIGURE 7. The experimental circuit of the proposed circuit, the left is a
overviewed graph and the right is an enlargement of circuit breadboard.

Lyapunov exponent in the considered parameter range of the
frequency f . The crisis scenario happens when f = 5.37 kHz
and the tangent bifurcation occurs when f = 5.65 kHz.
Nevertheless, when the amplitude is selected as a variable,
the tangent bifurcation happens when A = 2.02 V and the
crisis scenario occurs when A = 3.41 V, as shown in Fig. (6).
It is interested that when 2.79 V ≤ A ≤ 3.41 V, the first
Lyapunov exponent crosses the zero line alternately, which
indicates that dynamical behaviors vary between periodic
cycles and chaos as A increases.

V. HARDWARE EXPERIMENTS AND
CAPTURED ATTRACTORS
With the circuit schematic in Fig. 1, an analogue electronic
circuit is practically set up by some commercially avail-
able components, as shown in Fig. 7, where potentiometers
and monolithic capacitors as well as operational amplifiers
AD711KN and multipliers AD633JN with bipolar ±15 V
supply are adopted. The circuit parameters used during

FIGURE 8. Attractors observed by digital oscilloscope under different
values of R in the v1–v0 plane. (a) Period-1 limit cycle at R = 1.9 k�.
(b) Chaotic attractor at R = 2.1 k�. (c) Period-3 limit cycle at R = 2.4 k�.
(d) Period-5 limit cycle at R = 2.55 k�. (e) Double-scroll chaotic
attractor (R = 2.6 k�). (f) Chaotic spiral attractor (R = 2.66 k�).

numerical simulations are employed in hardware experiments
and Tektronix AFG 3102C is taken as the sinusoidal volt-
age source. All of the resistors in our hardware experiments
are replaced by precision potentiometers and their values
are measured by Tonghui TH2816A Precision LCR Meter.
Additionally, the experimental results are captured by a
Tektronix TDS 3034C digital oscilloscope in XY mode with
1.8 V/div in X direction and 1 V/div in Y direction. Note that
one auxiliary voltage follower circuit realized by an operation
amplifier AD711KN U0 is hired in experimental measure-
ments to isolate the applied sinusoidal voltage source.

A precision potentiometer is utilized for the adjustable R
and its resistance is gradually tuned. For different values
of R used in numerical simulations, the attractors observed by
the digital oscilloscope in the v1–v0 plane are shown in Fig. 8.
Remark that ignoring the minor deviations caused by para-
sitic circuit parameters and active device non-idealities, the
experimental results shown in Fig. 8 are well consistent with
the numerical results in Fig. 4, which illustrates the existence
of striking dynamics in the second-order non-autonomous
inductor-free memristive chaotic circuit.

VI. CONCLUSION
By driving a parallel memristor and capacitor filter
with a sinusoidal voltage source, a simple second-order
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non- autonomous inductor-free memristive chaotic circuit
is presented in this paper. Numerical simulations and the
corresponding hardware experiments are performed, which
indicate that the simple circuit has dynamical behaviors of
limit cycles with different periodicities and chaotic attrac-
tors with three different topological structures. It is notable
that the dynamical behaviors must be induced by the time-
evolutional equilibrium points. Specially, compared with
the pioneering works of non-autonomous chaotic circuits,
the significant features of the proposed memristive circuit are
that the circuit only contains two dynamic elements and is
an inductor-free realization with hardware gadget, which is
suitable for IC design.
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