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ABSTRACT As a key technology that is widely adopted in location-based services (LBS), indoor localiza-
tion has received considerable attention in both research and industrial areas. Despite the huge efforts made
for localization using smartphone inertial sensors, its performance is still unsatisfactory in large open areas,
such as halls, supermarkets, and museums, due to accumulated errors arising from the uncertainty of users’
mobility and fluctuations of magnetic field. Regarding that, this paper presents iBILL, an indoor localization
approach that jointly uses iBeacon and inertial sensors in large open areas. With users’ real-time locations
estimated by inertial sensors through an improved particle filter, we revise the algorithm of augmented
particle filter to cope with fluctuations of magnetic field. When users enter vicinity of iBeacon devices
clusters, their locations are accurately determined based on received signal strength of iBeacon devices, and
accumulated errors can, therefore, be corrected. Proposed by Apple Inc. for developing LBSmarket, iBeacon
is a type of Bluetooth low energy, and we characterize both the advantages and limitations of localization
when it is utilized. Moreover, with the help of iBeacon devices, we also provide solutions of two localization
problems that have long remained tough due to the increasingly large computational overhead and arbitrarily
placed smartphones. Through extensive experiments in the library on our campus, we demonstrate that
iBILL exhibits 90% errors within 3.5 m in large open areas.

INDEX TERMS Indoor navigation, inertial navigation, mobile computing.

I. INTRODUCTION
Indoor localization with high accuracy is the key technology
for Location Based Services (LBS), whose market value is
estimated to reachmore than 4 billion dollars by 2019 [1], [2].
Real world applications of LBS include navigation in air-
ports, railway stations and advertising push in shopping malls
and museums, where users need to know their own exact
locations in unfamiliar scenes and services providers need to
know the location context of every user to provide person-
alized services. Recently, Apple Inc. proposed a new kind
of Bluetooth Low Energy for developing LBS market named
iBeacon. iBeacon devices can realize the connection between
physical world and digital world in their vicinities [3]–[5].
This gives a new line of thinking for LBS systems and indoor
localization technologies.

Among huge efforts devoted to the study of indoor local-
ization technologies from both academia and industry, the

majority of existing work focus on two different technolo-
gies, including fingerprint of radio frequency signals [6]–[8],
with the most representative one being WiFi [9], [10], [12],
and mobility estimation using inertial sensors [13]–[15].
Although WiFi fingerprint based indoor localization has
been studied for years, its accuracy still needs improve-
ment, especially in large open indoor scenes [10], [11].
This is attributed to random signal strength fluctuations aris-
ing from inevitable multi-path effects, dynamical states of
signal transmission channels, and transmission power control
techniques of WiFi routers. The expensive energy consump-
tion is another preventing factor since battery capacity in
smartphones is limited. The mobility estimation technology
using inertial sensors in smartphones (accelerometer, gyro-
scope andmagnetometer) also fails to work well in large open
environments [13]. Since users’ walkable paths are diverse in
these scenes, floor plans are unable to restrain errors arising
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from noise of inertial sensors by constraining users’ possible
mobility in location estimating process. Smartphones being
placed arbitrarily (shaken in hand or put into pocket) will
bring much noise to inertial sensors, this is a long-standing
tough problem for this technology. Moreover, the accumu-
lated errors in localization process using inertial sensors fur-
ther undermine its fidelity.

Recently, a novel series of indoor localization approaches
has been presented, represented by Magicol in [16], Maloc in
[17] and FollowMe in [18], which fuse inertial sensors and
geomagnetism, and their performances are superior to the
two technologies aforementioned. Recognizing that indoor
magnetic field anomalies are omnipresent, location spe-
cific and temporally stable, the authors leverage the locally
disturbed magnetic signals as location-specific signatures.
Besides, the magnetic sensing consumes much less energy
than WiFi scanning. The localization process is realized
through an augmented particle filter, in which the similarity
between the magnetic strength collected online and that in
a pre-constructed database is used to weigh particles. And
the inertial sensors and map information are used to drive
particles. Magicol can achieve a localization accuracy of
0.9m for tracking in office environments, while only 8m in
supermarkets. The reason is that in large open areas like
supermarkets, users’ movements have higher uncertainty,
magnetic measuring has larger noise, and error accumulation
of particle filter is unavoidable. Increasingly large computa-
tional overhead of particle filter is another challenging factor
for its usage of many users.

As highly accurate indoor localization is essential to LBS,
following question arise naturally: can we further improve
the performance of inertial sensors and geomagnetism based
indoor localization in large open areas?

Motivated by this, in this paper we show that using iBeacon
can improve the performance of inertial sensors and geomag-
netism based localization. iBeacon, which is an important
module in modern LBS systems, is proposed by Apple Inc.
for developing LBS market [3]. Users can be localized accu-
rately in proximity of pre-deployed iBeacon devices using
trilateration [19]. Since iBeacon devices are designed as core
modules for LBS systems such as mobile advertisements,
ticket validation [20], using them for localization will not
bring additional cost for LBS providers. However, valid dis-
tance measuring range of iBeacon devices is only several
meters [19] and they cannot be always used for localization
for their role in LBS systems. As a result, accurate and real
time localization using iBeacon only is impractical (the anal-
ysis is in Section III), and deploying iBeacon devices sparsely
to opportunistically calibrate inertial sensors and geomag-
netism based real time localization is a practical scheme.With
the best of our knowledge, utilizing this scheme to realize
accurate localization in large open areas is the first time
introduced in this paper.

This paper presents iBILL, an indoor localization system
using iBeacon, inertial sensors and geomagnetism in large
open environments. We first give fundamental insights on

iBeacon based localization system and provide analyses on
both its advantages and limitations. With users’ real time
locations determined according to the estimated mobility and
magnetism through an improved particle filter, we revise the
algorithm of augmented particle filter to cope with magnetic
fluctuations and complexity of users’ mobility. And we fur-
ther take advantages of iBeacon to guarantee the improved
particle filter always achieves better performance in local-
ization process. When users enter vicinity of at least three
iBeacon devices, their locations can be accurately determined
based on Received Signal Strength (RSS) of iBeacon devices
and the accumulated errors therefore are corrected. In addi-
tion, we give solutions to two long-stand tough problems of
localization using inertial sensors, increasingly large com-
putational overhead of particle filter [17] and smartphones
be placed arbitrarily [13], to improve robustness of iBILL.
We have implemented experiments in the library on our cam-
pus which has diverse complex scenes (e.g. reading rooms
and a services hall). Comparing with commonly used dead
reckoning and magnetic fingerprint based localization sys-
tems, we demonstrate that iBILL achieves higher accuracy
in large open areas.

The remainder of the paper is organized as follows.
Section II presents related work. Section III gives insights on
localization using iBeacon and then illustrates design ratio-
nale for iBILL. Based on this, we present iBILL in Section IV.
Section V provides experimental setup and results.
Conclusions and future work are given in Section VI.

II. RELATED WORK
This paper combines iBeacon devices, magnetic field signals
and inertial sensors for indoor localization. There have been
much work on using sensor fusion (inertial sensors and radio
frequency signals) and magnetic field for localization. We
only discuss closely related work in this section.

A. SENSOR FUSION APPROACHES FOR
INDOOR LOCALIZATION
The design rationale for sensor fusion is that mobility esti-
mated by inertial sensors is by nature related to location in
the physical world [13], and a position is characterized by its
detected fingerprint of radio frequency signal patterns [10].
Integrating mobility and fingerprint can lower the separate
localization errors, and the most popular integrating approach
is particle filter [17], [21], [22].

GIFT [23] is a system using the spatial correlation of WiFi
signals as locations’ features. A gradient-based fingerprint
map (Gmap) is constructed by comparing absolute RSS val-
ues at nearby positions. Users’ motion and RSS observations
are combined through an extended particle filter. Particles
are driven by detected mobility and their weights are deter-
mined by comparing results between RSS observations and
Gmap. Using gradient of RSS values can handle the changing
transmission power of WiFi routers. SLAC [12] is a system
that fuses step counter and WiFi fingerprints to optimize
locations estimating problem, in which wireless signals and
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users’ mobility are jointly used through a specialized par-
ticle filter. It learns parameters in step mode of each user
(the relationship between step length and stride frequency),
calibrates RSS measurements of heterogeneous devices and,
simultaneously estimates locations of walking targets by
solving a convex optimization problem. However, existing
works fail to achieve satisfactory accuracy in large open areas
as wireless signals are vulnerable to changing environments.
The high probability for RSS deviation may change the RSS
gradients and parameters learning may be error-prone under
this condition. Furthermore, due to the large computational
overhead for solving a convex optimization problem, SLAC is
incapable to serve many users.

B. MAGNETIC FIELD BASED INDOOR LOCALIZATION
The magnetic filed is omnipresent and nonuniform in indoor
environments due to the anomalies arising from steel, con-
crete structures and electric systems. Since the location-
specific magnetic field readings are stable over time and
magnetic sensing consumes little energy, it is feasible to
take magnetic filed as locations’ signatures for indoor local-
ization [16], [24], [25]. Chung et al. [26] designed a geo-
magnetism based localization system, which estimates users’
locations by comparing magnetic field measurements with
a pre-established magnetic fingerprint database. The sys-
tem uses magnetic fingerprint only, as a result the sensing
noise therefore dominates the localization errors. Moreover,
another drawback of the system lies in commanding mag-
netic sensors remain at the same orientation, which makes it
impractical for pedestrian tracking.

FollowMe [18] is a novel indoor navigation system based
on magnetism. In trace-collection module, it records both
a leader’s walking trace (inertial sensors’ readings) from a
origin to a destination and magnetic fingerprints along the
trace. In navigation module, it estimates followers’ locations
by matching magnetic measurements and then generates nav-
igation notifications according to their positions on restored
walking trace. However, in large open areas, it is difficult to
obtain a complete collection of the trips to a same destination
due to the large diversity exhibited, and users are easily get
lost for large magnetic sensing noise. Above reasons hinder
FollowMe’s usage in airports, museums and large shopping
malls etc.

In iBILL, we use the strength of magnetic signals as loca-
tions’ features, which is independent from phone orientation.
We consider the sensing noise and fluctuations of magnetic
field and then revise the algorithm of traditional particle filter
to relieve the problem. We further use iBeacon devices to
approach errors accumulation problem and reduce computa-
tional overhead in localization process.

III. INSIGHTS ON LOCALIZATION USING iBeacon
In iBILL, we use iBeacon devices to improve the perfor-
mance of inertial sensors and magnetic filed based local-
ization in large open scenes. In this section, we give the
fundamental insight on localization using iBeacon to further

illustrate the design rationale for iBILL. We first introduce
LBS systems based on iBeacon devices, and then analyze
the advantages and limitations of iBeacon based localization
technologies.

A. INTRODUCTION TO iBeacon BASED LBS SYSTEMS
iBeacon is announced by Apple Inc. in 2013 as a new tech-
nology for accurate indoor localization. A great advantage
of iBeacon lies in low power consumption for utilizing BLE
(the forth major revision of the Bluetooth specification), and
it is consequently applicable to mobile usages. Smartphones
which run on Apple iOS 7+ and Android 4.3+ operation sys-
tems all support iBeacon protocol [27]. iBeacon devices are
designed to work as an important module in location-context-
aware systems. Taking museum as an example, as shown
in Fig. 1, a visitor comes into a museum, his smartphone
receives broadcast packets transmitted by iBeacon devices
deployed at entrance. The packets contains the URL for
ticket purchase, then visitors can buy ticket through the URL
instead of queueing for manual ticket. When visitors want to
learn more knowledge about an exhibit, they can obtain the
transmitted packets from the iBeacon devices nearby through
a manner similar to ‘‘WeChat Shake". They can also finish
selection and payment in souvenir retail stores conveniently
with the help of iBeacon devices. These applications are also
in demand in large shopping malls, airports and cinemas
etc. Therefore, iBeacon based LBS systems can improve the
effectiveness of business management and lower commercial
cost especially the labor cost.

FIGURE 1. An example of LBS system using iBeacon in museum.

B. LOCALIZATION BASED ON iBeacon
In localization applications, iBeacon devices transmit adver-
tisement data packets which contain three binary numbers:
universally unique identifier (UUID) is an ID with 128 bits
for iBeacon devices in a same application, Major value and
Minor value are both 16 bits which can be used to uniquely
define iBeacon devices in same applications. Smartphones
scan signals at 2.4G Hz, then identify source iBeacon devices
according to above three parameters. The distance between
smartphones and iBeacon devices are calculated from the
RSS values denoted by PR and reference signal strengths at a
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d0 meters distance denoted by P0 according to Equation (1)

PR = P0 − 10η log10(
d
d0

), (1)

where η denotes the decay rate of signal strength in propa-
gation and d is the calculated distance value. This distance
determining approach is accurate in the vicinity of each
iBeacon device [19]. Smartphones obtain iBeacon devices’
positions and reference signal strengths from a central server.
After estimating distance values between three or more dif-
ferent iBeacon devices, the user’s position can be calculated.
In iBILL, we use gradient descent algorithm which is a
classical optimal algorithm in machine learning theory to
resolve the position. The algorithm’s detail and parameters
settings are explained in Section V. Therefore, if a user is in
the common vicinity of three or more iBeacon devices, his or
her location can be accurately determined based on the RSS
values of iBeacon devices.

For the great advantage of iBeacon devices, a natural ques-
tion to ask is: can iBeacon devices be used to replace the
all existing indoor localization technologies? We answer this
question in following content of this section.

C. ANALYSIS FOR COLLOCATION OF iBeacon DEVICES
Due to the limited accurate distance estimating range for each
iBeacon device, we use a circle centering on a blue point to
denote the range as shown in Fig. 2. Each point in localization
area needs to be covered by at least three different circles,
that is to say the density of circle configuration is demand
to more than 3. Under this condition, the number of used
iBeacon devices should be minimized to cut deployment cost,
so does the densest circle packing manner should be used to
maximize utilization rate of each circle. According to Thue’s
Theorem [28], regular hexagonal packing is the densest circle
packing as shown in Fig. 2. In large open area, the number of
triangles is double of number of circles if circles are packed as
shown in Fig. 2. This is because the sum of a triangle’s three
interior angles is π , and a circle’s angle is 2π . Denoting N
as the circles’ number, we can express the triangles’ number
as

N × 2π
π

= 2N , (2)

FIGURE 2. Densest circle packing manner.

and the density of circle configuration is

N × π ×
(
dr
2

)2
2N ×

√
3
4 × d

2
r

=
π

2
√
3
. (3)

To improve the density, the length of triangles’ sides is
demand to be shorten. When the length is equal to circles’
radius as shown in Fig. 3, the blue area is covered by three
different circles and users can be localized there, then the
density becomes

N × π ×
(
dr
2

)2
2N ×

√
3
4 ×

(
dr
2

)2 = 2π
√
3
≈ 3.6. (4)

FIGURE 3. Accurate localization area of iBeacon devices clusters.

Since the circles are packed in a regular manner, it can be
guaranteed that each point in the area is covered by at least
three different circles.

D. ANALYSIS FOR LIMITATION OF
LOCALIZATION USING iBeacon
The accuracy of localization using iBeacon devices mainly
depends on the accuracy of distance measurements. The rela-
tionship between distance values and RSS is represented as

d = d0 · 10
P0−PR
10η , where the parameters are same to those

in Equation (1). Due to the non-linearity of the relationship,
small signal strength fluctuations can result in large distance
measurement errors when computing large distance values.
This is why the accurate distance measurement range for
a single iBeacon device is only several meters [19], [20].
According to analysis above, the number of needed iBeacon
devices can be scaled as 2(S/r2), where S is acreage of
whole localization area and r is radius of accurate distance
measuring range, that is too great for large open areas.
Furthermore, the design motivation of iBeacon is not only
for localization, but serving as core modules for LBS systems
as well. Note that iBeacon devices need to transmit packets
that contain specific content in real applications instead of
simply transmitting advertisement packets only, and some-
times even need to establish connections with smartphones.
As a result, it is unsuitable to directly use iBeacon devices
for providing real time localization and deploying iBeacon
devices sparsely to opportunistically calibrate inertial sensors
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and geomagnetism based real time localization is a practical
scheme. In next section, we will explain how to use iBeacon
devices to improve inertial sensors based localization in large
open areas.

IV. iBILL DESIGN
According to the analyses in last section, deploying clusters
of iBeacon devices (a cluster contains three or more nodes)
sparsely in some important positions is a reasonable scheme
in iBILL, which consequently consists of two modes in its
workflow as depicted in Fig. 4. In this section, we illustrate
how to achieve accurate localization in large open area. We
fuse the collected strength of magnetic signals and estimated
users’ mobility through an improved particle filter. We revise
the algorithm of traditional particle filter in order that it can
adapt to variable magnetic signals in crowded areas. Then
we use iBeacon devices to approach the errors accumulation
problem of particle filter and make our improved particle
filter always has better performance. We further show how to
reduce the computational overhead and improve robustness
with the help of iBeacon devices clusters.

FIGURE 4. iBILL architecture.

A. iBILL ARCHITECTURE
When the RSS values of iBeacon devices indicate that a
user is in the accurate localization area of one iBeacon
devices cluster, localization process enters iBeacon local-
ization mode. In this mode, the user’s location is resolved
based on the RSS of iBeacon devices through trilateration
method as described in Section III. When the user leaves the
accurate localization area of an iBeacon devices’ cluster, his
or her locations are determined in the particle filter local-
ization (PFL) mode. In PFL mode, the collected magnetic
signals and the data of inertial sensors are used to estimate
the user’s position through an improved particle filter.

1) PARTICLE MOTION MODEL IN PFL MODE
Unlike previous work where users’ initial locations and direc-
tions cannot be determined, iBILL can determine them by
iBeacon devices. The initial location in PFL mode is the last
location in iBeacon localization mode which is denoted by
−→
P L = (xl, yl), and the initial heading θ direction can be
determined by

−→
P L and the last location before

−→
P L denoted

by
−→
P L−1 = (xl−1, yl−1), through Equation (5)

θ = arctan
yl − yl−1
xl − xl−1

. (5)

Then particles are driven by data from inertial sensors which
indicate user’s walking distance and direction. These particles
represent possible locations and directions of a user:

Pi = (xi, yi, θi), i = 1, 2, 3, . . . . (6)

When the data from accelerometer indicate that a user makes
a step forward, locations of particles are updated. Since the
step length of different users and a particular user at different
moments is a random variable `, a particle Pi is needed to
be resampled as several new particles Pij(j = 1, 2, . . . ) to
cover new possible positions of the user. The location of each
particle is updated as Equation (7)[

xij
yij

]
=

[
xi
yi

]
+

[
cos θi
sin θi

]
× lij, (7)

where lij is a random value of `. ` is a random variable with
Gaussian distribution, we use l to denote its mean value and
its variance is 0.2l according to [16]. Hence, the probability
density function of ` is

f (`) =
1

√
2π ·
√
0.2l

exp
(
−
(`− l)2

2 · 0.2l

)
. (8)

To cope with errors of step length estimation and false pos-
itive or negative of step counting, new particles are sampled
in the 80% confidence interval of step length distribution[

l − ϕ−1(0.9) ·
√
0.2l, l + ϕ−1(0.9) ·

√
0.2l

]
, (9)

the length of sampling range is 2 · ϕ−1(0.9) ·
√
0.2l, where

ϕ(x) =
∫ x
−∞

1
√
2π
e−

x2
2 dx. When data from gyroscope indi-

cate that user makes turns, directions of particles are updated
accordingly in resampling process, making the sampling area
yield to a 2-D range.Ssince users can turn to all directions
in large open areas, the turning angle θ is also a random
variable for the sensing errors and false positive measurement
of gyroscope. θ follows a Gaussian distribution, of which the
mean value being the measurement of gyroscope denoted by
θ and the variance is set to π

18 rads according to [16]. Based
on those conditions, the probability density function of θ can
be expressed as

f (θ ) =
1

√
2π ·

√
π
18

exp

(
−
(θ − θ )2

2 · π18

)
. (10)

Since the gyroscope seldom gives false negative conclusions
of turning, new particles are sampled in the 70% confidence
interval of turning angle distribution[
θ − ϕ−1(0.85) ·

√
π

18
, θ + ϕ−1(0.85) ·

√
π

18

]
. (11)

The 2-D sampling area is shown in Fig. 5, its acreage is∫ θ+ϕ−1(0.85)
√

π
18

θ−ϕ−1(0.85)
√

π
18

∫ l+ϕ−1(0.9)
√
0.2l

l−ϕ−1(0.9)
√
0.2l

ρ dρ dθ (12)

= 4 · ϕ−1(0.85)ϕ−1(0.9) · l
√
0.2l

√
π

18
. (13)
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FIGURE 5. 2-D resampling range.

2) LOCATION ESTIMATING METHOD IN PFL MODE
iBILL uses magnetic signals as particle filter’s observing
value. In the localization process, the mean value of collected
magnetic signals strength during each step is recorded as an
observing value. And we design a sliding window to store
the last k observing values, which constitute the observing
vector. For each particle, its location is updated after each
step, then iBILL extracts k values according to its last k loca-
tions from the pre-constructed magnetic fingerprint database,
which constitute a particle vector. We construct a magnetic
fingerprint database of experimental area, and each value in
database maps a 0.5m × 0.5m grid. Using multiple values
as observing vector can improve discernibility of magnetic
signals compared to a single value, because magnetic signals
of neighboring locations have high similarity in large open
areas. The similarity between observing vector and each
particle vector is an important factor for determining the
weight of each particle denoted by w and particles with low
weights will be killed. Theweights determiningmethod of the
improved particle filter will be introduced in next subsection.
We use V to denote the set of the remaining particles after
weights updating, then user’s location is determined with the
normalized weighted average of remaining particles’ loca-
tions as shown in Equation (14)

(x, y) =

∑
pi∈V

wi · xi,
∑
pi∈V

wi · yi

 . (14)

B. COPING WITH MAGNETIC FLUCTUATIONS
In PFL mode, localization accuracy largely depends on
the reliability of particles’ weights, whereas algorithms for
weights determining in existing works [16], [24] cannot work
well in large open areas for the fluctuations of magnetic
signals. In this subsection, we will illustrate the design for
weights determining algorithm in iBILL.

1) LIMITATIONS OF USING MAGNETIC SIGNALS ONLY
The weights determining algorithms in [16] and [24] are
only based on the magnetic signals. While according to our
magnetic sensing experimental results shown in Fig. 6, the
strength ofmagnetic signals have a higher possibility for large
fluctuations in scenes like services hall. That’s why Magi-
col [16] achieves only a accuracy of 8m in a supermarket.
Fig. 6(a) and Fig. 6(b) both demonstrate strength of magnetic

FIGURE 6. Magnetic strength of experimental area. (a) Magnetic strength
at 2:00 pm. (b) Magnetic strength at 10:00 pm.

signals collected in the large service hall of the library on our
campus, the data in Fig. 6(a) are collected at 2:00 pm when
there are few people, and data in Fig. 6(b) are collected at
10:00 pmwhen there are a lot of people waking around due to
the fact that library is going to be closed. As shown in Fig. 6,
the magnetic signals in most locations are stable which is a
favorable property for localization based on magnetic field.
However, the locations where magnetic signals have large
fluctuations should not be ignored, which are the source of
localization errors. The main reason for magnetic signal fluc-
tuating is that people holding metal or electronic equipments
will affect the magnetic sensing results in their neighborhood,
and the sensing noise of magnetometer is larger in scenes
like services hall than those with less people. Furthermore,
particles walking along wrong trace cannot be killed with
the help of floor plans in open areas. As a result, using
magnetic signals alone for determining weights of particles
is unsuitable in these scenes, the fluctuations of magnetism
will dominant localization errors.

2) WEIGHTS DETERMINING METHOD OF
IMPROVED PARTICLE FILTER
To restrain the effect of magnetic sensing fluctuations for
localization errors, another factor is needed to co-determine
the particles’ weights. In iBILL, we adopt the probability dis-
tribution of particles’ two attributes (step length and turning
angles) (PPA) estimated according to the measurements of
inertial sensors to co-determine theweights.When users enter
the PFL mode, their initial locations and heading directions
are known as said in last subsection, which is superior to exist-
ing works in which the initial states of users are unknown.
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Furthermore, on the basis of the statistical data in [13], the
error rate of step counter is below 10% and the errors of
gyroscope is within 30◦ in modern smartphones. As a result,
PPA is reliable for reflecting the probability distribution of
users’ locations if the moving distance is not very long, this
is why we take advantages of PPA in weights determining.
Therefore, in every particle resampling and weights updating
process, the weight of ∀Pi ∈ V is determined by the follow-
ing three parameters

w′(1)i =

1
√
2π ·
√
0.2l
· exp

(
−

(li−l)2
2·0.2l

)
∑

pk∈V
1

√
2π ·
√
0.2l
· exp

(
−

(lk−l)2
2·0.2l

) , (15)

w′(2)i =

1
√
2π ·
√

π
18
· exp

(
−

(θi−θ )2

2· π18

)
∑

pk∈V
1

√
2π ·
√

π
18
· exp

(
−

(θk−θ )2
2· π18

) , (16)

w′(3)i =

exp
(
−

s2i
2δ2

)
∑

pk∈V exp
(
−

s2k
2δ2

) , (17)

where li and θi are the step length and turning angle of
particle Pi, respectively, si is the similarity between particle
vector and observing vector and δ is a constant that reflects
the fluctuations of magnetic signals. w′i1 is determined by
the probability distribution of particles’ step length, w′i2 is
determined by that of turning angles (w′i2 is set to 1 when the
user walks straightly during a step), and w′i3 is determined by
the similarity between observing vector and particle vectors.
All the three parameters are normalized so that they can
determine the weights with same importance. To kill particles
that walk along wrong traces, the weights of particles are
genetic. In other words, if Pm+1 is resampled from Pm, the
weight wm+1 is calculated by

wm+1 = wm · w
′ (1)
m+1 · w

′ (2)
m+1 · w

′ (3)
m+1. (18)

As a result, the weights of particles walk along wrong traces
will continuously be reduced and these particles will eventu-
ally be killed in resampling process. When a particle walks
entered unreachable areas such as the outside of walls, it will
be killed certainly because there are no matching magnetic
fingerprints in the database. Then the weights of remaining
particles are normalized to calculate user’s estimated loca-
tion, i.e., wi =

wi∑
pi∈V wi

.

However, the localization errors are unavoidable, and the
locations of particles updated after last step is used as ini-
tial locations of next step. As a result, the errors are accu-
mulated as the increase of walking distance. Due to the
error accumulation problem, reliability of PPA decays as
increase of walking distance. Therefore, the conclusion that
weights determining method of iBILL outperforms existing
methods is conditional. In next paragraph, we will explain
how to combine iBeacon devices to maintain the conditional
conclusion.

3) USING iBeacon TO GUARANTEE BETTER PERFORMANCE
As depicted in last paragraph, the weights determining
method of iBILL having better performance is conditional.
We use X to denote the localization errors of taking use PPA
asweights and Y to denote that of usingmagnetic filed signals
only, according to the weights determining approach shown
in Equation (18) the condition is

E(XY ) ≤ E(Y ). (19)

According to Cauchy-Schwarz Inequality, we have√
E(X2) ·

√
E(Y 2) ≤ E(Y ). (20)

The probability of magnetic signals having large deviation
is p, and the localization error arising from the deviation
is denoted by α, if magnetic signals are stable, this error
approximates zero, then the condition becomes√

E(X2) ·
√
pα2 ≤ pα, (21)√

E(X2) ≤
√
p, (22)

E(X2) ≤ p, (23)

the E(X2) has positive correlation with the walking distance
and the number of making turns, and p is correlated with
peoples’ activities in different scenes. When users enter iBea-
con localization mode, accumulated errors in PFL mode can
be corrected. Thus combining iBeacon devices can impose
restrictions on the value of E(X2) and then recover the relia-
bility of PPA in next PFL mode. Furthermore, the condition
indicates that more frequent the fluctuations of magnetic
signals is (higher p is), the better relative performance of our
improved particle filter to existing methods is. And for higher
accuracy, the density of iBeacon devices clusters is needed to
be higher to correct the errors in PFL mode more frequently,
at the same time, the deployment cost must be higher.

C. SOLUTIONS TO TWO LONG-STANDING
TOUGH PROBLEMS
1) REDUCING COMPUTATIONAL OVERHEAD
In PFL mode, the computational overhead is proportional
to numbers of particles. In each resampling process, with
the average number of newborn particles being m, the com-
putational overhead for one user after n steps is scaled as
2(mn), implying that the computational overhead increases
with walking distance. Reducing newborn particles in each
resampling process can reduce the overhead, while the robust-
ness of particle filter may degrade. That’s because the remain-
ing particles could not cover the real positions or directions
of the user due to the sensing noise of inertial sensors.
However, in iBILL the computational overhead of particle
filter can be reduced periodically as the increase of walking
distance. When a user enters iBeacon localization mode, his
or her location can be accurately determined according to
RSS values of iBeacon devices, then computational overhead
of localizing the user can be decreased to 2(Nd), Nd is the
number of possible directions. If the following several steps
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are also in iBeacon localization mode, the heading direction
can be determined as described in subsection IV-A. Thus the
initial computational overhead is therefore reduced to 2(1)
when the user enters next PFL mode with accurate initial
location and direction. The result verifies the idea that com-
bining iBeacon devices can largely reduce the computational
overhead of particle filter in localization process.

2) IMPROVING ROBUSTNESS OF iBILL
In PFL mode, the following two cases may lead localization
systems unworkable: (1) the initial location and direction
are unknown; (2) shaking smartphone heavily or putting it
into pocket. For the first case that localization begins at an
unknown position, then the initial location can be roughly
determined based on the RSS values of the nearest iBeacon
devices cluster as shown in Fig.7. Because the initial location
is out of any cluster’s accurate localization range, the RSS is
given by

PR = P0 − 10η log10(
d
d0

)+ X , (24)

FIGURE 7. Illustration of the approach to estimate initial location.

where X denotes fluctuation and noise of signal strength
which obeys a Gaussian distribution with zero mean [29]
and its variance denoted by σ 2 depends on environments and
transmission distance. Then the estimated distance is

d̂ = d0 · 10
P0−PR+X

10η . (25)

Since d = d0 · 10
P0−PR
10η , the estimated distance can be

expressed as

d̂ = d · 10
X
10η = d · e

ln 10·X
10η = d · e

X
η′ , (26)

where η′ = 10η
ln 10 . The mathematical expectation of d̂ is

E(d̂) =
1

√
2πσ

∫
+∞

−∞

d · e
x
η′ · e−

x2

2σ2 dx (27)

=
1

√
2πσ

∫
+∞

−∞

d · e
−

1
2σ2

[(x− σ
2

η′
)2− σ4

η′2
]
dx (28)

= d · e
σ2

2η′2 ·
1

√
2πσ

∫
+∞

−∞

e
−

1
2σ2
·(x− σ

2

η′
)2
dx (29)

= d · e
σ2

2η′2 . (30)

Since E(d̂ · e
−

σ2

2η′2 ) = d , d̂ · e
−

σ2

2η′2 is used as the
estimated distance to roughly determine initial location.

The user’s real location is in the proximity around the roughly
estimated location represented by the blue circle in Fig. 7.
Then PFL mode starts with Nd · Nl initial particles in the
blue circle. Here, Nd is the number of possible directions
and Nl is the number of possible locations sampled in the
circle randomly. In this scene, since PPA is unreliable due
to the uncertain initial location and direction, the weights of
particles can only be determined by magnetic signals until the
user enters iBeacon localization mode. Then in the next PFL
mode, particle filter can work as usual. For the second case,
putting smartphone into pocket or shaking in hand will result
in unreliability of mobility estimation and bring much noise
to magnetic sensing, which are fatal to PFL mode. The two
smartphone patterns can be recognized through classification
in [30], and localization process can be disrupted when smart-
phone recognizes such two patterns. The reason behind is that
when users need real time navigation, smartphones must be
put in front of them for location and map reading. And a
conclusion can be drawn that users do not necessarily need
to know their real time locations under such two patterns.
When the smartphone withdraws to the usual holding pattern,
localization process can be restarted with the initialization
approach being same to the solution to the first case.

V. EXPERIMENTAL EVALUATION
In this section, we will show experimental results of iBILL.
As shown in Figs. 8 and 9, the experimental areas are a
reading room and a services hall in the library on our campus.
The reading room is consist of many corridors. And the
services hall is an large open area which covers an area of

FIGURE 8. Map of reading room.

FIGURE 9. Map of services hall.
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about 1800m2. We first present the accuracy of localization
using iBeacon devices to show its advantages and limitations.
Then, we compare the accuracy of iBILL with Magicol and
Dead Reckoning (DR) scheme, and conclusion is that iBILL
has a better performance in large open areas. In experiments,
magnetic strength, number of steps and turning angles are all
collected by an iPhone6 smartphone.

Algorithm 1 Gradient Descent Localization
1: Randomly Initialize θ.
2: Set training times N = 50, n = 0.
3: Set learning rate α = 0.1.
4: while n ≤ N do
5: Compute Loss Function’s partial differential

∂
∂θj
J (θ ) =

∑m
i=1 2×

hθ (x(i))−y(i)

h(i)θ
× (θj − x

(i)
j ).

6: Update θ value
θj = θj − α

∂
∂θ
J (θ ).

7: n = n+ 1.
8: end while
9: Return θ value.

A. ACCURACY OF iBeacon LOCALIZATION MODE
In our experiments, we use CC2541 chips running
iBeacon protocol as iBeacon devices. The distance estimation
approach is described in section III. We utilize the gradient
descent algorithm to get the location estimation after we
get the distance values d between smartphone and iBeacon
devices. The solving process is shown in Algorithm 1. In this
algorithm, our hypothesis function is

hθ (x(i)) =
√
(θ1 − x

(i)
1 )2 + (θ2 − x

(i)
2 )2, (31)

which indicates the distance between estimation point’s loca-
tion and each device’s location. Since we focus on the two
dimensional indoor localization, the θ includes two elements,
indicating x location and y location, respectively. Afterwards
we could get the loss function of gradient descent algorithm
and our goal is to minimize the loss function min

θ
J (θ ) and get

corresponding θ value

J (θ ) =
1
2

m∑
i=1

(hθ (x(i))− d (i))2, (32)

where m represents the number of iBeacon devices. The per-
formance of iBeacon localization mode is shown in Fig.10,
the value of X-axis is the distance between smartphone and
one device of a cluster. We set distance between each device
in a same cluster as 4 meters, and localization accuracy in the
blue area in Fig. 3 is within 0.5 meters.

B. LOCALIZATION PERFORMANCE OF iBILL
We first compare the localization performances of iBILL,
Magicol and DR in our library. The database consistof mag-
netic filed strength collected at 2:00 pm, and observing val-
ues are that collected at 10:00 pm. Observing vectors and

FIGURE 10. Distance-accuracy of iBeacon devices.

particle vectors all consist of the last 5 magnetic strength
values. Fig. 11 shows localization errors against walking steps
of three approaches. In experiments, the accuracy of step
counting is about 90%. We can see that iBILL can efficiently
restrain errors from increasing with walking distance, which
is because the locations and directions can be corrected in
iBeacon localization mode. Errors of DR and Magicol both
increase with steps due to the noise of inertial sensors and
magnetic strength fluctuations, and they are unable to kill
wrong particles using floor plans in large open areas. Fig. 12
shows the Cumulative Distribution Function (CDF) of local-
ization errors of the three systems, fromwhich we can see that
iBILL significantly outperforms DR and Magicol schemes.

FIGURE 11. Error vs step numbers of three approaches.

FIGURE 12. CDF comparison of three approaches.
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FIGURE 13. Performance of iBILL for different users.

The 90 percentile errors of iBILL, Magicol and DR is within
3.5m, 12m and 17m, respectively. The experimental results
corroborate that iBILL can restrict the vast majority of errors
into an acceptable range.

Now, we specifically show the comparisons of the perfor-
mance of the improved particle filter in PFL mode and the
augmented particle filter in Magicol. To compare them in the
large open areas, we select one general trace as shown in Fig.9
which is represented by the red line. And iBeacon clusters
are deployed at the two blue dots, the distance between them
is about 50m. Fig. 14 shows localization errors of the two
algorithms against the number of walking steps along the
same trace. We can see that the accuracy of two algorithms
during beginning straight trace are both very high due to the
known initial location and direction. PFL mode can achieve
a better performance when walking distance is not very long.
Then, with the increase of walking distance, performances of
two algorithms tend to be the same due to the fluctuations of
magnetic strength and the accumulated errors in localization
process.

We further evaluate the robustness of iBILL when it is
used by people with different step length. We employed five
users (threemen and twowomen)with different heights (from
1.57m to 1.95m) in our experiments. The CDF of localization

FIGURE 14. Comparison between PFL and Magicol.

error for the five users is shown in Fig. 13. From which we
can see that iBILL achieves high accuracy for users with
common step length. The worst performance is that of user #4
whose height is 1.95m, because his step length is longer than
common people and then degrades the reliability of PPA.
Even so, the 90 percentile localization errors for user #4 is
within 9m, which is still better than Magicol and DR. Hence,
the experimental results demonstrate the robustness of iBILL.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed iBILL, an accurate indoor local-
ization system that jointly uses iBeacon and inertial sensors in
large open areas. iBILL consists of twomodes, iBeacon local-
ization mode and Particle Filter Localization (PFL) mode.
iBeacon devices clusters can accurately localize users in their
vicinity, and we show advantages and limitations of localiza-
tion utilizing them. PFL mode provides real time localization
for users walking in large open areas through an improved
particle filter. We improve the algorithm of existing particle
filters to cope with the fluctuations of magnetic filed. As a
result, iBeacon devices can prevent errors in PFL mode from
accumulating with walking distance increase and guarantee
the errors in an acceptable range. iBeacon devices can also
be used to reduce computational overhead of particle filter
and improve robustness of iBILL. Our experimental results
corroborate that using iBeacon can improve the performance
of inertial sensors based localization technologies in large
open areas. Our future work is to further study how to use
iBeacon and inertial sensors to improve the performance of
location based services in user-centric commercial modes.
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