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ABSTRACT In current epoch, the economic operation of micro-grid under soaring renewable energy
integration has become a major concern in the smart grid environment. There are several meta-heuristic
optimization techniques available under different categories in literature. One of the most difficult tasks
in cost minimization of micro-grid is to select the best suitable optimization technique. To resolve the
problem of selecting a suitable optimization technique, a rigorous review of six meta-heuristic algorithms
(Whale Optimization, Fire Fly, Particle Swarm Optimization, Differential Evaluation, Genetic Algorithm,
and Teaching Learning-based Optimization) selected from three categories (Swarm Intelligence,
Evolutionary Algorithms, and Teaching Learning) is conducted. It presents, a comparative analysis using
different performance indicators for standard benchmark functions and proposed a smart micro-grid (SMG)
operation cost minimization problem. A proposed SMG is modeled which incorporates utility connected
power resources, e.g., wind turbine, photovoltaic, fuel cell, micro-turbine, battery storage, electric vehicle
technology, and diesel power generator. The proposed work will help researchers and engineers to select
an appropriate optimization method to solve micro-grid optimization problems with constraints. This
paper concludes with a detailed review of micro-grid operation cost minimization techniques based on an
exhaustive survey and implementation.

INDEX TERMS Smart micro-grid, meta-heuristic optimization techniques, electric vehicle technology,
fuel cell.

ABBREVIATIONS
BES Battery Energy Storage
BEV Battery Electric Vehicle
PBEV Plug-in Battery Electric Vehicle
DG Distributed Generator
FX Fixed Cost
FCTs Fuel Cell Technologies
FCEV Fuel Cell Electric Vehicle
FCPG Fuel Cell Power Generator
GA Genetic Algorithm
MG Micro-Grid
MGCO Micro-Grid Central Operator
MT Micro-Turbine
OR Operating Reserve
PSO Particle Swarm Optimization
IBA Improved Bat Algorithm

SPV Solar Photo-Voltaic
RES Renewable Energy Source
SMG Smart Micro-grid
EVTs Electric Vehicle Technologies
V2G Vehicle to Grid
V2H Vehicle to House
G2V Grid to Vehicle
PC Personal Computer
Std_dev Standard deviation
TCPD Total Cost Per Day
Li-ion Lithium ion
WT Wind Turbine
DiG Diesel Generator
EMS Energy Management System
NSGA-II Non-dominated Sorting Genetic
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NOMENCLATURE
BidBES,t ,Bidgrid,t , Bid of BES, utility, FC, MT,
BidFC,t ,BidMT ,t , WT, PV, and FCEV at time
Bid iWT ,t ,Bid iPV ,t , step t, correspondingly in AC
BidFCEV ,t ct/kW h
MCBES ,FXBES Repair and constant cost for
MCBEV ,FXBEV BES, BEV and PHEV,
MCPHEV ,FXPHEV correspondingly in ACct/kW h
IR Interest-rate for battery

installation on loan
LT Life span of the batteries in years
NT Operation duration in hours
ORt Required generating backup

minutes in kW
OMDG Constant repair and operation

cost of DGs in ACct
OMMT ,OMFC , Constant repair and operation
OM iWT ,OM iPV , cost of MT, FC, WT, PV, FCEV
OMFCEV correspondingly in ACct/kW h
Pgrid,max , Pgrid,min Maximum and minimum
PBES,max , PBES,min generation of power for utility,
PBEV ,max , PBEV ,min BES, BEV, PHEV, FCEV, FC
PPHEV ,max , PPHEV ,min and MT in (kW)
PFCEV ,max , PFCEV ,min
PFC,max , PFC,min
PMT ,max , PMT ,min
PDemand,t Power demand at time step t

in kW
Cf Diesel Fuel Price (ACct/l)
PDiG Power output of diesel generator
tax Rate of tax for grid
ηcharge, ηdischarge Charging and discharging

efficiency of different batteries
CBES,max ,CBES,min Maximum and minimum

capacity of BES,
CBEV ,max ,CBEV ,min BEV and PHEV in kW h
CPHEV ,max ,CPHEV ,min
CBES,t CBEV ,t Stored energy in BES, BEV and
CPHEV ,t PHEV
Costgrid,t Supply cost with the grid in

upstream mode at time step t in
ACct

CostDG,t , CostBEV ,t Cost of operation and fuel of
CostBES,t , CostPHEV ,t DGs, BEV, BES, PHEV and DiG
CostDiG,t at time step t, correspondingly

in ACct
C Overall cost in ACct
Pgrid,t , PMT ,t ,PBES,t Generated power of grid, MT,

BES, PV,
PiPV ,t ,PFC,t , PFCEV ,t , FC, FCEV,WT, PHEV,
PiWT ,t , PPHEV ,t BEV and DiG correspondingly
PBEV ,t , PDiG,t in kW
PBEV ,t ;PBEV ,t Maximum discharging and
PBES,t ; PBES,t charging rates of BEV, BES
PPHEV ,t ; PPHEV ,t and PHEV at time t,

correspondingly in kW

SUCMT ,t , SUCFC,t , start up cost for MT, FC, and
SUCFCEV ,t FCEV at time step t,

correspondingly in ACct
TCPDBEV ,TCPDBES Per day overall cost of BEV, BES
TCPDPHEV and PHEV, correspondingly

in ACct
uMT ,t , uBES,t , uBEV ,t On/Off status of MT, BES, BEV,
uFC,t , uPHEV ,t FC, PHEV and DiG attime
uDiG,t step t, correspondingly
t tth time step (h)

I. INTRODUCTION
As world transit from the conventional grid system to the
smart grid system, renewable energy sources’ incorpora-
tion has become the key issue in the present environment.
In accordance with the International Energy Agency predic-
tion, power production by renewable power resources will
be almost three times in between 2010 to 2035. It will
contribute 31% of the globe’s entire power production, in
which solar, wind and hydro will provide 7.5%, 25% and
50% respectively, of the overall renewable power produc-
tion by 2035. The intermittency and climate dependency of
renewable power resources make their interconnection more
complex and difficult. Various energy storage devices are
used to solve above mentioned problems of intermittency
and weather dependency with renewable. Hence inside the
smart grid environment, the development of micro grid is a
great solution for integration of renewable energy sources.
It has numerous advantages such as energy loss-reduction,
reliability and enhancement of energy management.

Micro-grid consists of different renewable power resources
like wind, SPV and micro turbines. It also incorporates latest
generation technologies such as fuel cell technologies and
combined heat and power (CHP) technology. To solve the
above-discussed intermittency problem of renewable energy,
storage devices, for example, battery energy storage system,
electric vehicle technology and flywheel storage system can
be used. Micro-gird provides a better solution as compared to
the distributed generation sources due to their better coordi-
nation and control. It can be used as islanded mode and gird
connectedmode as per requirement. Hence inside micro-grid,
the operation, control and coordination problem are of great
importance. Further, similar to the conventional grid, micro-
grid also required some cost which is related to its generation,
maintenance and operation; consequently, many researches
are focused on the micro-grid cost minimization problem.

Various meta-heuristic techniques are developed by
researchers to solve the micro-grid cost minimization
problem. Population dependent meta-heuristic optimization
techniques have two main classifications: swarm intelli-
gence (SI) and evolutionary algorithms (EA). A number
of renowned evolutionary techniques are as follows: Evo-
lution Strategy (ES), Genetic Algorithm (GA), Differential
Evolution (DE), Evolution Programming (EP), etc. Various
swarm intelligence dependent techniques are as follows:
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Firefly (FF), Shuffled Frog Leaping (SFL), Particle Swarm
Optimization (PSO), Artificial Bee Colony (ABC), Ant
Colony Optimization (ACO), etc. In addition to above
mentioned meta-heuristic optimization techniques, different
natural phenomena based methods are also available, e.g.,
Gravitational Search (GSA), Harmony Search (HS) algo-
rithm, Flower Pollination (FPA), Biogeography-Based Opti-
mization (BBO), etc.

Meta-heuristic techniques need no gradient information.
Meta-heuristics have the capability to recover from local
optima due to their inherent stochasticity; consequently, it
can better tackle uncertainties in objectives. It can tackle
multiple objectives with only a few algorithmic changes.
Normally, meta-heuristics techniques are probabilistic in
nature and controlled by common parameters, e.g., popula-
tion, elite population size, the number of generations, etc.
In addition to these parameters, different methods require
specific control parameters, e.g., GA utilizes the proba-
bility of mutation and crossover, operator selection, etc;
PSO employs weight of inertia, cognitive and social fac-
tors; ABC makes use of the number of different type of
bees i.e. onlooker, employed, scout and their limits. In the
same way, different techniques require separate tuning of
their specific parameters. In these techniques, parameter’s
tuning is an extremely critical issue, because it’s directly
affects the performance of techniques. Improper tuning may
result in increased computation time or local optima. Table 1
presented the time line for the evaluation of different meta-
heuristic techniques.

In this paper, the authors have focused on the problem of
choosing the appropriate meta-heuristic optimization tech-
nique for the minimization of operation cost. To identify
the best algorithm, different meta-heuristic techniques (PSO,
GA, FF, DE, TLBO and WO) from three different categories
(swarm intelligence, evolutionary algorithms and teaching
learning) are considered and compared. These optimiza-
tion methods are compared by using nineteen standard test
functions from three different categories (uni-model, multi-
model, composite) as well as a micro-grid frame work. MG
consists of different energy sources such as PV, WT, BES,
MT, FC, DiG and EVT. The problem of micro-grid operation
cost minimization is solved for two different cases (charging
mode of batteries and discharging mode of batteries) using
these optimization techniques. The comparison of different
optimization methods for various standard test functions is
accomplished using the following parameters: mean and stan-
dard deviation of fitness value, average fitness value for
different population, convergence characteristics for different
population, trajectory (fitness value of the first search agents
with respect to the number of iterations for any algorithm)
and the capability to explore the search space. In comparative
analysis of SMG, two different cases are considered and
each case is observed for the following parameters: average,
best, worst and standard deviation of optimized operation
cost (fitness value), convergence characteristics for different
population, variation of best fitness value with respect to

TABLE 1. List of meta-heuristic algorithms (1975-2016) [79].

increase in population size and power generated by different
energy sources for different population size.

The structure of the paper is as follows. The next section
provides the literature review. In section 3, the problem is
formulated along with its constraint. Section 4 describes a
set of nineteen standard benchmark functions from three
different categories. The proposed SMG system and the two
specific cases are described in the section 5. The comparative
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analysis of different optimization methods using standard
test functions and proposed SMG system is provided in the
section 6, which is followed by the concluding remarks.

II. LITERATURE REVIEW
Micro-grid optimization problem is a complex and real world
problem. Generally, micro-grid is the combination of various
renewable energy sources (solar, wind) along with energy
storage system (BES, EVT) and diesel generator. Mathemat-
ical methods such as linear and integer programming are
cumbersome and require more time to provide the optimal
solution of real world problem, whereas meta-heuristic tech-
niques provide the optimal solutions for practical problems
in less time. Thus, this section presents the comprehensive
review of micro-grid system with different technologies such
as battery energy storage, electric vehicle technology, and
diesel generator. Additionally, it also focuses on the current
development in utilization of GA, PSO, DE, TLBO, FF and
WO meta-heuristic algorithms in power system optimization
problems.

A. MICRO-GRID TECHNOLOGIES
There are various technologies that can be incorporated in
MG to enhance the performance and stability of the MG sys-
tem. These technologies are as follows:

1) MICRO-GIRD WITH RENEWABLE ENERGY SOURCES
AND/OR BATTERY ENERGY STORAGE SYSTEM
Currently, there is a lot of development in the field of
micro-gird technology with battery energy storage system.
Thompson et al. [1] presented a method for optimizing
investment in the data centre’s battery storage capacity.
Sharma et al. [2] proposed a greywolf optimisation based cost
minimisation problem to find out optimal capacity of BES
in the operation of MG. Krishnamurthy and Kwasinski [3]
discussed the resiliency of micro-grid power supply in
severe conditions. Further, distribution-architecture’s char-
acteristics, the effect of power electronic device interfaces,
energy storage, and lifelines are also presented. Xu et al. [4]
presented an engineering experience from battery energy
storage system (BES) projects that require design and
implementation of specialized power conversion systems
(a fast-response, automatic power converter and the
controller). Liu et al. [5] proposed an optimal coordinated
planning strategy in addition to the optimization of energy
sources capacity in micro-grid. Khodabakhsh and Sirouspour
[6] developed two different techniques for online rolling
horizon optimal control of an energy storage system in a
utility linked micro-grid, which is subject to uncertainty in
load and electricity pricing. Shen et al. [7] presented an
energy-management scheme for MG containing renewable
battery storage, diesel generators, PV, wind and different
demands. Guo et al. [8] addressed a bi-level structure for
the optimal working of a MG e.g. EV parking deck with on-
site renewable power production by the roof-top PV system.
Hassanzadehfard et al. [9] employed the battery packs as

long term storages and ultra-capacitors as short-term storages
for the frequency control of utility connected micro-grid.
Alharbi and Bhattacharya [10] developed amodel to calculate
the optimal power rating and energy capacity of BES for
coordinated operation ofmicro-grid. Graditi et al. [80] carried
out the technical and economical evaluation for installing
different types of battery technologies to lower the electricity
cost for a customer-side application. Ippolito et al. [81]
developed a bidirectional converter to connect and control the
utility grid with renewable energy sources and battery storage
systems. Silvestre et al. [82] presented a multi-objective gen-
eralized framework for optimal sizing of distributed energy
resources in micro-grids by using an indicator based swarm
approach. Graditi et al. [83] presented an optimal energy
dispatch problem, which is having directly controlled and
shiftable loads. It is solved by glow worm swarm particles
optimization algorithm. Takeuchi et al. [84] described an
optimal scheduling methodology to determine the operating
schedule of an energy network for minimizing CO2 emis-
sion and energy costs. Favuzza et al. [85] applied an ant
colony search for electrical distribution systems management
problem. Gamarra and Guerrero [86] reviewed the technical
literature about optimization techniques applied tomicro-grid
planning.

2) ELECTRIC VEHICLE TECHNOLOGY
The advancement of Electric vehicle technology has a great
impact on micro-grid operation, as it can be used for both,
backup and demand. Melhem et al. [11] proposed a resi-
dential energy management in smart grid considering renew-
able power sources and V2G integration. They presented
an integration of distributed power sources in the smart
gird in an urban context. Yu et al. [12] focused on the
investigation of EV movability to effect demand response
management (DRM) of V2G technology in the smart grid
environment. They presented a model of V2G mobile energy
system, which is dynamic in nature and can travel across sev-
eral cities. Hence, EVs can work as power suppliers between
various cities. Laureri et al. [13] discussed the techniques
for integration of electric vehicle in smart grids. An opti-
mization technique is utilized to minimize the total costs
of smart grid. Paterakis et al. [14] proposed the optimal
operation of a neighbourhood of smart households in terms
of minimizing the total energy procurement cost. For that
purpose Bi-directional power flow is considered both for
household and neighbourhood level. Li et al. [15] proposed an
online methodology to perform cost-aware scheduling of EV
demands and provides power to micro-grids. They developed
a stochastic optimization formulation to minimize the time-
average charge of a micro-grid, purchase cost of electricity
from utility, discharging and charging cost associate with bat-
teries, renewable harvesting charge and pollutant’s emission
charge. Yao et al. [16] proposed a charging scheme on a
real-time basis to manage the EV charging and incorporated
demand response schemes in the parking station.
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a: PLUG IN ELECTRIC VEHICLE (PHEV)
Odeim et al. [17] investigated the optimization of a power
management scheme of a battery/super-capacitor/fuel cell
hybrid vehicular system, both offline and in real time mode.
For offline mode, dynamic programming and pontryagin’s
minimum principle are used. Online mode incorporates a
multi-objective genetic algorithm. Xu [18] proposed a con-
sensus technique based an optimum charging rate controlling
scheme for PEV, which is used for apportioning existing
charging energy. It lines up each PEV’s interest with the
system’s gain. The developed approach was implemented on
multi-agent network structure. Vinot et al. [19] proposed a
universal optimization method for designing the power-split
hybrid electric vehicles (PS-HEVs) with an electric variable
transmission (EVT). Further, GA is implemented to optimize
parameters of the network. For demand response and user
adaptation in smart grid networks, Fan [87] proposed a dis-
tributed framework with a novel charging method for plug-in
hybrid electric vehicles (PHEVs).

b: FUEL CELL ELECTRIC VEHICLE (FCEV)
Ettihir et al. [21] addressed the strategy of energy manage-
ment for FCEV. For fuel cell system the maximum power
and efficiency points are varying with operating condition
but unique in nature. Further, for tracking both maximum
power and efficiency, they developed an extremum seeking
process (ESP). Chakraborty et al. [23] proposed a FCEV
which incorporates current-fed full-bridge bidirectional volt-
age doubler with secondary-assisted device voltage clamping
and zero current commutation. For a fuel cell/battery hybrid
bus, Hu et al. [24] proposed the concurrent optimum element
sizing and power management scheme. Further, Hu et al. [25]
proposed a multi-constraint optimization method for fuel-
cell hybrid bus and presented its soundness and effectiveness
using a case study. Morales-Morales et al. [26] analysed
various restrictions that enforce the existence of uncertainty
in the design of optimum EMSs for FCEV.

3) FUEL CELL TECHNOLOGY
Fuel cell is the recent technology, which has been incorpo-
rated in the micro-gird system. Patterson et al. [20] explored
the workability and cost feasibility of a hybrid grid con-
nected micro-grid that employs the aggregation of batteries,
PV and FC systems. Zhang et al. [22] studied hybrid power
supply of aluminium air fuel cell and the super capacitor. The
matching parameters are analysed and calculated. In addition,
the hybrid power energy allocation strategy is developed.
At last, the power performance simulation is carried out
by the authors. For islanded MG which contains PV/BES/
FC-electrolyser, Sun et al. [27] proposed an EMS with mod-
ified droop control. Ramírez-Murillo et al. [28] realized a
power system, which is serial-parallel hybrid (SPH) in nature.
It contains an auxiliary storage, FC and the current-controlled
dc-dc converter. Thale et al. [29] proposed a reconfig-
urable micro-grid architecture containing PV, WT, FC and
micro-hydro based RES.

4) DIESEL GENERATOR INCORPORATED MICRO-GRID
Diesel generators are important elements inside the micro-
grid system; these are used as backup energy sources.
Vidyanandan and Senroy [30] presented a strategy of control
for regulating frequency in a WT and DiG supplied MG.
Tang et al. [31] developed a power allocation strategy for
seawater desalination load, batteries, and DiGs. Further a
multi-objective optimization problem for optimal operation
of micro-grid is solved using NSGA-II. Hajar et al. [32]
applied an optimization algorithm on micro-grid with dis-
tributed generation and renewable energy. Three different
energy hubs (renewable energy, diesel engines, and batteries)
are integrated in this study. Mohamed and Koivo [33] pre-
sented the scheme for cost optimization and optimal operat-
ing strategy forMG. In addition to this an emissions reduction
scheme is also discussed. Afshar et al. [34] proposed the
optimum design for a standalone micro-grid system with
diesel generator.

B. META-HEURISTIC TECHNIQUES BASED
MICRO-GRID OPTIMIZATION
Meta-heuristic techniques are strong and flexible methods
that have efficiently handled practical micro-grid optimiza-
tion problems. GA, PSO, DE, TLBO, FF and WO are widely
utilized to solve the various electrical optimization problems
including micro-grid operation cost minimization. Some of
the latest researches, which utilized above mentioned algo-
rithms, are as follows:

1) GENETIC ALGORITHM
Holland introduced the Genetic algorithms to understand the
adaptive processes of natural systems [88]. GA is associated
with the binary and other types of representations. It utilizes
two operators’ crossover and mutation to encourage diversity.
Further, it uses the probabilistic selection methods. In GA,
the parents are replaced methodically by their offspring. The
mutation is bit flipping while the crossover operator is based
on the uniform or n-point crossover. A fixed probability pm
is applied to the mutation operator. The GA is applied on
numerous power system optimization problems as follows:

Jayadev and Shanti Swarup [35] proposed a commercial
MG containing one PV, one BES and two DiG with the
hypothesis that the main grid utilizes dynamic pricing. For
the formulation of objective function, discontinuous func-
tions are used which is solved by GA. A real-time EMS
was proposed by Vergara et al. [36] for a MG. A multi-
objective optimization problem is formed and solved by using
the NSGA-II. Siqi et al. [37] developed a coordinated opera-
tional system of hybrid storage and DiG. It incorporates the
running characteristics of DiG and hybrid storage. Further,
for optimizing the power, adaptive genetic algorithm (AGA)
is utilized. For power flow and demand side management
optimization in a micro grid, Santis et al. [38] presented
an application of computational intelligence methods. Along
with this, hybrid fuzzy-GA paradigm is used for time-of-use
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cost management. For confirming the precision and validity
of the mathematical modelling of a new environmental and
economic dispatch of SMG, Liao et al. [39] used the quantum
genetic algorithm. Changsong et al. [40] proposed a novel
micro-grid power trading model to find out an optimum
schedule for all available units over a planning horizon.
The METM utilized genetic algorithm (GA) to assist the
micro-grid scheduling. A control scheme is presented by
Zolfaghari et al. [41] to enhance the load sharing among
inverter-based DGs in MG. GA tuned proportional-integral
(PI) controller is used for this purpose. Shi et al. [42] pro-
posed a multi-objective optimization problem for construc-
tion of energy sources, storage and interruptible load in MG.
The problem is solved by employing improved NSGA-II.
Deng et al. [43] studied and modelled a micro-grid including
a WT, PV and a CHP system with FCs and MT. GA is
used to solve the optimum model and an operation strat-
egy. For cost effective and reliable micro-grid, Nasser and
Reji [44] proposed an optimum design scheme. For opti-
mization, a hybrid Genetic Particle Swarm Optimization is
utilized. Eldessouky and Gabbar [45] presented micro-grid
(MG) optimization using GA. The algorithm’s aim is to find
out the optimum size of combined wind and gas generator to
satisfy a given key performance indices (KPIs). Shariatzadeh
et al. [46] applied GA and PSO for reconfiguration of SMPS.

2) PARTICLE SWARM OPTIMIZATION
The PSO consists of a population of particles, known as a
swarm, with eachmember of the swarm being associated with
a position vector xt and a velocity vector vt . The size of these
vectors is equal to the dimension of the search space. The
term velocity (vt ) at any iteration t indicates the directional
distance that the particle has covered in the (t − 1)th iteration.
The directional velocity of any particle is calculated on the
basis of a particle personal best ‘pbest’ (pl) and swarm’s
global best ‘gbest’ (pg) [89].
The following equations describe the velocity and position

update for ith particle at any iteration t:

vi,t+1 = wvi,t + c1r1. ∗
(
pl,i − xi,t

)
+ c2r2. ∗

(
pg − xi,t

)
Here, r1 and r2 are random vectors (in range [0, 1]), and w, c1
and c2 are pre-specified constants. The operator ".∗" signifies
element to element multiplication of two vectors.

The next position of any particle is computed on the basis
of previous position and current velocity.

xi,t+1 = xi,t + vi,t+1

The PSO is applied on various power system optimization
problems as follows:

Saber and Venayagamoorthy [47] proposed a SMG opti-
mization with controllable demands by PSO. Cao et al. [48]
proposed an economic dispatch of MG which depends on
enhanced PSO. Chen et al. [49] realized the basic economic
dispatch function of the system based on PSO, which aims
at minimizing the operating costs. Chen et al. [50] developed

an upgraded PSO technique with adaptive weight and accel-
eration coefficients for solving the economic, environmental
and health dispatch model of a micro-grid. An economic
operation of micro-grid under an uncertain framework is
studied by Liang et al. [51]. A micro-grid scheduling strategy
is developed on the basis of Roulette Wheel Mechanism and
Probability Density Functions. Further, PSO is used to find
the optimum solution. Yang et al. [52] proposed an enhanced
PSO technique for HOME-EMS, which incorporates load
response in a smart grid. Hao et al. [53] studied a distinctive
utility connected MG, which contains WT, hydro power,
BES and local demand. First its mathematical algorithm is
constructed and then PSO is applied to solve the optimal oper-
ation problem. An et al. [54] proposed a novel operating cost
optimization method for a building with an integrated MG
linked to the utility. Further, a piecemeal decision algorithm
and a PSO algorithm were utilized to produce a charging
and discharging rate’s schemes for BESs. Elamine et al. [55]
presented a multi-agent structural design for SMG, which
is based on wind power forecast. It utilizes neural network,
which is trained by hybrid PSO and back-propagation tech-
nique. Liang et al. [56] studied the multi-objective optimum
scheduling problem in a vague structure. The probability
distribution function and roulette wheel mechanism are used
to develop the scenarios and multi-objective PSO is used to
coordinate between them.

3) DIFFERENTIAL EVOLUTION
Storn and Price [90] proposed a robust and easily paralleliz-
able technique DE to solve the global optimization problems.
DE is population basedmeta-heuristic technique, which starts
with randomly initialized solution vectors. To modify an
existing solution in the population, DE utilized the differ-
ence vector of two randomly chosen members. The weight
of a difference vector is a user-defined constant parameter
(F > 0):

vi,t+1 = x(r1,t) + F .(xr2,t − xr3,t )

At each generation t , it is ensured that r1, r2 and r3 are
different from each other and also from i. The resultant vector
vi is called a mutant vector of xi. The DE is applied on various
power system optimization problems as follows:

Tiwari and Srivastava [57] proposed a differential evo-
lution technique based EMS to optimize the working of a
micro-grid with RES. Shuai et al. [58] proposed a distinc-
tive islanded MG system. Differential evolution is used to
optimize the operation cost. Wu et al. [59] described the
use of a multi-objective self-adaptive differential evolution
algorithm for the concurrent optimization of element sizing
and control scheme in parallel EVs. Fan et al. [60] pro-
posed a real time pricing, controllable load and a meta-
heuristic technique based multi-objective optimization model
for household micro-grids to minimize the electricity bill cost
and reduce the difference between the temperature of heating,
ventilation and air conditioning. Basu et al. [61] proposed the
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planned scheduling for economic energy sharing in a CHP
based MG using DE technique.

4) TEACHER LEARNING BASED OPTIMIZATION (TLBO)
TLBO simulates the teaching-learning process of the class
room. It is a population-based algorithm and does not require
any algorithm-dependent parameters. The common control
parameters required by TLBO are the number of generations
and population size [91].

The function of TLBO is categorised into two phases,
‘Teacher phase’ and ‘Learner phase’.

a: TEACHER PHASE
On the basis of his/her capabilities, teacher attempts to
enhance the mean performance of the group of students
in their concerned subject. At ith iteration, let there be n
number of learners, m number of subjects, and Mj,i be the
mean performance of the learners in a particular subject j.
Xtotal−kbest,i is the best overall performance by considering
all the subjects together. kbest is the result of best learner.
The learner having best performance is selected as a teacher.
The difference between the performance of each subject of
a teacher and current mean performance of corresponding
subject is formulated as:

Difference_Meanj,k,i = ri(Xj,kbest,i − TFMj,i)

Where, Xj,kbest,i is the best learner’s result in subject j. TF is
the teaching factor, and ri is the random number in the
range [0, 1]. The value of TF is given as,

TF = round[1+ rand(0, 1){2− 1}]

In the teaching phase, the existing solution is updated as:

X ′j,k,i = Xj,k,i + Difference_Meanj,k,i

Where, X ′j,k,i is the updated value of Xj,k,i.

b: LEARNER PHASE
In the learner phase, learners enhance their knowledge by
interacting randomly with other learners. A less knowledge-
able learner learns new things from more knowledgeable
learners. For n population size, the learning process is as
follows:
P and Q learners are selected randomly such that

X ′total−P,i 6= X ′total−Q,i, where, X ′total−P,i and X ′total−Q,i are
the updated function values of Xtotal−P,i and Xtotal−Q,i
of P and Q respectively at the end of teacher phase:

X ′′j,P,i = X ′j,P,i + ri(X ′j,P,i − X ′j,Q,i),

if X ′total−P,i < X ′total−Q,i
X ′′j,P,i = X ′j,P,i + ri(X ′j,Q,i − X ′j,P,i),

if X ′total−Q,I < X ′total−P,i

X ′′j,P,I is accepted if it provides a better value of function.
The TLBO is applied on various power system optimization
problems as follows:

Veltman et al. [62] proposed a prediction interval mod-
elling tuned by an improved TLBO for load forecasting in
MGs. Dixit and Roy [63] presented the impact of PEVs
on automatic generation control using the TLBO technique.
Yammani et al. [64] developed a modified TLBO technique
to find out the optimum placement and size of distributed
RESs units in the distribution network. Rani et al. [65] applied
TLBO to resolve a multi-objective problem of the economic
and emission scheduling.

5) FIREFLY OPTIMIZATION
Firefly Algorithm (FF) is a nature inspired meta-heuristic
optimization algorithm, which is motivated from the conduct
of fireflies [92]. FF depends on three basic rules:

i) All fireflies are attracted to each other with disregard
to gender.

ii) Attractiveness is correlated with brightness (light emis-
sion) such that bright flies attract less bright flies, and
in absence of brighter flies they move randomly.

iii) The brightness is proportional to the objective function.
The movement of a firefly i is attracted to another more

attractive (brighter) firefly j is determined by

xi = xi + β0e
−γ r2ij

(
xj − xi

)
+ αεi

Where β0 is attractiveness at distance zero, rij =
∥∥xi − xj∥∥

is the distance between any two fireflies i and j at distance
xi and xj, respectively, εi is a vector of random numbers
drawn from a Gaussian distribution or uniform distribution
and α being the randomization parameter. The FF is applied
on power system optimization problems as follows:
Odeim et al. [17] investigated the optimization of a power

management scheme of a battery/super-capacitor/fuel cell
hybrid vehicular system.

6) WHALE OPTIMIZATION
Whale Optimization Algorithm (WO) is a nature inspired
meta-heuristic optimization algorithm, which is encouraged
from the behaviour of Humpback whales [93]. The WO
algorithm is working on the following rules:

a: ENCIRCLING PREY
Humpback whales can identify the position of prey and
encircle them. As per the activities of humpback whales the
WO assumes that the current best solution is the objective
prey or near to the optimum. Other search agents will renew
their position towards the best agent, as represented by the
following equations:

−→
D =

∣∣∣−→C .−→X∗ (t)−−→X (t)
∣∣∣

−→
X (t + 1) =

−→
X∗ (t)−

−→
A .
−→
D

−→
A = 2−→a .−→r −−→a
−→
C = 2.−→r

where t indicates the current iteration,
−→
A and

−→
C are coef-

ficient vectors, X∗ is the position vector of the best solution
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obtained so far,
−→
X is the position vector, || is the absolute

value, and ‘•’ is an element-by-element multiplication, −→a is
linearly decreased from 2 to 0 over the course of iterations
and −→r is a random vector in [0, 1].

b: BUBBLE-NET ATTACKING METHOD
Humpback whales swim about the prey within a shrink-
ing circle and along a spiral-shaped path, concurrently. The
authors have assumed that there is a 50% probability (p) of
either the shrinking encircling mechanism or the spiral model
to update the location of whales through optimization. The
mathematical model is as follows:

−→
X (t + 1) =


−→
X∗ (t)−

−→
A .
−→
D ifp < 0.5

−→

D
′

.ebl . cos (2π l)+
−→
X∗ (t) ifp ≥ 0.5

Where p is a random number in [0, 1], b is a constant to define
the shape of the logarithmic spiral and l is a random number
in [−1, 1].

c: SEARCH FOR PREY
This method highlights exploration and allows the WO algo-
rithm to achieve a global search. The mathematical model is
as follows:

−→
D = |

−→
C .
−−→
Xrand −

−→
X (t) |

−→
X (t + 1) =

−−→
Xrand −

−→
A .
−→
D

Where
−−→
Xrand is a random position vector.

The WO algorithm starts with a set of random solutions.
In every iteration, the search agents revise their positions with
regard to either a randomly chosen search agent or the best
solution obtained so far. The WO is applied on power system
optimization problems as follows:

Reddy et al. [68] utilized whale optimization algorithm
(WOA) to determine the optimal distributed generation size.
Trivedi et al. [69] presented the solution of an emission
constraint environment dispatch problem with MG by using
whale optimization algorithm.

III. PROBLEM FORMULATION
Selecting a suitable method to solve the cost minimization
problem of SMG, the proposed problem is formulated as
follows:

The formulation of the economic operation problem of
SMG (EOSMG) is illustrated as follows:

Minimization of total cost of SMG is given by Eq.1.

MinC (X) =
NT∑
t=1

ct + OMDG + CTCPD

+Cf
N∑
i=1

(
aP2DiG(i) + bPDiG(i) + c

)
(1)

where cumulative total cost per day for batteries is the sum-
mation of total cost per day for BES, BEV and PHEV.

CTCPD = TCPDBES + TCPDBEV + TCPDPHEV

ct is the summation of the supply cost of grid, operation and
fuel cost of DG, BES, BEV, PHEV, as well as start up cost of
FC, MT and FCEV, as shown in

ct = Costgrid,t + CostDG,t + CostBES,t + CostBEV ,t
+CostPHEV ,t + SUCFC,t + SUCMT ,t + SUCFCEV ,t

(2)

Supply cost of the grid is defined by

Costgrid,t =


Bidgrid,tPgrid,t if Pgrid,t > 0

(1− tax)Bidgrid,tPgrid,t if Pgrid,t < 0
0 if Pgrid,t = 0

(3)

The operation and fuel cost of the distributed generators are
presented by

CostDG,t = BidMT ,tPMT ,tuMT ,t + BidFC,tPFC,tuFC,t
+BidFCEV ,tPFCEV ,tuFCEV ,t + BidPVi,tPPVi,t
+BidWTi,tPWTi,t (4)

The start up cost of FC, FCEV and MT are provided, respec-
tively, in

SUCFC,t = StartFC ∗max
(
0, uFC,t − uFC,t−1

)
(5)

SUCFCEV ,t = StartFCEV ∗max
(
0, uFCEV ,t − uFCEV ,t−1

)
(6)

SUCMT ,t = StartMT ∗max
(
0, uMT ,t − uMT ,t−1

)
(7)

The constant repair and operation cost of distributed genera-
tors are presented by

OMDG = (OMMT + OMFC + OMFCEV + OMPVi

+OMWTi) ∗ NT (8)

The overall charges of the SMG consist of the operation
charges of BES, BEV, PHEV, FCEV and utility, fuel and OM
charges of DGs and DiGs, the start-up charges of FCEV, MT
and FC in addition cumulative per day overall cost of batter-
ies, which is used in BES, BEV and PHEV (CTCPD). The
cost of batteries contains the single-time constant cost (FX)
and the yearly repair cost (MC). Overall cost of the battery is
(FC +MC)∗Cmax , whereCmax is the battery’s size. The time
window selected for this work is a day; therefore, the opera-
tion cost is computed over 24 hours and TCPD is required in
ACct/day. The TCPDs of mounted batteries in ACct/day can be
achieved using the following equations [70]:

TCPDBES =
CBES,max

365
(
IR (1+IR)LT

(1+IR)LT − 1
FCBES +MCBES )

(9)

TCPDBEV =
CBEV ,max

365
(
IR (1+ IR)LT

(1+ IR)LT − 1
FCBEV+MCBEV )

(10)

TCPDPHEV =
CPHEV ,max

365
(
IR (1+ IR)LT

(1+ IR)LT − 1
×FCPHEV +MCPHEV ) (11)
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TABLE 2(A). Constraints.

The proposed cost minimization problem is subjected to the
constraints presented in Table 2(A) and 2(B). The limits of
the constraints are presented in Table 7 in Appendix A.

IV. STANDARD FUNCTIONS
To select the appropriate meta-heuristic technique, a set of
nineteen standard functions from three different categories
(uni-model, multi-model, composite) are selected and applied
on various algorithms. These standard functions are presented
in Tables 8(A), 8(B) and 8(C) in Appendix B.

V. SYSTEM DESCRIPTION
To select the suitable algorithm for the proposed problem, six
algorithms are applied on an advanced SMG object system
as shown in Fig. 1. There are different DGs (MT, FC, PV,
WT), Li-ion BES and DiG in the adopted SMG. In addition,

TABLE 2(B). Constraint.

the proposed SMG system consists of EVTs (BEV, PHEV,
and FCEV) technology. In this problem formulation, FCEV
is considered as aDG source. AppendixA provides the details
of generation limits and coefficients used in the present work.
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FIGURE 1. SMG system.

If the SMG under study has MT, FC, FCEV, PV, WT, BES,
BEV, PHEV and DiG then the location of mth search agent
Xm can be characterized as (37), shown at the bottom of
this page. More information regarding the implementation
of SMG can be referred from [70], [71], [75]. All DGs
generate active power at the unity power factor in the current
work. The FX and MT charges, for mounting and operation
of batteries used in BES, BEV and PHEV, are assumed to
be 465 (ACct/ kWh) and 15 (ACct/ kWh) [13]. The LT and
IR for funding the batteries of BES, BEV and PHEV are
correspondingly 3 and 0.06. The tax is considered as 10% in
this work. The charging and discharging rate of batteries are
equal and kept at 90%. Let the minimum capacities to be 10%
of the maximum capacities of the batteries. The maximum
capacities of batteries are set to 500 kWh. For a time horizon
of one day with hourly time step, the EOSMG studies are
performed. A PC with 2.4 GHz Intel i5-4210U CPU and
4 GB RAM is used to simulate the techniques in MATLAB.
The operation reserve and forecasted values of load demand
are given in Fig 2. This figure shows the forecasted value

of variable load for 24 hours. It is supplied by the different
energy sources of MG. This variable load requirement is due
to the fact that the patterns of energy utilization by industrial,
commercial and domestic customers are different. Fig. 2 also
presents the operating reserve requirement in addition to the
standby reserve capacity of MG sources and the utility. It will
be supplied during unavailability of the supply from the main
gird.

FIGURE 2. Forecasted load demand (FLD) and operating reserve (OR).

To verify the performance of different techniques, they are
frequently applied on the considered problem of EOSMG for
30 independent trials. The important variables of different
algorithms include the maximum number of iterations and
population size. In this work, four different population num-
bers are selected i.e. 25, 50, 100 and 200. The maximum
number of iterations is 500. For comparative analysis, the
algorithmsWO, FF, PSO, DE, GA and TLBO are considered.
The sequential optimization strategy (i.e., one-by-one param-
eter) is used to tune one parameter at a time, and its optimal
value is determined empirically. For FF, attraction coeffi-
cient, mutation coefficient and mutation coefficient damping
ratio are 2, 0.2 and 0.98, respectively. For PSO local learn-
ing coefficient and global learning coefficient are selected

Xm = [xm,1xm,2 . . . . . . xm,D]×



CBESmax,1,CBESmax,2, · · · ,CBESmax,s1,CBEVmax,1,CBEVmax,2, · · · ,CBEVmax,s2
CPHEVmax,1,CPHEVmax,2, · · · ,CPHEVmax,s3,PmMT ,1,P

m
MT ,2, . . . ,P

m
MT ,T ,

PmFC,1,P
m
FC,2, . . . ,P

m
FC,T ,P

m
FCEV ,1,P

m
FCEV ,2, . . . ,P

m
FCEV ,T

PmPV ,1,P
m
PV ,2, . . . ,P

m
PV ,T ,P

m
WT ,1,P

m
WT ,2, . . . ,P

m
WT ,T

PmBES,1,P
m
BES,2, . . . ,P

m
BES,T ,P

m
BEV ,1,P

m
BEV ,2, . . . ,P

m
BEV ,T

PmPHEV ,1,P
m
PHEV ,2, . . . ,P

m
PHEV ,T ,P

m
Grid,1,P

m
Grid,2, . . . ,P

m
Grid,T

PmDiG,1,P
m
DiG,2, . . . ,P

m
DiG,T , u

m
MT ,1, u

m
MT ,2, . . . , u

m
MT ,T ,

umFC,1, u
m
FC,2, . . . , u

m
FC,T

umFCEV ,1, u
m
FCEV ,2, . . . , u

m
FCEV ,T , u

m
PV ,1, u

m
PV ,2, . . . , u

m
PV ,T

umWT ,1, u
m
WT ,2, . . . , u

m
WT ,T , u

m
BES,1, u

m
BES,2, . . . , u

m
BES,T

umBEV ,1, u
m
BEV ,2, . . . , u

m
BEV ,T , u

m
PHEV ,1, u

m
PHEV ,2, . . . , u

m
PHEV ,T

umGrid,1, u
m
Grid,2, . . . , u

m
Grid,T , u

m
DiG,1, u

m
DiG,2, . . . , u

m
DiG,T



(37)

13960 VOLUME 5, 2017



B. Khan, P. Singh: Selecting a Meta-Heuristic Technique for Smart Micro-Grid Optimization Problem

TABLE 3(A). Standard function optimal values (30 trials).

TABLE 3(B). Standard function optimal values (30 trials).

as 1.5 and 2, respectively. The inertia weight damping ratio
is selected as 0.99. For DE upper and lower bound of scaling
factor and cross over probability are 0.8, 0.2 and 0.2, respec-
tively. For GA, mutation rate, population size and crossover
rate are considered as 0.1, 50, and 0.7, correspondingly.
To identify an effective algorithm, two different cases of the
proposed formulation are considered. For the first case, all
batteries are connected to the system at no charge condition.

TABLE 3(C). Standard function optimal values (30 trials).

In this case, these batteries are connected as loads to the
SMG. The Second case considered all connected batteries
in charged condition. Hence all batteries worked as energy
sources.

A. CASE 1: CHARGING MODE OF DIFFERENT BATTERIES
In this case, the Li-ion batteries are added in the form of
BES, BEV and PHEV in SMG test system; although, it is
the elementary component of the SMG. The key advantage
of the batteries in the SMG is to retain reliability, make
possible the incorporation of renewable energy sources, and
enhance the quality of power [73], [76], [77]. The Li-ion
batteries commit during the time period when there is no
charge; therefore, the discharging is limited to the charging in
the preceding hours. To observe effectiveness of the batteries
with appropriate and optimum capacity, maximum sizes of
batteries (CBESmax ,CBEVmax ,CPHEVmax) are considered
as the control parameters.

A DiG set is incorporated in the micro-grid system. The
diesel fuel price Cf is 1.33 (ACct/l). The values of DiG’s
fuel consumption curve parameters a, b, c are 0.246, 0.0815,
and 0.4333, respectively.

In the above case, the EOSMG is solved for the system
to minimize the total operation cost and find the economical
size of batteries as well as the optimal output of FC, MT, WT,
PV, FCEV, BEV, PHEV, BES, DiG and GRID. The mathe-
matical optimum output of EVTs, DGs, DiG, utility and BES
are calculated by six algorithms and provided in Fig 9(A).
It must be noted that the economical sizes of BES, BEV and
PHEV in this work are 50 kWh each. The results obtained
by different algorithms, depicted in Table 4. The divergence
characteristic of six algorithms is presented in Fig. 7(A).
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FIGURE 3(A). Convergence curve of selected algorithm on different
population. (a1) Population:25. (a2) Population:25. (b1) Population:50.
(b2) Population:50.

B. CASE 2: DISCHARGING MODE OF BATTERIES
In this case, all the batteries are fully charged, the optimal
power output of MT, FC, BES, BEV, PHEV, FCEV, PV, WT,
DiG and power grid for six algorithms in the SMG are shown

FIGURE 3(B). Convergence curve of selected algorithm on different
population. (c1) Population:100. (c2) Population:100. (d1) Population:200.
(d2) Population:200.

in Fig. 9(B). Due to economical power supplied by batteries,
it is beneficial for EOSMG to purchase power from BES and
EVTs. In this case, the system considers batteries of opti-
mum size 50 kWh. A comparative analysis among different
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FIGURE 4. Average fitness values on different population.
(a) Population:25. (b) Population:50. (c) Population:100.
(d) Population:200.

algorithms on optimal operation costs for 25, 50, 100
and 200 population sizes is also presented. The results
obtained by different algorithms and their convergence char-
acteristic are shown in Table 5 and Fig. 7(B), respectively.

TABLE 4. Case I.

VI. COMPARATIVE ANALYSIS
For selecting suitable meta-heuristic technique, all the algo-
rithms are first applied on nineteen standard test functions.
These functions are presented in Appendix A2, A3 and A4.
These functions are categorized as uni-model, multi-model
and composite functions. Table 3(A), 3(B), and 3(C) sum-
marized the results obtained from the different algorithms
on standard functions for 30 trials. The comparison among
six algorithms on different standard functions is based on
their mean and standard deviation. In the first category of
benchmark functions (i.e. uni-modal): the minimum mean
values and standard deviation of functions F1, F2 and F3
are obtained by TLBO; F4, F5 and F6 are obtained by DE;
F7 is obtained by FF. For the second category of benchmark
functions (i.e. multi-modal): the minimum mean values and
standard deviation of functions F8 is obtained by GA; F9 is
obtained by WO; F10 and F11 are obtained by TLBO; F11,
F12 and F13 are obtained by DE. For the third category (i.e.
composite benchmark functions): the minimum mean values
of functions F14 is obtained by DE; F15 and F18 are obtained
by TLBO; F16, F17 and F19 are obtained by WO. Whereas
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FIGURE 5(A1). Trajectory of F1 (a1-a6) for different algorithm. (a1) WO. (a2) FF. (a3) PSO. (a4) DE. (a5) GA. (a6) TLBO.

for the third category (i.e. composite benchmark functions):
the standard deviations of functions F14, F16 and F17 are
obtained by DE; F15 and F19 are obtained by GA; F18 is
obtained by TLBO. From the above analysis, it is observed
that for the uni-modal benchmark functions the performance
of TLBO and DE is better and stable; for the multi-modal
benchmark function the performance of DE is best and the

second best is TLBO as well as their performance are stable;
for the composite benchmark functions the performance of
WO is best, but their standard deviations are not least, i.e. it’s
performance is not stable (there is a lot of fluctuation in the
computed mean values).

Fig. 3(A) and (B) presents the comparison of convergence
characteristics for different algorithms for four standard
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FIGURE 5(A2). Trajectory of F2 (b1-b6) for different algorithm. (b1) WO. (b2) FF. (b3) PSO. (b4) DE. (b5) GA. (b6) TLBO.

functions (F1, F2, F8 and F9) under two categories (uni-
modal and multi modal). To increase the clarity and under-
standability of the convergence of different algorithms, two
different types of convergence graphs are generated: the first,
normal plot of fitness value with respect to the number
of iterations; the second, semi-log of fitness with respect
to the number of iterations. From Figs. 3(A-a1), 3(A-a2),
3(A-b1), 3(A-b2), 3(B-d1) and 3(B-d2), it is clear that the

fastest convergence of F1, F2 and F9 is provided by the TLBO
algorithm, which is followed by theWO algorithm. Similarly,
from Figs. 3 (B-c1) and 3 (B-c2), it is clear that the fastest
convergence of F8 is obtained by the TLBO algorithm, which
is followed by the DE algorithm.

Fig. 4(a) to 4(d) represents the comparison of average fit-
ness value for different algorithms on four standard functions
(F1, F2, F8 and F9) under two categories (uni-modal and
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FIGURE 5(B1). Trajectory of F8 (c1-c6) for different algorithm. (c1) WO. (c2) FF. (c3) PSO. (c4) DE. (c5) GA. (c6) TLBO.

multi modal). To show the comparative analysis among the
average fitness value of four functions (F1, F2, F8 and F9)
with respect to the number of iterations for six algorithms,
five search agents are considered. From Figs. 4(a) and 4(d),
it is apparent that the minimum average value for F1 and F9
is provided by the TLBO algorithm, which is followed by the

FF algorithm. This reflects that all the search agents of TLBO
aswell as FF are competent to search the optimal search space
rather than other algorithms. Similarly, from Fig. 4(b) the
minimum average fitness value for function F2 is obtained
by the PSO algorithm, which is followed by FF algorithm.
This reflects that all the search agents of PSO as well as
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FIGURE 5(B2). Trajectory of F9 (d1-d6) for different algorithm. (d1) WO. (d2) FF. (d3) PSO. (d4) DE. (d5) GA. (d6) PSO.

FF are capable to search the optimal search space rather
than other algorithms. Similarly, for F8, Fig.4(c) presents the
minimum average fitness value obtained by the TLBO, which
is followed by the DE. This reflects that all the search agents
of TLBO as well as DE are capable to search the optimal
search space rather than other algorithms. It is concluded

from the above analysis that all the search agents of TLBO
are best capable to explore the optimal search space.

Fig. 5(A1), 5(A2), 5(B1) and 5(B2) provides the compari-
son among six algorithms based on the trajectory of the first
search agent, which is obtained by using standard benchmark
function F1, F2, F8 and F9. Sub graphs (a1) to (a6) of
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FIGURE 6. Search Space history of first two agents for different
algorithms. (a) F1. (b) F2. (c) F8. (d) F9.

Fig. 5(A1) and (b1) to (b6) of Fig. 5(A2) provides the efforts
made by the first search agents of six search algorithms for
F1 and F2. Similarly, sub graphs, (c1) to (c6) of Fig. 5(B1)

TABLE 5. Case II.

and (d1) to (d6) of Fig. 5(B2) present the efforts made by
the first search agents of six search algorithms for F8 and F9.
The Trajectory is the fitness value of the first search agents
with respect to the number of iterations for any algorithm. The
analysis of Fig. 5(A1), 5(A2), 5(B1) and 5(B2) is as follows:

• For F1 and F8, the effort made by the first search agent
of WO is the maximum and TLBO is the minimum

• For F2, the effort made by the first search agent of PSO
is the maximum and TLBO is the minimum

• For F9, the effort made by the first search agent of PSO
is the maximum and FF is the minimum

It is observed from the above analysis that the overall effort
made by the first search agent of TLBO is least.

One more important comparative analysis based on the
search space history of different algorithms for four standard
functions (F1, F2, F8 and F9) is presented in Fig. 6. From
the sub Figures (a) to (d) of Fig. 6, it is observed that the
exploration capability of WO is the best whereas of GA is
the worst. Therefore, it is concluded that WO explores a wide
range of search space and do not get stuck in the local minima,
whereas GA explores the least range of search space and
easily get stuck in the local minima.
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TABLE 6. Characteristics of selected meta- heuristic algorithms.

From the observations of Figs. 3–6 it is concluded that:
• It is observed from the analysis of Fig. 3 that fastest con-
vergence for most of the standard function is obtained by
the TLBO

• It is clear from the analysis of Fig. 4 that all the search
agents of TLBO are best capable to explore the optimal
search space

• It is derived from the analysis of Fig. 5 that the effort
made by the first search agent of TLBO is least

• As per the observation of Fig. 6, WO explores a wide
range of search space than other algorithms.

On the basis of the above aggregation it is concluded that
the performance of TLBO is the best in most of the cases
among the selected six meta-heuristic techniques.

Apart from the comparison on different standard functions,
another comparison is made on EOSMG problem under four
different population sizes i.e. 25, 50, 100 and 200. For this
comparative analysis, a SMG cost minimization problem is
proposed and different algorithms are applied on this problem
under two different cases. For the first case, all the batteries
are connected to the system at no charge condition. In this
case, these batteries are connected as loads to the micro
grid. The Second case considered all connected batteries

in charged condition. Hence all batteries worked as energy
sources.
Case 1: For case one, the results are summarized in Table 4.

From the results it is extracted that on most of the population
sizes, i.e. 25, 50 and 100, FF algorithm provided the best
results, while on the population size of 200, TLBO computed
the best results. Table 4 presents a comparison among the
results obtained by different techniques for EOSMG under
four criteria, i.e. average value, the best value, the worst value
and standard deviation. From the results it is clear that at
population size 25, 50 and 100, FF algorithm provides the
best values i.e. 1310.512, 1255.266 and 1243.399 ACct/day,
respectively, while at population size 200, TLBO generates
the optimum solution (1262.903 ACct/day). By comparing the
results obtained for standard test functions and EOSMG, one
can observe that on standard functions WO and/or TLBO
compute the best results, but for the complex optimization
problem (EOSMG) with a large number of variables and
constraints rather than WO and TLBO, FF gives the most
optimum results.

Fig. 7(A) presents the comparison of convergence char-
acteristics of different algorithms for the EOSMG problem
under case 1. From the sub Figures (a), (b), (c) and (d) of
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FIGURE 7(A). Convergence curves for case 1 at various population sizes.
(a) 25. (b) 50. (c) 100. (d) 200.

Fig. 7(A), the analysis made from the convergence sub graphs
at different population sizes (25, 50, 100 and 200) are as
follows:
• For the population size 25, the convergence of FF and

FIGURE 7(B). Convergence curves for case 2 at various population sizes.
(a) 25. (b) 50. (c) 100. (d) 200.

TLBO is better than the other algorithms
• For the population sizes 50 and 100, the convergence of
FF and GA is better than the other algorithms
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FIGURE 8(A). Variation of best cost with respect to population for case 1.

FIGURE 8(B). Variation of best cost with respect to population for case 2.

• For the population size 200, the convergence of WO and
TLBO is better than the other algorithms

From the above analysis it is concluded that under case 1
i.e. chargingmode of batteries, the convergence of FF is faster
than other algorithms for the different population sizes.

A critical comparative analysis based on the increment in
population size is presented in Fig. 8(A). By the observation
of graph in Fig. 8(A), it is clear that with the increment in
population size, the performance of DE is imparted while
the performance of GA is improved. For WO and FF, the
performance is improved for increment in the population size
from 25 to 100, but it deteriorates at 200. The performances
of PSO and TLBO are unstable with an increase in population
size.

Fig. 9(A) summarizes the power generation by different
energy sources for six algorithms, under the first case. Further
power output for different population sizes i.e. 25, 50, 100
and 200 are presented by the sub graphs (a) to (f) of Fig. 9(A).
The positive value of graphs shows the power production

FIGURE 9(A). Optimal power output for case 1.

while the negative value presents the power consumption.
According to Fig. 9(A) and 9(B), an opportunity is avail-
able for BES, BEV and PHEV that they economically stores
energy by purchasing power from the power grid and then
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FIGURE 9(B). Optimal power output for case 2.

selling that power back into the power grid during the peak
load demand.

In Fig. 9(A) and 9(B), negative value reflects the con-
sumption of power, whereas positive value shows the
generation of power.

As per the observation of Fig. 9(A), under all the meta-
heuristic algorithms, the renewable energy sources alongwith
fuel cell technology (FC and FCEV) generate electric power
and supply back to the grid. Further, batteries used in BES,
BEV and PHEV are storing energy in this case (negative sign
of power). In case 1, FF provides theminimum cost for micro-
grid operation, therefore the generation by different energy
sources computed by FF algorithm is optimal generation.
Hence for the population of 25, 50, 100 and 200 the optimal
generations are 1092.57, 864.6112, 1207.583, and 1009.798
MW with respect to the optimal costs 1310.512, 1255.266,
1243.399, and 1280.419 ACct/day.
Case 2: In the second case, it is assumed that all batteries

are in charged condition and will ready to supply electric-
ity to the grid. Table 5 presents a comparison among the
results obtained by different techniques for EOSMG under
four criteria. From the results, it is clear that at population
size 25, 50, 100 and 200, FF algorithm provides the optimal
costs i.e. 1625.751, 1590.586, 1501.22 and 1502.0 ACct/day,
respectively.

By comparing the results obtained for standard test func-
tions and EOSMG, it is observed that on standard functions
WO and/or TLBO compute the best results, but for the com-
plex optimization problem with a large number of variables
and constraints rather thanWO and TLBO, FF gives the most
optimum results.

Fig. 7(B) presents the comparison of the convergence char-
acteristics of different algorithms for the EOSMG problem
under case 2. From the sub Figures (a), (b), (c) and (d) of
Fig. 7(B), for the population sizes of 25, 50, 100 and 200,
the analysis made from the convergence sub graphs are as
follows:

• For population sizes 25, 50 and 100, the convergence of
WO and FF is better than the other algorithms

• For population size 200, the convergence ofWO and GA
is better than the other algorithms

From the above analysis it is concluded that under case 2,
i.e. the discharging mode of batteries, the convergence of
WO and FF is faster than other algorithms for the different
population sizes.

A comparative cost variation analysis with respect to
population size among different methods is presented in
Fig. 8(B). From Fig. 8(B), it is clear that with the increment in
population size, the performances of PSO, GA and TLBO are
improved, while forWO and FF, the performance is improved
from 25 to 100, but deteriorates at 200. The performance of
DE is unstable with an increase in population size.

Fig. 9(B) summarizes power generation by the different
energy sources for six algorithms, under the second case.
Further, power output for different population sizes i.e. 25,
50, 100 and 200 are presented by the sub graphs (a) to (f) of
Fig.9(B). From Fig. 9(B), it is clear that all renewable energy
sources along with FC technology generate power. Addition-
ally, batteries supply back energy to the gird with positive
sign of power. Also in case 2, FF provides the minimum

13972 VOLUME 5, 2017



B. Khan, P. Singh: Selecting a Meta-Heuristic Technique for Smart Micro-Grid Optimization Problem

cost for micro-grid operation, therefore the generation by
different energy sources computed by FF algorithm is optimal
generation. Hence for the population of 25, 50, 100 and
200, the optimal generations are 751.931, 812.585, 769.386,
and 654.67 MW with respect to the optimal costs 1625.751,
1590.586, 1501.22, and 1502.00 ACct/day.

Apart from analytical analysis, Table 6 provides the the-
oretical comparison of different properties of six meta–
heuristic techniques. This comparison is based on different
factors such as input parameters, convergence, intensification
and diversification component, advantages, drawbacks and
applications.

VII. CONCLUSION
Currently, there is a continuously increasing demand of
electrical energy. Therefore, along with conventional energy
sources, the renewable energy sources have also been inte-
grated in the system to fulfill the electrical energy demand.
Micro-gird technology provides a platform to integrate all
types of renewable and non-conventional energy sources. For
the efficient utilization ofMG technology, the economic oper-
ation and control problem of micro-grid should be optimized.
Due to a large availability of optimization techniques, the
selection process of appropriate technique is cumbersome.

A comprehensive analysis of optimal economic operation
and control problem of SMG using different meta-heuristics
techniques (WO, PSO, FF, DE, GA and TLBO) is performed
to select an appropriate optimization technique.

To analyze available meta-heuristic techniques, nineteen
standard test functions under three different categories,
i.e. uni-modal, multi model and composite, are selected.
Additionally, a smart micro-grid system with MT, FC, PV,
WT, BES, EVTs and Diesel Generator is proposed to show
the comparison of an EOSMG problem. Optimization meth-
ods from three different categories (SI, EA and TL) are
compared on different performance parameters to show their
effectiveness. Two different comparisons are presented, the
first, for standard functions and the second, for a developed
problem. Individual source generations are also provided.

The percentage of minimum mean values of fitness, for
different nineteen standard functions, obtained by the WO,
FF, PSO, DE, GA and TLBO are 21.05, 5.26, 0, 36.84, 5.26
and 36.84 respectively. The percentage of minimum standard
deviation of fitness, for different nineteen standard functions,
obtained by the WO, FF, PSO, DE, GA and TLBO are 5.26,
5.26, 0, 47.36, 15.78 and 31.57 respectively. It is clear from
the comparison of mean value, standard deviation, percentage
of minimummean values and standard deviation of fitness for
different standard functions that the performance of TLBO
and DE is better and stable with respect to other algorithms.

As per the convergence characteristic’s analysis of differ-
ent algorithms, it is observed that TLBO technique has the
fastest convergence. All the search agents of TLBO are best
capable to explore the optimal search space. It is observed
that WO explores a wide range of search space and easily get
stuck in the local minima. It is concluded from the analysis

TABLE 7. Constraints limit and Bids of the DGs, Utility, BES, Dig and EVTs.

TABLE 8(A). Uni-modal benchmark functions.

of different algorithms on various standard functions that
the overall performance of TLBO is better than the other
algorithms.

Further, the comparisons of different algorithms for two
separate cases of developed EOSMG optimization problem
framework are presented.

For case 1, at population sizes 25, 50 and 100, FF algo-
rithm provides the best values i.e. 1310.512, 1255.266 and
1243.399 ACct/day, respectively, while at population size 200,
TLBO generates the optimum solution (1262.903 ACct/day).
The convergence of FF is faster than other algorithms for the
different population sizes. It is observed that with the incre-
ment in population size, the performance of DE is impairing
while the performance of GA is improving. For WO and FF,
the performance is improved for increment in the population
size from 25 to 100, but it deteriorates at 200. The perfor-
mances of PSO and TLBO are unstable with an increase in
population size.

For case2, at population sizes 25, 50, 100 and 200, FF
algorithm provides the best values i.e. 1625.751, 1590.586,
1501.22 and 1502.0 ACct/day, respectively. The convergence
of WO and FF is faster than other algorithms for the differ-
ent population sizes. It is clear that with the increment in
population size, the performances of PSO, GA and TLBO
are improving, while for WO and FF the performance are
improved from 25 to 100, but it deteriorates at 200. The
performance of DE is unstable with an increase in popula-
tion size.

The comparison of different algorithms for two sep-
arate cases of developed EOSMG optimization problem
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TABLE 8(B). Composite benchmark functions.

framework reflects that the performance of FF is superior
to other methods. It is concluded that algorithms of swarm
intelligence category are better fitted to solve such cost min-
imization problems.

TABLE 8(C). Multimodal benchmark functions.

This work will help researchers to select an appropriate
optimization method to solve MG cost minimization prob-
lems with constraints. This study may also be helpful for
the commercial utilization of MG. In addition to this other
optimization techniques may also be considered for further
study. The futuristic enhancement of the current work may
be to develop an algorithm which can provide better results
on both standard as well as practical formulations. There is
an open problem to formulate such a standard function which
can help to select a suitable optimization method for cost
minimization problems.

APPENDIX A
Constraints limits used in this study are shown in Table 7.

APPENDIX B
Standard functions used in this study are shown
in Table 8(A)–(c).
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