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ABSTRACT This paper introduces a novel big feature data analytics scheme for integration toward data
analytics with decision making. In this scheme, a split and combine approach for a linear discriminant
analysis (LDA) algorithm termed SC-LDA is proposed. The SC-LDA replaces the full eigenvector decompo-
sition of LDA with much cheaper eigenvector decompositions on smaller sub-matrices, and then recombines
the intermediate results to obtain the exact reconstruction as for the original algorithm. The splitting or
decomposition can be further applied recursively to obtain a multi-stage SC-LDA algorithm. The smaller
sub-matrices can then be computed in parallel to reduce the time complexity for big data applications. The
approach is discussed for an LDA algorithm variation (LDA/QR), which is suitable for the analytics of
Big Feature data sets. The projected data vectors into the LDA subspace can then be integrated toward
the decision-making process involving classification. Experiments are conducted on real-world data sets to
confirm that our approach allows the LDA problem to be divided into the size-reduced sub-problems and
can be solved in parallel while giving an exact reconstruction as for the original LDA/QR.

INDEX TERMS Big data, feature extraction, linear discriminant analysis, classification, computational

complexity.

I. INTRODUCTION
The rising importance of Big Data computing stems from
advances in many technologies such as sensors, computer
networks, data storage, cluster computer systems, cloud com-
puting facilities, and data analytics. The data is considered as
“Big” when it meets the requirements of the “four V’s”’, such
as Volume, Variety, Velocity, and Value. The first three Vs are
three defining properties or dimensions of Big Data. Volume
refers to the amount of data, variety refers to the number of
types of data, and velocity refers to the speed of data pro-
cessing. Big Data analytics is concerned with the automatic
algorithmic extraction and logical analysis of information
found in huge data volumes to help in enrichment of business
value chains or to bring significant science and engineering
advances.

Big data is a disruptive force presenting opportunities as
well as challenges. With the sheer volume and dimension-
ality of data, researchers in different fields face formidable

challenges in dealing with large-scale data sets using tradi-
tional analytics methods. Traditional information processing
and statistical learning tools such as principal compo-
nent analysis (PCA), subspace clustering, etc., need to be
re-examined in today’s high-dimensional data regimes.
Before re-examining the right tools, it is important to under-
stand the nature of the Big Data sets. Big Data sets in fact
can be divided into two categories: (1) Big Sample Data Sets;
and (2) Big Feature Data Sets. A data set normally has n
observations/samples and m variables/ features (dimensions).
How the datasets are classified depends on samples denoted
as n and the features denoted as m of the original data
before the growth in the data volume. In the first category
(n >> m), the data dimension is not large. As the volume
grows due to more samples, the dimension of n increases,
but the dimension of m may remain the same. In the second
category (m >> n), m is large due to a big number of
variables/features and can be further increased as the number
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of features increases. Meanwhile # can also be increased due
to the growth in sample volume.

Many real world applications or datasets fall into the sec-
ond category. One specific research field which involves high
dimensions and big volume data is gene classification in
computational biology. For years, genes have been studied
and mapped. A typical human genome contains more than
20,000 genes. Each gene data has along sequence and is made
up of over 3 million base pairs. Simply mapping a genome
requires a hundred gigabytes of data, and sequencing multiple
genomes and tracking gene interactions multiplies that num-
ber many times — hundreds of petabytes in some cases. Thus,
genes data sets are classified under the second category of Big
Feature Data Sets. Another example are the data sets used in
remote sensing applications. Each data sample after reshap-
ing the image into a vector covers large areas of the earth’s
surface before the size of data sets further grows as a long-
term image sequence. In social networking applications, the
web analytics and multimedia analytics involve multimodal
data such as text, image, audio and video. Each data in the
data sets consists of large numbers of different modalities of
features before the volume is growing up.

There are two classical dimensionality reduction meth-
ods used widely together with machine learning in many
applications; principal component analysis (PCA) and linear
discriminant analysis (LDA). PCA is an unsupervised linear
dimensionality reduction method, which seeks a subspace of
the data that have the maximum variance and subsequently
projects the input data onto it. PCA may not give good clas-
sification performance because it does not take into account
any difference in the data class. On the other hand, LDA is
a powerful traditional statistical technique for supervised
data dimensionality reduction [1], [2] and has been applied
successfully towards many applications to deal with high-
dimensional data. It is different from PCA in that it reduces
dimensionality while preserving as much of the class dis-
criminatory information as possible. It explicitly attempts
to model the difference between the classes of data. This
make it more suitable if the data analytics involves decision
making.

PCA and LDA are commonly cascaded when used for
performing classification tasks [3]. In this case PCA is often
used as a preprocessing to reduce the dimensionality of the
data before performing the LDA. However, for Big Feature
Data Sets, PCA may not be suitably performed before LDA
because it would incur loss of some useful discriminatory
information prior to the LDA stage [4]. LDA has been stud-
ied extensively and various extensions have been developed.
However, LDA for Big Data in general, or specifically for Big
Feature Data Sets has not been fully explored or exploited.
In addition, Big data decision analytics is still at the infancy
stage. A Big data feature extraction technique which is suit-
able and can be integrated to the Big data decision analytics
is highly desired.

In this paper, a novel approach of Big Feature data ana-
lytics for integration towards Big data decision analytics
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is introduced. In this approach, a technique termed the Split
and Combine Linear Discriminant Analysis (SC-LDA) is pro-
posed for Big Feature Data Analytics. In contrast to most of
the existing LDA and extension methods aiming to improve
the speed and efficiency, or focusing on incremental learning,
our approach not only targets to reduce the computation, it
also splits the original LDA problem into two size-reduced
sub-problems, solves the sub-problems (with much cheaper
computational cost) with a base algorithm separately, and
then combines the results from the sub-problems to obtain
the final solution. We term this as a single stage SC-LDA.
Like PCA, the classical LDA requires an eigenvector decom-
position on the full data matrix which is computationally very
expensive. The SC-LDA replaces the full eigenvector decom-
position with much cheaper eigenvector decompositions on
smaller sub-matrices which can be computed in parallel, and
then recombines the intermediate results to obtain the exact
reconstruction as for the original algorithm.

Second, the splitting or decomposition can be further
applied recursively towards the single stage SC-LDA to
obtain a two stage SC-LDA, and the process continued on
to obtain a multi-stage SC-LDA decomposition. Third, to
further improve the scalability, we propose to solve each sub-
problem in parallel. It is important to note our approach of
SC-LDA is particularly suitable for Big Feature data ana-
Iytics. Experiments are conducted to confirm our approach
allows the LDA problem to be divided into the size-reduced
sub-problems and can be solved in parallel while giving an
exact reconstruction as for a state-of-the-art LDA algorithm
variation (LDA/QR [5]) suitable for Big Feature Data Sets.
Our approach is to split a large problem into sub-problems to
be solved separately before recombination. To the best of our
knowledge, no similar work has been reported for classifica-
tion tasks applications, and specifically for the LDA.

The focus of our paper is to demonstrate that the LDA
problem can be computed in parallel using a split and com-
bine approach to increase the computational efficiency for big
data applications while giving an exact reconstruction using
the LDA/QR as an example application. The performance of
the LDA/QR for classification tasks has been demonstrated
by the authors in [5] to be competitive with other state-of-
the-art algorithms for discriminant analysis. With appropri-
ate modifications, the split and combine approach can also
be used for other algorithms for dimensionality reduction
and discriminant analysis. The remainder of the paper is
organized as follows: Section II reviews related works for
some existing LDA algorithms and variations used in the
paper. Section III presents the proposed SC-LDA algorithm
for a classification task, and discusses extensions for multi-
stage decompositions. The computational complexity of the
SC-LDA with other LDA algorithms is discussed in
Section IV. The SC-LDA decompositions give an exact recon-
struction as for the original LDA/QR algorithm on condition
that the data samples maintain the linear independence after
the split. This condition is implicit in the definition of the
OR where A € R™" can be decomposed as A = QR
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if it has linearly independent columns. Some experimental
results on real-world data sets to validate the approach and the
linear independence condition is given in Section V. Finally,
discussions and conclusions are given in Sections VI and VII.

Il. RELATED WORKS

Because Big Feature Data Analytics has not been fully
explored and Big data decision analytics is at its infancy
stage, this section only briefly reviews current research for the
LDA and some of its related variations from two directions
as useful background information for our research in the
SC-LDA for Big Feature data analytics: (i) incremental learn-
ing LDA algorithms; and (ii)) LDA for undersampled data
sets. We will also briefly comment on how our work is related
in regards to applications for (i) and (ii).

A. INCREMENTAL LEARNING LDA ALGORITHMS

Many existing LDA algorithms are batch algorithms, which
require that the data must be available in advance and be given
once altogether. Incremental learning LDA algorithms allow
the advantages to deal with data streams when new data are
presented, and learning all the data from the beginning is not
required. This will reduce the requirement for large mem-
ory and high computational complexity because the system
would not need to maintain a huge memory to store the data
either previously learned or newly presented.

There have been two main approaches to updating LDA
features: indirect and direct. In the indirect approach, the
incremental algorithms are used to update the matrices which
are involved in computing the LDA features and then the
LDA features are computed through solving an eigen decom-
position problem. For example, Pang et al. [6] presented
incremental algorithms to update the within-class and
between-class scatter matrices and used them to update the
LDA features. Ye et al. [7] used an incremental dimen-
sion reduction (IDR) algorithm with QR decomposition
for adaptive computation of the reduced forms of within-
class and between-class scatter matrices. The proposed algo-
rithm by Uray et al. [8] involves performing PCA on an
augmented matrix and then updating the LDA features.
Kim et al. [9], [10] used sufficient spanning approximations
for updating the mixture scatter matrix, the between-class
scatter matrix, and the projected data matrix. None of these
algorithms deals with the LDA features directly, and updating
the LDA features is instead done by solving an eigenvalue
decomposition problem.

In contrast to the techniques above, there are incre-
mental algorithms that update LDA features directly.
Chatterjee and Roychowdhury [11] proposed an incremental
self-organized LDA algorithm for updating the LDA fea-
tures. Their approach involved the incremental computation
of Q™12 where Q is the correlation matrix of the input
data. In other works, Demir and Ozmehmet [12] proposed
online local learning algorithms for updating LDA features
incrementally using error-correcting and the Hebbian learn-
ing rules. Moghaddam et al. [13], [14] and Ghassabeh and
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Moghaddam [15] derived new incremental algorithms to
accelerate the convergence rate of the proposed algorithm
in [11]. The proposed algorithms are derived based on the
steepest descent, conjugate direction, Newton—Raphson, and
quasi-Newton methods. Moghaddam et al. [13], [14] and
Ghassabeh and Moghaddam [15] used an implicit cost func-
tion to find the optimal step size in order to accelerate the
convergence rate. However, their works did not have access
to the explicit cost function, and could not guarantee the
convergence of the proposed algorithms. We note that the
incremental learning algorithms (both direct and indirect)
in [6]-[15] are focused mainly on reducing the computational
requirements when new data are presented to avoid comput-
ing and learning all the data from the beginning. However,
the incremental schemes would still require an initial LDA
transformation to be performed on the data set before the
application of the incremental learning. In contrast to incre-
mental learning LDA schemes, the SC-LDA proposed in this
paper is focused on reducing the computational complexity
for the initial LDA transformation. With suitable application,
the SC-LDA techniques can also serve as an incremental
learning LDA approach. Some discussion of this is given
towards the end of the paper.

B. LDA FOR UNDERSAMPLED DATA SETS

A well-known problem in classical LDA is termed as the
singularity or undersampled problem where the number of
features (mm) in the data matrix is large compared with the
number of samples (7). In our definition, this would be clas-
sified as a Big Feature Data Set for a very large data matrix
to be analyzed. A common solution to address this singularity
problem is to apply PCA for feature dimensionality reduction,
prior to using the LDA. However, the disadvantage of this
approach is that it would incur loss of some useful discrimi-
natory information prior to the LDA stage. Other approaches
which have been proposed to address the singularity problem
is to use different variations of the classical LDA objective
function. In this paper, we make use of a LDA algorithm
variant termed LDA/QR [5] which has been designed to
address the singularity issue. The rest of this section gives
some discussions on the LDA algorithm as well as other LDA
variations which will be used for comparisons in this paper.
Given a data matrix of full column rank with class label

A=Jay...a,] =[A;...Ax] € R™"

where each a;(1 < i < n) is a data point in an m-dimensional
space and each block matrix A; € R™M(1 < i < k)isa
collection of data items in the ith class, n;(1 < i < k) is the
size of the class i, and the total number of data items in data
setAisn = Z’iiz 1 ni. Let N; denote the set of column indices
that belong to the class i. The global centroid ¢ of A and the
local centroid c; of each class A; are given by

1 1
c=-Ae,Ci= —Aje;,i=1,...,k €))
n n;
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respectively, where

1 1
e=|:|eR¢= eRY%,i=1,...,k. (2
1 1
Let
k
Sp=) . nici—0i—of 3)
k
Sw=2_ Y (@—c)(a—0)" “)
i=1 jeN;

S=3 0 (@=)(@—o )

where Sp, S, and S; are called the between-class
scatter matrix, the within-class scatter matrix, and the
total scatter matrix, respectively. It is well-known that the
total scatter matrix is related to the between-class scatter
matrix and the within-class scatter matrix by,

S[ = Sb + Sw (6)

The classical LDA objective function is then given by
Equation (7) as,

G = arg max trace <<GTSt G) : (GTShG)> %)
GeRmx!

where G € R/ projects data in a m-dimensional space to

the /-dimensional subspace.

To address the undersampled (singularity) LDA problem,
Chu et al. [5] proposed an efficient algorithm called LDA/QR
which uses a modification/variation of the classical LDA
objective function as shown in Equation (8),

( T & 7
G = arg max trace (G S,G) (G SbG)) 8)
GeRmx!

where (1)) denotes the pseudoinverse of (-).

Another variation of the LDA is the uncorrelated
LDA (ULDA) [16]. ULDA was originally proposed by
Chu et al. [16] for extracting feature vectors with uncor-
related attributes. Later on, the ULDA was generalized by
researchers in [17] and [18] to address undersampled prob-
lems based on simultaneous diagonalization of the scatter
matrices. The new ULDA objective function is shown in
Equation (9).

G =arg max

T (+) T
trace (G SZG) GTS,G)) (9)
GeR™I GT§,G=1

IIl. SPLIT AND COMBINE LINEAR DISCRIMINANT
ANALYSIS (SC-LDA) FOR BIG FEATURE DATA

For Big Feature data analytics with large and high-
dimensional data sets, a huge computational complexity and
lack of available storage may be critical issues. For ease of
discussion, this section first discusses a single stage SC-LDA
for a classification task using two-fold cross validation
(extensions to v-fold cross-validation will be briefly dis-
cussed later) which is designed towards binary or two-class
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decision making. The approach will then be extended to
discuss the multi stage SC-LDA towards multiclass decision
making.

A. SINGLE STAGE SC-LDA

For classification tasks, the data set is first divided into two
sets for training and testing. This is termed as the training
set and the testing set respectively. We will illustrate the
SC-LDA for a two-fold cross validation algorithm using a
1:1 ratio for the training and testing sets. At the start, the
input data is stored in an m X n matrix, A, where m denotes
the number of features and n denotes the number of samples.
The class data is stored in a 1 x n vector, C. The output of the
algorithm would be three matrices denoted as Y1, Y2, Y7o,
and three row vectors Cq, Cp, and Cp,5; where Y1 and Y» are
two training sub-matrices of size m xn/4, and Yr, is a matrix
of size m x n/2.

The row vectors Cy, Ca, and Cr, holds the class labels for
the respective samples. All the data samples in the original
data matrix A will be used to form the three matrices. The
data partitioning scheme presented here needs class vectors
to train a classifier prior to performing the classification
task. The SC-LDA algorithm for a classification task can be
described using six steps. Steps 1 to 5 are used for the training
process, whereas Step 6 is used for the testing process.

Step 1 Splitting into Data Sub-Matrices Y|, Y2, Y and
Class Row Vectors Cy, C, Cregr
Input: A (m x n matrix), C (1 x n vector).
Fori=1to2do
Forj= 1ton/4do
1.1 Randomly select a column x from A (without
replacement) and mark the selected column.
1.2 Select the corresponding column entry y from C.
1.3 Set x as the j-th column in the sub-matrix Y;.
1.4 Set c as the j-th entry in the row vector C;.
End For
End For

1.5 Set Yr.5 to the remaining unmarked columns
in C.
Output: Y1 and Y, (m x n/4), Yresr (m x n/2), C1 and Co
(1 x n/4), Cress (1 X n/2).

Step 2 Solving Sub-Problems in Parallel

Input: Yy and Y, (m x n/4), C1 and C; (1 x n/4).
Do in Parallel
2.1 Compute the economic QR factorization of ¥; as

Y; = Q;R; where Q; is an orthogonal matrix of
size (mxn/4) and R; is an upper triangular matrix
of size (n/4 xn/4).

End Do

Output: QO and Q> (m x n/4), Ry and Ry (n/4 xn/4).
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Step 3 Combining Intermediate Solved Data Matrices

Step 6 Evaluating Performance of Trained Classifier With
Cross-Validation

This step combines the intermediate results from Step (2).
We make use of the following notation in our descrip-
tion. Let the economic QR factorization for the full data
matrix ¥ be Y = QR where Y is the column concate-
nation of ¥; (i = 1,2) and Q is an orthogonal matrix of
size (mx n/2) and R is an upper triangular matrix of size
(n/2 x n/2). We will partition the Y, O, and R matrices as
shown in Fig. 1.
Input: Q1 and Q> (m x n/4), Ry and Ry (n/4 xn/4).
3.1 Calculate Z as the matrix expression of (Q>Ry —
0101 (Q2R)).
3.2 Compute the economic QR factorization of Z as
Z = Q;R,, where Q, is an orthogonal matrix of
size (m x n/4) and R, is an upper triangular matrix
of size (n/4 xn/4).
3.3 Reconstruct the matrices Q and R from its various
sub-matrices as Q4 = Q1, Op = Oz, R4 = Ry,
Rp = Q1T(Q2R2) andRc=Ry.
Output: Q(m x n/2), R (n/2 x n/2).

Step 4 Computing the LDA Objective Function
This step computes the LDA objective function. We make
use of a LDA algorithm variant termed LDA/QR. The
detailed derivations can be found in [5].
Input: Q(m x n/2), R (n/2 x n/2), Cy and C; (1 xn/4).
4.1 Construct a binary class label matrix C, for the
column concatenation of C; (i = 1,2) where C; is
a matrix of size (n/2 xk) and k is the number of
classes in the data set. Each row in the C, matrix
contains only a single ““1”” element, with all other
elements in the row set to “0”. The k" element
for the n' row is set to “1” if the correspond-
ing column in the data matrix ¥ belongs to the
k™ class.
4.2 Compute the LDA objective function as G =
OR™TCy).
Output: G(m x k).

Step 5 Projecting Training Vectors into the LDA Subspace
for Classification Training
Input: ¥ (m x n/2), G(mx k), concatenated matrix
{[C1.C2]} (1 xn/2).
5.1 Compute the LDA training vector projections
YLDATrain as YLDATrain =G'y.
5.2 The training vectors together with its correspond-
ing class labels can then be applied towards
training a supervised classifier.

Output: Trained classifier.
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Input: Yz (m x n/2), G(m xk), Cresr (1 xn/2), trained
classifier.

6.1 Compute the LDA testing vector projections
YLDAgestaS YLDAgest = G Yregt-

6.2 The testing vectors together with its correspond-
ing class labels can then be applied towards evalu-
ating the performance of the trained classifier. For
performing two-fold cross-validation, the data
matrices Y and Yteg are swapped and the Steps
(2) to (6) are repeated.

Ra | Re
0 | Re
Y Q R

FIGURE 1. Partitioning of Y, Q and R matrices.

Y1 Y2 = QA QB

The algorithm can be adapted to perform v-fold cross
validation by splitting the data into v separate sub-matrices.
In this case, Step (2) can still be performed for all the data
sub-matrices in parallel, but the combination in Step (3) will
require a multi-stage SC-LDA decomposition. For example,
Fig. 2 shows a partitioning of the Y matrix to perform a
4-fold cross validation when the data is split into four separate
sub-matrices, and the split and combine parallel processes for
its subsequent recombination. The approach can be extended
for 8-fold, 16-fold cross validation and so on. A 8-fold cross
validation will split the data into eight sub-matrices, a 16-fold
cross validation will split the data into 16 sub-matrices, and
so on. Further splits can be performed on the sub-matrices
on condition that the sub-matrices retain linearly independent
columns after the split. The following section discusses the
multi-stage SC-LDA and gives a graphical representation.

B. MULTI STAGE SC-LDA

The Single Stage SC-LDA discussed in the preceding section
can be further split recursively into multiple stages for a
Multi Stage SC-LDA decomposition. A graphical example
of a two-stage splitting is shown in Fig. 3. In this case,
the figure shows the sub-matrix Y is split into a further
two sub-matrices Y| and Yy (ie. Yo = {[Y21, Y2ol})
and the QR decomposition is performed separately on Y
and Y, before being passed into its Combine Data Stage.
Although not shown in Fig. 3, the data sub-matrix Y; can
be similarly split into two sub-matrices Y11 and Y7, to give
a full two stage SC-LDA decomposition. This recursive
decomposition can be further applied towards splitting the
sub-matrices Y11, Y12, Y21, and Yz, for a full three stage

VOLUME 5, 2017



J. K. P. Seng, K. L-M. Ang: Big Feature Data Analytics: SC-LDA for Integration Toward Decision Making Analytics

IEEE Access

VAN

"N /N

Y Y Y21 b £

T R T |

Split Spilit Split Split 4 parallel Split

I:)a.ta1 1 Data1 2 Dataz1 D ata22 processes
Combine Combine gop:::::
Data, Data, proc

l l

Combine Data

l

Combine Class

|

G

FIGURE 2. Partitioning of Y matrix for 4-fold cross validation and the split
and combine processes.

SC-LDA decomposition, and the process can be continued
for further stages of SC-LDA decomposition. The QR decom-
position for each of the sub-matrices can then be computed
in parallel to reduce the time complexity for the eigenvector
decompositions.

IV. COMPUTATIONAL COMPLEXITY OF SC-LDA

The computational complexity of the SC-LDA (Steps 2 and 3)
consists of QR decompositions and some matrix operations.
The original LDA/QR to perform a QR decomposition on
a data matrix of size m x n would have a complexity
of O(mn?). We can consider the original LDA/QR algorithm
as a SC-LDA decomposition at level/stage O (i.e. without any
splitting). The single stage SC-LDA reduces the complexity
to three QR computations of 0(m(n/2)2). Two QR compu-
tations are required for the Split Data Stage, and another
QR computation is required for the Combine Data Stage.
The two stage SC-LDA further reduces the complexity to
QR computations of O(m(n /4)?). Table I shows the computa-
tional complexity of QR decompositions for various configu-
rations of the SCA-LDA. It is important to note that the multi
stage SC-LDA configurations allow the QR computations to
be performed in parallel and significantly reduce the time
complexity. For Big Feature Data Sets, many decomposition
levels can be utilized to split the original data matrix into
multiple smaller sub-matrices to be computed in parallel
by separate core processing units. In the literature, several
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FIGURE 3. Graphical representation of Two-Stage SC-LDA.

TABLE 1. Main computational costs for various SC-LDA decomposition
configurations.

Number of
decomposition QR computations required
stages (mxn) (m*n/2) (mxn/4) (mxn/8)
0 1 - - -
1 - 3 -
2 - 1 6 -
3 - 1 2 12

methods are available for QR computations. The experiments
used the householder method [5] where a QR computa-
tion of an m x n matrix has a main computational cost of
4mn®— (4/3)n> flops. The main computational cost of the
single stage SC-LDA is given by 3 x (4m(n/2)* — 4/3(n/2)?),
whereas the main computational costs of the two stage
and three stage SC-LDA decompositions are given by 6 x
(4m(n/4)? — 413(n/4)%) + (4m(n/2)* — 4/3(n/2)%) and 12 x
(4m(n/8)% — 4/13(n/8)%) + 2 x (4m(n/4)* — 4/3(n/4)%) +
(4m(n/2)* — 4/3(n/2)%) respectively.

Fig. 4 shows a comparison of the computational cost for
the single stage SC-LDA with two other LDA algorithms
(the LDA/QR and the ULDA) for various ratios of m/n from
0.1 to 50. The SC-LDA computational costs include the
QR decompositions and the associated matrix operations for
Steps 1 to 4. The computational costs for Steps 5 and 6
will be the same for all LDA algorithms. A computational
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> 10'* Computational complexity of LDA algorithms for various m/n
52

Computational Complexity

— — LDA/QR
uLbA
SC-LDA

s L s L L L L L L s
i} 5 10 15 20 25 30 35 40 45 50
Number of features (m) / number of samples (n)

FIGURE 4. Computational complexity of Single-Stage SC-LDA vs other LDA
variations.

simplification can be derived by noting that the calculations
for SC-LDA for the LDA/QR only require the product of
O»R> which is equal to Y. A remark here is that the split
and combine approach can be applied towards other LDA
formulations which may require separate application of the
(0> and R matrices. Thus, we have retained the general
structure for the split and combine approach in Fig. 2 and
Fig. 3, and modifications for computational processing can be
performed as required. As mentioned previously, the original
LDA/QR can be seen as a level/stage 0 SC-LDA implemen-
tation. The number of samples n used was 10,000. Thus,
for a ratio of m/n of 1, the data matrix will have a size of
10, 000 10, 000. For aratio of m/n of 50, the data matrix will
have a size of 500, 000 x 10, 000. These are large matrices
for eigenvector decomposition. A ratio of m/n of 1 would
indicate a square data matrix A with an equal number of data
features and samples. A ratio smaller than 1 would indicate a
Big Data matrix with fewer number of features than samples
(i.e. an example of a Big Sample Data Set), whereas a ratio
greater than 1 would indicate a Big Data matrix with larger
number of features than samples (i.e. an example of a Big
Feature Data Set).

The computational cost of the single stage SC-LDA was
lower than ULDA for all ratios of m/n. On the other hand,
the results showed that there is a tradeoff for SC-LDA and
LDA/QR. For ratios of m/n smaller than 1, the computational
cost for LDA/QR was lower than for SC-LDA. However for
Big Feature Data Sets (m >> n), the SC-LDA gave a 20%
and 18% decrease in computational complexity compared
to ULDA and LDA/QR. The observations showed that the
SC-LDA is useful to reduce computational cost for Big Fea-
ture Data Sets but may incur more computational cost for Big
Sample Data Sets. As discussed in the Introduction section,
many real world applications or datasets from computational
biology, remote sensing, social networking, etc. fall into the
category of Big Feature Data Sets. Fig. 5 shows a further
comparison for the computational complexity of SC-LDA
for various splitting decompositions. The Two Stage split
gave a 26% and 24% reduction in computational complexity
over ULDA and LDA/QR respectively. Further stages of
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decomposition for the SC-LDA would result in a further
reduction in computational complexity over the other LDA
algorithms.

V. EXPERIMENTAL RESULTS

The split and combine approach discussed in Section III
has demonstrated that the theoretical formulation allows the
SC-LDA to be split recursively. However, there is a con-
dition in the definition of the QR decomposition that the
data samples maintain the linear independence after the split.
This section presents experimental results to validate the
approach using two datasets for face recognition (ORL [23]
and Yale [24]) containing real-world variations. The ORL
dataset contains 400 images of 40 people. There are 10 sam-
ples for each person with variations such as facial expressions
and appearance. The Yale dataset contains variations in facial
expression and lighting conditions. We used 640 images from
the Yale dataset for 10 people. These datasets are examples of
Big Feature Data Sets, where the number of features (m) >>
the number of samples (n). For example, after reshaping the
facial image into column vectors, we obtained an input data
matrix of 10, 304 x 400 and 2, 500 x 640 for the ORL and
Yale datasets respectively. Fig. 6 shows an overview of the
experimental approach.

We used the nearest neighbor (k-NN) classifier (k = 3)
with the Euclidean distance metric to perform the classi-
fication task. The experiments used half of the input data
for training the classifier, and the remaining half was used
for evaluation to give the recognition rate. We used the fol-
lowing splitting configurations (0-split (SC-LDA 0), 1-split
(SC-LDA 1), 2-split (SC-LDA 2) and 3-split (SC-LDA 3)).
The experiments were similar except for the change in the
construction of the LDA objective function (G) due to the
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FIGURE 8. Recognition accuracies for various splitting configurations for
Yale dataset.

splitting. The O-split configuration used the original LDA/QR
algorithm. For comparisons, the PCA and PCA+LDA
(Fisherface) [25] methods were also included.

Fig. 7 and Fig. 8 show the recognition accuracy which
were obtained for the various splitting configurations for
ORL and Yale respectively. We obtained similar recognition
rates for the various splitting configurations, showing that the
linear independence condition was met for these real-world
data sets. We did not detect any degradation in the perfor-
mance even for 3-split (SC-LDA 3) thus confirming that the
SC-LDA gave an exact reconstruction. For the 3-split, the
training data was split into eight subsets and then recombined.
For example, each data subset for ORL had a matrix size of
10, 304 x 25 with a large imbalance between m and n. As the
number of samples increases for larger data sets, we expect
the linear independence condition to be met even for many
stages of splitting.

The recognition rates for the SC-LDA were also higher
than PCA and slightly higher than PCA+LDA for both
datasets. This showed the usefulness of the LDA/QR objec-
tive function which performed better than the well-known
Fisherface method (PCA+LDA). As a final remark, note that
the objectives of the experiments were to validate the split and
combine approach and investigate the linear independence
condition. In this paper, we make no attempt to claim very
high performance for the classification task. The reader can
refer to the paper in [26] which uses more advanced feature
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extraction and kernel classification techniques to achieve
higher classification rates.

VI. FURTHER APPLICATIONS

This section briefly discusses the application of the SC-LDA
approach towards three other application scenarios:
(i) incremental LDA algorithms; (ii) pipelined and parallel
SC-LDA architectures; and (iii) distributed computations
in sensor networks. As mentioned in the Introduction, the
SC-LDA can also serve as an incremental approach for LDA
algorithms with some modifications. In this case, the Split
Data Stage would consist of two sub-matrices to be merged in
the Combined Data Stage. The first sub-matrix would contain
the QR decomposition of the original batch data, and the
second sub-matrix would contain the QR decomposition of
the newly presented data. The remaining two stages (Com-
bine Data Stage and Combine Class Stage) would remain the
same.

A second scenario where the SC-LDA approach will be
useful is for pipelined or parallel processing LDA archi-
tectures. It is to be noted that the computational compar-
isons in Section IV has not exploited the full potential of
SC-LDA when more processor resources are available in
the form of pipelining and multi-processing for distributed
computing implementations. For a pipelined implementa-
tion, the SC-LDA architecture can be supplemented with
pipeline registers between each of its different stages. For
example, two pipeline registers can be inserted between
the Split Data Stage/Combine Data Stage and the Combine
Data Stage/Combine Class Stage to decrease latency, and
improve the throughput. For a multiprocessor implemen-
tation, the different computations in the Split Data Stage
can be distributed from a server farm to many computa-
tional service units to be performed in parallel, and then
the intermediate results recombined in the Combine Data
Stage. The final point to note is that the SC-LDA gives an
exact reconstruction as for the original LDA/QR. The work
by Chu et al. [5] has shown that the LDA/QR performs
competitively with other LDA algorithms for classification
tasks.

A third scenario where the SC-LDA approach will be
useful is for distributed computations in sensor networks to
reduce the energy consumption in battery-powered sensor
nodes. The energy consumption for large-scale big data sen-
sor networks containing thousands of sensor nodes, and the
need for decentralized algorithms has been recently identified
to be an important research challenge [19]-[21]. The work by
Liang et al. [21] demonstrates a decentralized dimensionality
reduction (DDR) algorithm for performing distributed com-
putations in sensor networks. Their decentralized approach is
achieved by trading-off some recognition performance when
compared with other centralized approaches (although the
authors showed that the performance degradation is very
small and for practical purposes is comparable). It is impor-
tant to note that our proposed SC-LDA gives the exact recon-
structions as the original (centralized) LDA/QR. Thus, there
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FIGURE 9. Application of SC-LDA using the LEACH protocol for distributed
computations in large-scale sensor networks.

will be no trade-offs between performance and computational
complexity.

Fig. 9 shows an application of the SC-LDA for decentral-
ized computations in sensor networks using the Low Energy
Adaptive Clustering Hierarchical (LEACH) protocol [22].
The LEACH protocol is a well-known data gathering protocol
which utilizes a hierarchical clustering structure consisting
of member nodes and cluster heads to optimize the life time
of a sensor network. In a traditional approach, the data will
first be forwarded from member nodes to a central location
(sink) before the application computations (e.g. LDA) can
commence. By using the SC-LDA, each cluster of member
nodes gathers the data within the cluster and forwards to its
cluster head (CH). Each CH can then perform local compu-
tations (i.e. the Split processes) without requiring the data
from other clusters. The intermediate results from CHs are
forwarded to intermediate computation (IC) nodes to perform
the first set of Combine Data processes. The final Combine
Data and Combine Class processes are performed by the
sink node to obtain the LDA/QR result. The network can
contain further levels of IC nodes for larger networks and
hierarchies. The decentralized and hierarchical nature allows
the LDA computations to be effectively distributed among the
different types of sensor nodes (member nodes, CHs, ICs)
for large-scale big data sensor networks. The ICs are larger
devices which would have more computational power and
memory storage than the CHs, which in turn would have
more computational capabilities than the individual member
nodes.

VIl. CONCLUSION

This paper has presented a Big Feature data analytics
approach embracing the SC-LDA technique which is a split
and combine approach for the LDA/QR algorithm variation.
The LDA/QR is a specialized LDA variation to deal with
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the undersampled problem faced by Big Feature Data Sets.
Our approach has allowed the LDA problem to be divided
into the size-reduced sub-problems and can be solved in
parallel, while giving an exact reconstruction as for the orig-
inal LDA/QR. The SC-LDA with this specific property is
essential for Big Feature data analytics. Furthermore, the
approach can be further developed towards the Big Fea-
ture data analytics with decision making. The single stage
SC-LDA has first been presented followed by a multi-
stage SC-LDA. The SC-LDA is particularly suitable for
the analytics of Big Feature Data Sets, while giving an
exact reconstruction as for the original algorithm. Exper-
imental results on two real-world datasets have been
used to validate the approach. Three application scenarios
of SC-LDA have also been presented. For future work,
we will investigate the split and combine approach for
other dimensionality reduction algorithms and its appli-
cations for distributed computations in large-scale sensor
networks.
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