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ABSTRACT As a breakthrough in the field of machine fault diagnosis, deep learning has great potential
to extract more abstract and discriminative features automatically without much prior knowledge compared
with other methods, such as the signal processing and analysis-based methods andmachine learningmethods
with shallow architectures. One of the most important aspects in measuring the extracted features is whether
they can explore more information of the inputs and avoid redundancy to be representative. Thus, a stacked
sparse autoencoder (SAE)-based machine fault diagnosis method is proposed in this paper. The penalty term
of the SAE can help mine essential information and avoid redundancy. To help the constructed diagnosis
network further mine more abstract and representative high-level features, the collected non-stationary and
transient signals are preprocessed with ensemble empirical mode decomposition and autoregressive (AR)
models to obtain AR parameters, which are extracted based on the intrinsic mode functions (IMFs) and
regarded as the low-level features for the inputs of the proposed diagnosis network. Only the first four
IMFs are considered, because fault information is mainly reflected in high-frequency IMFs. Experiments
and comparisons are complemented to validate the superiority of the presented diagnosis network. Results
fully demonstrate that the stacked SAE-based diagnosis method can extract more discriminative high-level
features and has a better performance in rotating machinery fault diagnosis compared with the traditional
machine learning methods with shallow architectures.

INDEX TERMS Sparse autoencoder, ensemble empirical mode decomposition, autoregressive model, fault
diagnosis.

I. INTRODUCTION
Rotating machinery is the most widely used mechanical
equipment in the industrial field and of great importance
to the economic development of the society. Faults that
occur in rotating machinery may result in huge economic
losses and even casualties. In order to monitor the operation
condition and improve the security and reliability of the
rotatingmachinery as well as avoid unexpected casualties and
economic losses [1], many researchers have devoted to study
fault detection and many methods have achieved successful
applications. Signal processing and analysis-based meth-
ods are successfully used in machine fault diagnosis, such
as the wavelet transform (WT), Wigner-Ville distribution,

empirical mode decomposition (EMD), ensemble empiri-
cal mode decomposition (EEMD), and envelope analysis.
Bouzida et al. [2] applied discreteWT to extract features from
awide range of frequencies and recognized faults in induction
machinery. Yan et al. [3] provided a WT review in fault
diagnosis. He et al. [4] proposed an EMD-based fault sig-
nature analysis method for rotating machinery. Feng et al. [5]
utilized EEMD and Teager energy operator to extract the
bearing fault characteristic frequency and then successfully
detected the bearing faults. Lei et al. [6] provided a detailed
description and application of EMD- and EEMD-basedmeth-
ods and their variations in rotating machinery fault diagnosis.
These methods based on signal processing and analysis have
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achieved great success in fault diagnosis; however, they all
rely on a large amount of manpower to extract discrimina-
tive features and analyze these features for accurate fault
diagnosis, which is time-consuming and requires abundant
expertise about signal processing and analysis as well as
fault diagnosis. Thus, it is difficult to deal with big datasets.
Many intelligent fault diagnosis methods, such as support
vector machine (SVM) as well as its variations and artificial
neural networks (ANNs), have been successfully utilized
in the field of fault diagnosis because of the development
of machine learning techniques. Liu et al. [7] proposed a
kernel joint approximate diagonalization of eigen-matrices-
based feature fusion method and used SVM for bearing fault
identification. Shen et al. [8] introduced a wavelet packet
transform (WPT) and an SVM-based fault diagnosis method.
Shen et al. [9] used multi-class transductive SVM to diagnose
faults in gear reducers with artificially extracted features
by EMD. Samanta and Nataraj [10] extracted statistical
features in the time domain and utilized ANNs and SVM
for bearing fault diagnosis. Although these machine learning
methods can automatically discriminate faults based on arti-
ficially extracted features, which significantly reduce labor
consumption for recognition, the shallow architecture limits
the capability of automatically learning high-level essential
information from the inputs. Thus, traditional machine learn-
ing methods highly depend on artificially extracted discrim-
inative features as the inputs. It is difficult to determine the
most suitable features to be extracted and different features
may directly lead to different diagnosis results, which is time-
consuming and unstable [11]. Deep learning is regarded as
a significant breakthrough in machine learning, and their
deep architectures can be exploited to further learn high-
level essential features automatically based on the inputs
with great potential [12]. Compared with traditional machine
learning methods, the performance of the deep learning
methods depends on their learning ability of the complex
and non-linear relationship of the inputs instead of the inputs
themselves. That is, the inputs are only performing as low-
level features regardless whether they are preprocessed or
not, and deep learning methods can further extract more
discriminative and high-level features automatically based on
the inputs. These extracted high-level features are the key to
achieve a satisfying fault diagnosis performance. At present,
deep learning methods have been successfully applied in
speech recognition [13], [14], computer vision [15]–[19],
natural language process [20], and medical application [21].
Hannun et al. [13] proposed a speech recognition system
based on recurrent neural network. Ronao and Cho [15]
applied convolution neural network (CNN) to extract robust
features automatically and data-adaptively for human activity
recognition. Ji et al. [16] successfully developed a 3D CNN
for human action recognition. Liu et al. [17] applied dis-
criminative deep belief networks (DBNs) to classify visual
data. Johnson and Zhang [20] successfully applied CNN
for text categorization. Koziol et al. [21] applied restricted
Boltzmann machines to recognize hepatocellular carcinoma.

An increasing number of researchers are motivated by the
achievements of deep learning methods in the recogni-
tion fields aforementioned; they are devoted in applying
deep learning methods to the machine fault diagnosis field.
Tran et al. [22] successfully used DBN to detect faults
in valves of reciprocating compressor with Teager-
Kaiser energy operator for preprocessing. Tamilselvan and
Wang [23] successfully used DBN for the health diagnosis
of aircraft and electric power transformer. Jia et al. [24]
successfully utilized a deep neural network (DNN) based
on autoencoders (AE) for fault diagnosis of bearings and
planetary gearboxes with the original signals in the frequency
domain. Shao et al. [25] proposed an AE-based enhancement
deep feature fusion method. Li et al. [26] combined deep
Boltzmann machines and SVM to form a multimodal deep
support vector classificationmethod for gearbox fault diagno-
sis. In addition to recognize the fault types with deep learning
methods, Gan et al. [27] and Guo et al. [28] presented a
hierarchical fault diagnosis network respectively based on
DBN and CNN to automatically classify the bearing fault
types and fault severity.

One of the most important aspects in measuring the fea-
tures extracted by deep learning methods is whether more
input information can be explored and whether redundancy
can be avoided to be representative. Thus, this study proposes
a diagnosis network based on sparse autoencoder (SAE) with
a penalty term that helps mine more abstract and essential
features as well as avoid redundancy to be representative.
Research shows that parameters of an autoregressive (AR)
model reflect the most sensitively to the state change [29].
Thus, AR parameters are extracted as the low-level features
for the inputs to help the proposed network further mine high-
level features, which are more abstract, representative, and
effective for recognition. However, anARmodel is unsuitable
for non-stationary signals; thus, EEMD is applied in this
study to preprocess the collected non-stationary fault signals.
Then, an AR model is established based on the intrinsic
mode functions (IMFs) decomposed by EEMD. Because
fault information is mainly reflected in high-frequency IMFs,
only the first four IMFs are considered, and the extracted
AR parameters are regarded as the inputs of the proposed
diagnosis network, which also helps reduce the dimension of
the inputs and simplify the calculation. Compared to EMD,
EEMD can overcome mode mixing; thus, EEMD is used in
this study for preprocessing.

In summary, this study proposes a diagnosis network based
on stacked SAE that combines EEMD and AR models for
rotating machinery. The signals are firstly preprocessed by
EEMD to obtain IMFs. Subsequently, an optimal AR model
based on each IMF is established to obtain AR parameters
as the inputs of the diagnosis network. Two cases, namely,
bearing and gearbox fault diagnoses, are complemented to
validate the performance of the proposed diagnosis network
because bearings and gearboxes are vital elements of rotating
machinery, which directly influence the operating conditions
of rotating machinery.
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The rest of the paper is organized as follows. Section 2
introduces the background of EEMD and AR parameter
extraction based on EEMD. Section 3 details the structure
of the stacked SAE network. The proposed diagnosis pro-
cedure is detailed in Section 4. In Section 5, experiments
and comparisons are implemented to validate the availability
and superiority of the proposed diagnosis network. Important
discussions and conclusions are respectively presented in
Section 6 and Section 7.

II. EEMD AND AR PARAMETER EXTRACTION
BASED ON EEMD
A. EEMD
EEMD decomposes any non-stationary signal s(t) into
several IMFs, as depicted in (1).

s(t) =
I∑
ε=1

cε(t)+ rI (1)

where rI is the residual term, and cε(t)(ε = 1, 2 · · · I )
are IMFs that represent different frequency components from
high to low. The decomposition process must follow the
following definitions:

(1) The number of the zero-crossing points and the extreme
must either be equal or different at no more than one for all
datasets;

(2) The mean value of the envelope, which is defined by
the local maxima and local minima, is equal to zero.

B. AR PARAMETER EXTRACTION BASED ON EEMD
The ARmodel is applicable for linear prediction with param-
eters that reflect the characteristic of the system and sensitive
to condition change. However, the AR model is not applica-
ble in analyzing non-stationary signals. Therefore, EEMD is
necessary and the AR model based on the IMFs decomposed
by EEMD is established. For a zero-mean IMF c(t), the AR
model can be established using (2), where P is the order,
w(t) is the white noise with the mean of zero and the variance
of σ 2

w , and ak (k = 1, 2 · · ·P) are the weighted coefficients.

c(t) =
P∑
k=1

akc(t − k)+ w(t) (2)

The AR parameters based on EEMD are extracted by follow-
ing three main procedures.

(1) Decompose the original signal with EEMD to get IMFs.
(2) Select the optimal AR model order.
The optimal order is the key foundation in establishing

an optimal AR model. A high order implies over-fitting and
results in more calculation, whereas a small order cannot
reach optimal fitting. The final prediction error (FPE) crite-
rion is applied to determine the optimal AR order P, which
is obtained when the criterion obtains the minimum value.
N denotes the length of the signal to be modeled, as shown
in (3).

FPE(P) =
N + P
N − P

σ 2
w (3)

(3) Establish an optimal AR model for each IMF and esti-
mate the AR parameters including the weighted coefficients
and one variance.

For each IMF, AR weighted coefficients are calculated
with the least square method after determining the AR
order P. On the basis of (2), w(t) and σ 2

w can be written as
(4) and (5) respectively. After the AR weighted coefficients
ak (k = 1, 2 · · ·P) have been obtained, the variance σ 2

w can
be calculated using (5). For a P-order AR model, P weighted
coefficients and one variance can be obtained and converted
into a (P+ 1)-dimensional vector.

w(t) = c(t)−
P∑
k=1

akc(t − k) (4)

σ 2
w =

1
N − P

N∑
t=P+1

(c(t)−
P∑
k=1

akc(t − k))2 (5)

III. BRIEF INTRODUCTION TO THE STACKED
SAE-BASED NETWORK
A. SAE
Fig. 1 shows that an AE is an unsupervised feature learning
neural network with three layers, namely, the input layer that
represents inputs, the hidden layer that represents learned
features, and the output layer with the same dimension of
the input layer that represents reconstruction. The input and
hidden layers form the encoder network responsible for trans-
forming the original inputs into hidden representation codes,
whereas the hidden and output layers form the decoder net-
work responsible for reconstructing the original inputs from
the learned hidden representation codes.

FIGURE 1. Architecture of AE.

For each input vector xd from datasets
{
xd
}M
d=1, the repre-

sentation vector hd and the reconstructed vector x̂d can be
defined as (6) and (7), respectively, where W (1) and W (2)
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are the weight matrices, b(1) and b(2) are the bias vectors,
and f is the active function. The sigmoid function is used
in this study. The reconstruction error L(xd , x̂d ) between x̂d

and xd is defined as (8). The overall cost function of the M
samples can be defined as (9). The first term of (9) denotes
the reconstruction error of the whole datasets, and the second
term is the regularization weight penalty term, which aims
to prevent over-fitting by restraining the weights magnitude.
λ is the weight decay parameter, nl is the layer number of the
network, sl denotes the neuron number in layer l, and W (l)

ji
is the connecting weight between neuron i in layer l + 1 and
neuron j in layer l.

hd = f (W (1)xd + b(1)) (6)

x̂d = f (W (2)hd + b(2)) (7)

L(xd , x̂d ) =
1
2

∥∥∥xd − x̂d∥∥∥2 (8)

J (W , b) =

[
1
M

M∑
d=1

L(xd , x̂d )

]
+
λ

2

nl−1∑
l=1

Sl∑
i=1

Sl+1∑
j=1

(W (l)
ji )

2

(9)

However, the AE simply copies the inputs; that is, although
the learned feature representations may perfectly reconstruct
the original inputs, the features are redundant and are not
representative enough for classification to some extent. Thus,
the cost function of the AE is added with a sparsity penalty
term, and the SAE, which has great potential to learn more
abstract and representative compressed features of the inputs
than the AE, can be obtained. Equation (10) shows the overall
cost function of the SAE, where J (W , b) is shown before
as (9), and the second term is the sparsity penalty term,
where ρ̂g(g = 1, 2 · · · e) is the average activation value of
the hidden unit g, which is defined as (11), ρ is an artificially
given small value called the sparsity parameter, and β is the
sparsity penalty term parameter used to control the relative
importance between the first reconstruction term and the
second penalty term.

Jsparse(W , b) = J (W , b)

+β

e∑
g=1

(ρ log
ρ

ρ̂g
+(1− ρ) log

1−ρ
1−ρ̂g

) (10)

ρ̂g =
1
M

M∑
d=1

hdg (11)

The SAE aims to learn more representative and sparse
features, which can remain and extract as much as more infor-
mation of the inputs instead of simply copying the inputs,
by minimizing the cost function Jsparse(W , b) using the back
propagation (BP) algorithm [30]. The optimal parameter sets
W (1),W (2), b(1), and b(2) can be learned simultaneously using
the minimizing process, which is called the training process
of the SAE, as shown in Fig. 2.

FIGURE 2. SAE training process.

B. SOFTMAX CLASSIFIER
Softmax classifier is commonly used in neural networks for
multi-class classification. Suppose that the training datasets
can be described as {(z(1), y(1)), . . . , (z(m), y(m))}, where
z(i) ∈ Rb, i = 1, 2, . . . ,m is one of the input vectors of
the softmax classifier and y(i), i = 1, 2, . . . ,m is the cor-
responding label. Assume that the training datasets belong
to q different classes; thus, the labels have q different val-
ues and y(i) ∈ {1, 2, . . . , q}. For each input vector z(i), the
hypothesis hθ (z(i)) defined in (12) estimates the probability
of z(i) belonging to class v, which is the probability of y(i) =
v, v = 1, 2, . . . , q. In (12), θ ∈ Rq×b is the parameter
matrix of the softmax classifier defined in (13). To describe
the error between the target and predicted class labels, the
cost function of the softmax classifier J (θ ) is defined as (14),
where the second term γ

2 ‖θ‖
2
2 is the weight decay penalty

term that prevents over-fitting, and γ is the penalty term
parameter used to control the relative significance between
the first and second terms. Similar to the training process of
the SAE, BP optimization algorithm is also used to train the
softmax classifier to obtain the optimal parameter matrix θ ,
and establish the suitable transformation between the inputs
and the target label values by minimizing the error between
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the target and predicted label values.

hθ (z(i)) =


p(y(i) = 1|z(i); θ )
p(y(i) = 2|z(i); θ )
...

p(y(i) = q|z(i); θ )

 = 1
q∑

µ=1
eθ

T
µz(i)


eθ

T
1 z

(i)

eθ
T
2 z

(i)

...

eθ
T
q z

(i)


(12)

θ =
[
θT1 θT2 · · · θ

T
q

]T
(13)

J (θ ) = −
1
m


m∑
i=1

q∑
v=1

1{y(i) = v} log
eθ

T
v z

(i)

q∑
µ=1

eθ
T
µz(i)

+ γ2 ‖θ‖22
(14)

C. STACKED SAE NETWORK
A stacked SAE network with U hidden layers can be viewed
as a stack of U SAEs, as shown in Fig. 3. The input and
the first hidden layers are viewed as the encoder network
of SAE1, whereas the first and the second hidden layers are
viewed as the encoder network of SAE2, and so on. The
softmax classifier is added to the output layer of the neural
network for classification.

FIGURE 3. Architecture of the stacked SAE network.

Fig. 4 shows the training process of the stacked SAE
network, which is composed of twomain procedures, namely,
pre-training and fine-tuning. The pre-training process aims
to pre-train each SAE and the softmax classifier at a time
to learn the intra-relationship of each model. First, the BP
optimization algorithm is used to train SAE1 as introduced
in Part A, and the optimal parameter sets W (1)

1 , W (2)
1 , b(1)1

and b(2)1 can be obtained by optimizing the cost function as

FIGURE 4. Training process of the stacked SAE network.

depicted in (10). After SAE1 is well trained, the first hid-
den representation code hd1 can be calculated as (15), which
is regarded as the input vector of SAE2. Correspondingly,
SAE2 can also be well trained by minimizing the cost func-
tion with BP algorithm, and the second hidden representation
hd2 can be calculated as the input vector of SAE3. The pro-
cess is repeated until the U th SAE is well trained, and the
U th hidden representation hdU can be calculated as (16),
which is regarded as the input vector of the softmax
classifier. Once hdU is obtained, the softmax classifier is pre-
trained through supervised learning as introduced in Part B,
to obtain the optimal parameter matrix θ by minimizing the
error between the target and predicted class label values.
In summary, the pre-training process aims to learn the intra-
nonlinear transformation relationship of each single SAE and
the relationship between the learned high-level features and
target labels, which also helps the network obtain a set of
optimal weight initialization for the stacked SAE network
compared to the random initialization [31].

hd1 = f (W (1)
1 xd + b(1)1 ) (15)

hdU = f (W (1)
U hdU−1 + b

(1)
U ) (16)

Compared to the pre-training process that only considers
the intra-relationship of each layer, the fine-tuning pro-
cess aims to learn the inter-relationship among layers
and establish the suitable relationship between the learned
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FIGURE 5. Diagnosis flow chart of the proposed stacked SAE network.

Algorithm 1 Fine-Tuning Process
Step 1: Perform a feed forward pass and compute the activation vectors of each layer.
Step 2: Compute the residual error of the network according to the error between the target and practical outputs.
Step 3: Propagate the residual error back from the softmax classifier layer to the input layer.
Step 4: Update the parameters of each layer with the gradient descent.
Step 5: Repeat Steps 1 to 4 until the maximum iteration is achieved.

high-level intrinsic features and the health conditions, which
is useful for classification. Algorithm 1 presents the fine-
tuning process.

IV. PROPOSED STACKED SAE-BASED FAULT
DIAGNOSIS METHOD
Fig. 5 details the flowchart of the proposed stacked
SAE-based diagnosis method. The original datasets are ini-
tially decomposed into several IMFs. Then, the FPE criterion
is used to select the optimal AR model order P and establish
the optimal AR model for each IMF. Only the first four IMFs

are considered, because fault information is mainly reflected
in high-frequency IMFs. Thus, AR parameters, including P
weighted coefficients and one variance can be obtained for
each IMF. A 4 × (p + 1)-dimensional vector can be con-
verted as the input vector of the network for each original
signal. Subsequently, the entire input vectors are randomly
divided into training and testing two datasets, in which the
former is responsible for training the constructed stacked
SAE network, whereas the latter is responsible for validating
the performance of the stacked SAE-based diagnosis network
after being well-trained.
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TABLE 1. Detailed information of the bearing datasets.

FIGURE 6. Test rig for bearing signals.

V. EXPERIMENTS FOR VALIDATION
A. CASE 1: VALIDATION WITH BEARING DATASETS
1) DATA INTRODUCTION
The bearing datasets obtained from the CaseWestern Reserve
University are used to validate the effectiveness of the con-
structed stacked SAE-based fault diagnosis network. Fig. 6
shows the test rig.

When the data sampling points are set to 1000 and sampled
at 12 KHz, datasets containing four different health con-
ditions, namely inner race fault (IF), ball fault (BF), outer
race fault (OF), and normal condition (N) are collected,
which are labeled as 1, 2, 3, and 4, respectively. In addition,
each type of fault signals contains three fault sizes (0.007,
0.014, and 0.021 inches). A total of 600 samples for each
fault size under the same fault type are collected, in which
400 samples randomly selected and the remaining
200 samples are respectively responsible for training and
testing the network. Thus, IF, BF, and OF all contain
1800 samples, in which 1200 and 600 samples are respec-
tively regarded as the training and testing samples. A total
of 600 samples in normal condition are collected, in which
400 samples randomly selected and the remaining 200 sam-
ples are responsible for training and testing. Fig. 7 shows
the bearing signals in the time domain with a fault size of
0.007 inch. Table 1 details the bearing datasets information.

2) DATA PREPROCESSING
The non-stationary bearing signals are initially preprocessed
with EEMD to obtain several IMFs. An AR model is then
established on each of the IMFs to obtain AR parameters as

FIGURE 7. Bearing signals of different health conditions in the time
domain: (a) IF, (b) BF, (c) OF, (d) N.

FIGURE 8. Varying curve of the FPE criterion under different health
conditions.

the inputs of the stacked SAE network. Only the first four
IMFs are considered in this study because fault information
is mainly reflected in high-frequency IMFs. Then, the FPE
criterion is applied to determine the optimal AR order. Fig. 8
shows the varying curve of the FPE criterion of the IF, BF,
OF, and N considering the first IMF.
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TABLE 2. Detailed parameters of the proposed diagnosis network.

It is noticed that when the order P gets 24, the crite-
rion almost remains unchanged; thus, the optimal order P is
selected as 24. Then, a 24-order AR model is established,
and 25 AR parameters, including 24 weighted coefficients
and one variance are obtained for each IMF utilizing the
least square method. For each signal considering the first
four IMFs, 100 AR parameters are obtained and converted
into the input vector. Compared with the original signals of
1000 dimension, the preprocessed signals of 100 dimension
as inputs help reduce the computation significantly.

3) VALIDATION RESULTS
The proposed stacked SAE-based diagnosis network utilized
in this case contains three hidden layers, and each hid-
den layer consists of 100, 60, and 10 neurons, respectively.
The input layer consists of 100 neurons representing the
100-dimensional AR parameters, and the output layer has
4 neurons representing 4 different health conditions. The
learning rate of each SAE, softmax classifier and the fine-
tuning process is 0.3, 0.3, 0.3, 3, and 0.2 respectively. Table 2
shows the detailed parameters of the proposed diagnosis net-
work.

FIGURE 9. Fault classification results of the proposed stacked
SAE network for bearing datasets.

Fig. 9 shows the fault classification results of the proposed
diagnosis network for bearing datasets when the iterations
of each SAE, softmax classifier, and the fine-tuning pro-
cess is set to be 10000, 10000, 10000, 10000, and 40000.
By observation, there are all 3 samples misclassified, includ-
ing one sample of IF is misclassified to BF, one sample of BF

is misclassified to IF, and one sample of OF is misclassified
to IF, thereby achieving a diagnosis accuracy of 99.85%.

To further demonstrate the superiority of the proposed
stacked SAE-basedmethod in bearing fault detection, another
commonly used fault diagnosis methods, such as the stacked
AE network with the same architecture of the stacked SAE
network, SVM and ANN are applied for comparison. The
type of SVM is set to be epsilon-SVR, and RBF kernel func-
tion is used. The cross-validation parameter is set as 3. The
ANN has one hidden layer, which consists of 100 neurons.
The detailed testing accuracy of each method is shown in
Table 3. The first four methods are applied with the inputs
that are preprocessed by EEMD and AR models or EMD and
AR models, whereas the rest of the methods directly handle
the original signals in the time domain.

By observation, regardless whether the signals are prepro-
cessed or not, the performances of the SAE or AE-based
methods are better than those of the traditional intelligent
methods with shallow architectures using the same inputs.
Moreover, the superiority is significant, especially when han-
dling the original time-domain signals, which fully validates
the ability of deep learning methods with deep architectures
in automatically mining discriminative high-level features.
In addition, the SAE-based method achieves a higher diag-
nosis accuracy than the AE-based method, which illustrates
the superiority of the sparse penalty term of SAE in mining
more representative features that are useful for classifica-
tion than the AE. Meanwhile, the method based on SAE or
SVM dealing with the preprocessed inputs performs better
than the method based on the same SAE or SVM dealing
with the original time-domain inputs, which demonstrates
that the preprocessing based on AR models is able to help
mine more representative and useful features. It is noticed
that the method based on SAE or SVM using EEMD for
preprocessing performs better than that using EMD for pre-
processing, which can be explained that EMD has the defi-
ciency of mode mixing, whereas EEMD can overcome this
shortcoming. In general, the proposed stacked SAE-based
method that applies EEMD and AR models performs the
best.

B. CASE 2: VALIDATION WITH GEARBOX DATASETS
1) DATA INTRODUCTION
Another case about gearbox fault detection is analyzed in
this study to demonstrate the effectiveness of the presented
stacked SAE network. Fig. 10 shows the test rig of gearbox
signals.

The speed of the automobile transmission gearbox is
1600 rpm, and the gears run five cycles, namely, running
in, normal (N), slight wear (SW), medium wear (MW), and
broken tooth (BT), as described in Table 4. Four health con-
dition datasets, including SW, MW, BT, and N labeled as 1,
2, 3, and 4, respectively, can be obtained with the sampling
frequency of 3KHz and a data sampling point of 1000. Fig. 11
shows the different health conditions of gearbox signals in
the time domain. Each health condition datasets contain
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TABLE 3. Testing accuracy of the comparative methods.

FIGURE 10. Test rig of the gearbox signals.

TABLE 4. Description of the gearbox running cycles.

TABLE 5. Detailed information of gearbox datasets.

600 samples, in which 300 samples randomly selected and
the remaining 300 samples are respectively responsible for
training and testing the network, as shown in Table 5.

2) DATA PREPROCESSING
The original gearbox signals in the time domain are also
decomposed into several IMFs by EEMD. Then the FPE

FIGURE 11. Gearbox signals of different health conditions in the time
domain: (a) SW, (b) MW, (c) BT, (d) N.

criterion is applied to determine the optimal order of the
AR model and extract the AR parameters as the input vectors
of the constructed network. Fig. 12 shows the varying curve
of the FPE criterion with the gearbox signals considering
the first IMF. The optimal order P is selected as 24 because
when the order P gets 24, the criterion almost remains
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FIGURE 12. Varying curve of the FPE criterion under different health
conditions.

unchanged. Then a 24-order AR model is established and
25 AR parameters, including 24 weighted coefficients and
one variance are obtained for each IMF. For each signal con-
sidering the first four IMFs, 100 AR parameters are obtained
and converted into the input vector of the diagnosis network.
Compared with the original signals of 1000 dimension, the
preprocessed signals of 100 dimension as inputs significantly
help reduce the computation.

3) VALIDATION RESULTS
The structure of the constructed stacked SAE-based diag-
nosis network used in this case is shown in Table 6, which
also contains three hidden layers. When the iterations of
each SAE, softmax classifier and the fine-tuning process is
set as 8000, the fault classification results of the proposed
diagnosis network for gearbox datasets is shown in Fig. 13.
By observation, there are all two samples misclassified, and
are all misclassified to the normal, thereby achieving a diag-
nosis accuracy of 99.83%.

TABLE 6. Detailed parameters of the proposed diagnosis network.

The same comparative methods used in Case 1 are also
applied here to further demonstrate the superiority of the
presented method in gearbox fault detection. Table 7 shows
the detailed testing accuracy of each method. The first four
methods are applied with the inputs preprocessed by EEMD
and AR models or EMD and AR models, whereas the rest of
the methods directly deal with the original signals in the time
domain.

TABLE 7. Testing accuracy of the comparative methods.

FIGURE 13. Fault classification results of the proposed stacked SAE
network for gearbox datasets.

By observation, the comparison results are similar with that
shown in Table 3, thereby validating that regardless whether
the signals are preprocessed or not, deep learning methods
are more superior than traditional intelligent methods with
shallow architectures in fault diagnosis due to their ability
in mining discriminative high-level features; its superiority
is especially significant when handling original time-domain
signals. In addition, the sparse penalty term of SAE helps
mine more representative features and achieve a higher diag-
nosis accuracy compared to the AE. Meanwhile, the prepro-
cessing based on AR models is able to help the network learn
more essential and useful features compared with the original
time-domain inputs. It is noticed that the method based on
the SAE or SVM using EEMD for preprocessing performs
better than that using EMD for preprocessing, which can
be explained that EMD has the deficiency of mode mixing,
whereas the EEMD can overcome this shortcoming.

In general, the proposed stacked SAE-based method that
applies EEMD and AR models performs the best.

VI. DISCUSSION
A. SELECTION OF THE TRAINING SAMPLES
Comparisons are conducted with different training sample
sizes to explore the relationship between the training sam-
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FIGURE 14. Diagnosis accuracy of different methods with different training sample sizes: (a) bearing datasets, (b) gearbox
datasets.

ple sizes and the diagnosis accuracy when applying differ-
ent methods. Fig. 14 shows the testing accuracy of bear-
ing and gearbox datasets with different training sample
sizes.

It is shown that, for all comparative methods, the diagnosis
accuracy decreases when the size of the training samples
decreases, which is mainly because limited training samples
cannot provide enough information that are useful for clas-
sification. For deep learning method based on SAE, it is dif-
ficult to extract as much as more representative information
with limited datasets, because SAE is an unsupervised learn-
ing network. Thus, it is indicated that the SAE-based deep
learning methods are suitable for dealing with large sam-
ple size of training datasets. It deserves to be mentioned
that, the method based on SAE performs better than that
based on SVM or ANN with different training sample
sizes using the same inputs, regardless whether these inputs
are preprocessed or not. Moreover, the superiority of the
SAE-based method is more significant with small train-
ing sample sizes. This result demonstrates the ability of
SAE-based deep learning method in extracting discrimina-
tive features and achieving high diagnosis performance com-
pared with other traditional intelligent methods with shallow
architectures.

In general, the proposed method that applies EEMD and
AR models for preprocessing always performs the best
with different training sample sizes, and it is suggested to
select enough training samples to get a better diagnosis
performance.

B. SELECTION OF THE SPARSITY PARAMETER
The gearbox datasets are considered as an example to ana-
lyze the effect of different sparsity parameter ρ on fault
diagnosis accuracy. Table 8 shows the testing accuracy of
the SAE with different ρ from 0 to 0.2 with a step of 0.05

TABLE 8. Testing accuracy of the SAE with different sparsity parameter.

using the original gearbox signals in the time domain. It is
shown that the best performance of the SAE is obtained when
the sparsity parameter ρ is equal to 0.1, and the accuracy
decreases with a smaller or a bigger ρ. This is because a
bigger ρ limits the ability of SAE in learning sparse and
essential features, whereas a smaller ρ results in excessive
hidden neurons are inactive, which makes it difficult for SAE
to extract enough useful information from the inputs. Thus, it
is of vital importance to select an optimal sparsity parameter
ρ for better diagnosis performance and 0.1 is selected as
the sparsity parameter in this study. Further work about the
selection of the sparsity parameter would be performed in the
future.

C. FEATURES VISUALIZATION
Principal component analysis (PCA) is applied to visualize
features that are extracted by the proposed diagnosis network
and demonstrate its ability inmining high-level representative
features that are useful for classification. Fig. 15 shows the
first three principal components (PCs) of the original signals
in the time domain and the extracted AR parameters for
bearing and gearbox datasets. Fig. 16 shows the first three
PCs of the features extracted by the proposed method with
the bearing and gearbox datasets. In Figs. 16 (a) and 16 (b),
the features that represent the same health condition are
gathered better, whereas the features that represent dif-
ferent health conditions are separated better compared
with the situation in Figs. 15 (a) and (b), as well as in
Figs. 15 (c) and (d), which demonstrates the ability of deep
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FIGURE 15. Features visualization: (a) raw data features for bearing, (b) AR-based features for bearing, (c) raw data
features for gearbox, (d) AR-based features for gearbox.

FIGURE 16. Visualization of features mined by the proposed method: (a) bearing datasets, (b) gearbox datasets.

learning methods in automatically mining representative fea-
tures and explains why the proposed method achieves a
higher diagnosis accuracy. It deserves to be mentioned that in
Figs. 15 (b) and 15 (d), all features extracted by ARmodel are

mixed and difficult to classify, which fully demonstrates that
the excellent diagnosis performance of the proposed method
is not mainly due to the preprocessing, but the learning
ability of the stacked SAE. The preprocessing just obtains
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good low-level features, which help the stacked SAE learn
more abstract and discriminative high-level features; these
learned high-level features are the key to achieve an excellent
diagnosis performance.

Generally, the proposed stacked SAE-based method that
combines EEMD and AR models is able to further extract
abstract and discriminative high-level features automatically
based on the preprocessed inputs. The extracted features can
remain as much as more information of the inputs and avoid
redundancy, which are effective for fault classification.

VII. CONCLUSION
This study proposed a stacked SAE-based machine fault
diagnosis method that combined EEMD and ARmodels. The
time-domain original signals were preprocessed by EEMD
and AR models to get AR parameters as inputs of the diag-
nosis network, which performed as the low-level features
of the original signals and helped the stacked SAE mine
more abstract and sparse high-level features automatically.
The high-level features extracted by the stacked SAE were
representative enough for fault classification. In addition, the
preprocessing transformed the high-dimensional signals in
the time domain into low-dimensional AR parameters, which
significantly helped reduce the calculation. Two fault diagno-
sis cases with bearing and gearbox datasets were successfully
analyzed to validate the effectiveness of the proposedmethod.
Meanwhile, the comparisons were complemented using other
intelligent fault diagnosis methods to validate the superiority
of the proposed method. The validation results fully showed
the better diagnosis performance of the proposed method
comparedwith othermethods, which demonstrated the ability
of deep leaningmethods in automatically extracting represen-
tative features.
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