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ABSTRACT Fault tree analysis (FTA) has been widely utilized as a reliability evaluation technique for
complex systems, such as nuclear power plants and aerospace systems. However, it is hard to obtain the crisp
failure probabilities of basic events, owning to the insufficient information about some complex engineering
systems. Hence, fuzzy set theory and fuzzy arithmetic operation (FAO) have been used as effective methods
to analyze system reliability. However, it is cumbersome to evaluate complex systems based on FAO.
To improve the evaluation efficiency, stochastic computational models are proposed in this paper to perform
reliability analysis of a fuzzy system. Due to the features of Gaussian distribution in stochastic computation,
a basic event’s failure possibility given by a fuzzy number is transformed into the expected value of it. The
standard deviation of stochastic computational results gives the spread of the fuzzy number. A fuzzy system
is then converted into a deterministic system. The analysis of an illustrating example shows that the proposed
stochastic approach can efficiently evaluate the failure probability of a system.

INDEX TERMS Fault tree analysis, fuzzy arithmetic operation, stochastic computation, Gaussian
distribution.

NOTATION
A Fuzzy set.
u(x) Membership function.
ei Expert i.
wi Weight of expert i.
L Sequence length.
u Gaussian distribution with expected value u.
σ Gaussian distribution with the standard deviation σ.

I. INTRODUCTION
Reliability evaluation plays an important role in the design
and development of engineering systems. Fault tree anal-
ysis (FTA) is a widely used technique for the reliability
evaluation of systems [1]. In conventional FTA, the fail-
ure probabilities of basic events are assumed to be pre-
cisely determined for a system [2]. However, such precise
parameters are difficult or even impossible to be obtained
in practice. To address this issue, failure possibility has been
proposed to substitute failure probability [3], [4]. The relative
frequencies of basic events, referred to as fuzzy numbers,

are used to represent the failure possibilities [5]. Then, the
failure possibility of the top event can be obtained by FTA.
The system failure possibility can be estimated using the
fuzzy set theory [6]. The L-R fuzzy numbers are applied to
define the failure possibilities of a system in [7]. A fuzzy-
based algorithm is presented in [8] to rank the basic events
according to their contributions to a system’s failure possibil-
ity. Using these approaches, the top event’s failure possibility
can be obtained as a fuzzy number. The scope of the fuzzy
number indicates the fluctuations incurred by uncertainty [9],
[10]. These methods are effective in evaluating the relia-
bility of a system, but with a rather complex computation
process.

The expected value of a fuzzy number has been used to
calculate the crisp system failure probability and to simplify
a fuzzy computation; the notations of lower possibilistic and
upper possibilistic mean values have been used to obtain the
bounds of the system failure probability [11]. However,
the fuzzy expected value approach (FEVA) can only compute
the interval bound given by lower and upper possibilistic
mean values of the system failure probability, whereas the
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probability distribution of the system failure probability can-
not be obtained.

Monte Carlo (MC) simulation [12]–[14] has widely been
used to evaluate fault trees. However, a long run time is usu-
ally required because of the slow convergence of the result in
an MC approach [15]. A fuzzy Markov model [16], [17], [37]
has been proposed to evaluate a fault tree system. However,
the size of a state transition matrix required in the analysis
increases exponentially with the number of components in a
system [18].

In [19] and [20], a stochastic approach is used to model
the dynamic behaviors in a fault tree. Stochastic computation
has advantages such as computational simplicity, high speed,
and fault-tolerance [21]. For stochastic analysis, the output
is probabilistic; due to inevitable stochastic fluctuations, it
follows approximately a Gaussian distribution with a rea-
sonable sequence length [22]. This feature of randomness in
stochastic computation provides a natural means to efficiently
model a fuzzy network.

In this paper, a stochastic computational model is pro-
posed for improving the evaluation efficiency of a fuzzy
system. In this model, a fuzzy system is first converted
into a conventional system. The features of Gaussian dis-
tribution in stochastic computation are exploited such that
the failure possibilities of basic events with fuzzy num-
bers are converted into precise failure probabilities values.
The failure probabilities of basic events are represented
by non-Bernoulli sequences [22]. The output sequence of
the proposed stochastic computation model denotes the
top event’s failure probability by performing stochastic
computing, and the result follows Gaussian distribution.
The proposed stochastic approach is more efficient com-
pared to Monte Carlo (MC) method and fuzzy arithmetic
operation.

The remainder of the paper is organized as follows.
Section II reviews the fuzzy set theory and fuzzy expert
systems. Section III presents the stochastic computational
models. The validation of the stochastic computational
approach is presented in Section IV. In Section V, the effi-
ciency of the proposed approach is revealed by the analysis
of several benchmarks. Finally, Section VI concludes the
paper.

II. FUZZY SET THEORY AND FUZZY EXPERT SYSTEMS
Fuzzy set theory was first introduced in 1965 to cope with
the ambiguity or uncertainty in a system [23]. For such a
system, the subjective judgement or estimation of an individ-
ual plays a vital role. This technique provides an alternative
method to process data by allowing partial set memberships
rather than crisp set memberships. The failure possibilities
of events replace the failure probabilities in the fuzzy set
theory [24], [38]. A fuzzy expert system is used to transform
the ambiguous knowledge of experts to the TFNs [25] to
obtain the failure possibilities of the basic events.

A. FUZZY SET AND ITS OPERATION
1) FUZZY SET
A fuzzy set was introduced as an extension and generalization
of the concept of crisp sets [7]. A fuzzy set A in the universal
set U is characterized as

A = {(x, u(x))|x ∈ U and 0 ≤ u(x) ≤ 1}, (1)

where u(x) is the membership function of fuzzy set A, the
value of u(x) is the grade (i.e., degree or confidence level) of
membership x in A, indicating the degree that x belongs to A.
If x is not in A, u (x) = 0; if x is totally in A, u (x) = 1; if x
is partly in A, u (x) ∈ (0, 1).
The triangular fuzzy number (TFN) is widely used by

experts to express the failure possibility of an event [8].
A TFN is defined in [4] as follows.
Definition 1: The membership function of a TFN Ã param-

eterized by (α, m, β) is defined as:

uÃ (x) =


x − α
m− α

if α ≤ x ≤ m

β − x
β − m

if m ≤ x ≤ β

0 otherwise,

(2)

where m is the center of uÃ (x), while α and β indicate the
lower and upper bounds respectively.

2) L-R FUZZY NUMBER AND FUZZY OPERATIONS
The membership function u(x) can be approximated by
two functions L(x) and R(x). Functions L(·) and R(·) are
referred to as reference functions f (·), with the following
properties [26]:

(i) f (x) = f (−x);
(ii) f (0) = 1;
(iii) f (x) is a decreasing function in the interval [0, +∞].
This type of fuzzy number is referred to as an L-R fuzzy

number. If a fuzzy number θ̃ is L-R type, then themembership
function is given by:

um̃ (x) =


L(
θ − x
ρ

) if x ≤ θ, ρ > 0

R
(
x − θ
ζ

)
if x ≥ θ, ζ > 0,

(3)

where θ represents the center of uθ̃ (x), ρ and ζ indicate
the left and right spreads respectively. When the spreads are
zero, θ̃ is a non-fuzzy number by convention. As the spreads
increase, θ̃ will be fuzzier and fuzzier [26]. Similarly, an L-R
fuzzy number can be denoted as (θ, ρ, ζ )LR. The arithmetic
operations of L-R fuzzy numbers are given in [5] and [7]:

Change of sign:

−(θ, ρ, ζ )LR = (−θ, ζ, ρ)RL . (4)

Addition ⊕:

(θ, ρ, ζ )LR ⊕ (n, γ, δ)LR = (θ + n, ρ + γ, ζ + δ)LR. (5)

Subtraction 	:

(θ, ρ, ζ )LR 	 (n, γ, δ)RL = (θ − n, ρ + δ, ζ + γ )LR. (6)
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Multiplication ⊗:

(θ, ρ, ζ )LR ⊗ (n, γ, δ)LR ∼= (θn, θγ + nρ, θδ + nζ )LR.

if θ, n > 0 (7)

Scalar multiplication �:

k � (θ, ρ, ζ )LR =

{
(kθ, kρ, kζ )LR, for k ∈ R, k > 0
(kθ,−kζ,−kρ)RL , for k ∈ R, k < 0.

(8)

B. FUZZY EXPERT SYSTEMS
Due to the lack of historical failure data for complex systems,
such as nuclear power, the failure parameters for basic events
are often determined according to the experience of experts.
The fuzzy expert system includes an expert assessment unit,
a transform unit and an expert weighting unit.

1) EXPERT ASSESSMENT UNIT
The selected experts must be familiar with the working
environment and have considerable knowledge of the tar-
get system [25], [27]. The expert set (E) is described as
E = {ei|i = 1, 2, 3, . . . , n}, where n indicates the number
of experts involved. The basic event set (B) is denoted as
B =

{
bj|j = 1, 2, 3, . . . , k

}
, where k is the total number of

basic events of the target system.
The output of the expert assessment unit is a set

of qualitative linguistic values (V ) that reflect the basic
event failure possibilities [25]. Usually, seven linguistic
values (V ) [8], [28] are used to assess the basic events,
V = {‘‘very high,’’ ‘‘high,’’ ‘‘reasonably high,’’ ‘‘moderate,’’
‘‘reasonable low,’’ ‘‘low,’’ ‘‘very low’’}.

TABLE 1. Linguistic value of basic event failure possibility and
corresponding triangular fuzzy numbers [8], [30].

2) TRANSFORMATION UNIT
The transform unit converts the linguistic values generated
by expert assessments to TFNs. The obtained fuzzy number
represents qualitative failure possibility in [0, 1]. This means
that the closer the fuzzy number is to 0, the less likely that the
failure of a basic event occurs. Table I provides an example
of the transformation from the linguistic values to the TFNs.

3) EXPERT WEIGHT UNIT
In practice, the involved experts have different levels of exper-
tise, background and working experience. Hence, due to the
discrepancy in experts’ knowledge and experience, different
perceptions about the same event may lead to different assess-
ments [29], [30]. Let wi indicate the different justification
weight being assigned to expert ei, i = 1, 2, 3, . . . , n. Here
n indicates the number of selected experts, 0 ≤ wi ≤ 1 and∑n

i=1 wi = 1. The final weighted-mean of TFNs indicated by
a matrix QB can be obtained as:

QB = QTFN∗QW =

 ue1b1 ue2b1 . . . uenb1
. . . . . . . . . . . .

ue1bk ue2bk . . . uenbk

 ∗
 w1
. . .

wn


=

 (αb1 ,mb1 , βb1 )
. . .

(αbk ,mbk , βbk )

 , (9)

where QTFN and QW contain fuzzy failure possibilities of
basic events and expert weights respectively, ueibj is the TFN
for bj evaluated by expert ei, while wi represents the weight
for the ith expert.

III. THE PROPOSED STOCHASTIC
COMPUTATIONAL MODEL
The computational model consists of an expert evaluation
module and a stochastic computational module, as shown
in Fig. 1. This model is based on the assumptions
below:

FIGURE 1. The Structure of the proposed computational model.

(i) The basic events operate independently, which means
that the failure of one event does not affect other events.

(ii) The failure possibilities of the basic event are described
by fuzzy numbers provided by experts.

In the stochastic computational model, the failure possibil-
ity of a basic event is described by linguistic values in expert
assessments unit, and the linguistic values are converted to tri-
angular fuzzy numbers by expert weight and transformation
units. The mean values of the triangular fuzzy numbers can
be obtained by the mean calculate unit, and mean values of
basic events’ failure probabilities are inputs of the top event’s
failure probability calculation unit. Then the reliability of
the system can be obtained by the proposed computational
model.
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A. STOCHASTIC COMPUTATION
Stochastic computation was first introduced in 1960s
for performing arithmetic operations with standard logic
elements [31]. In stochastic computation, non-Bernoulli
sequences are used to encode real numbers or
probabilities [22]. In the binary streams, a proportional num-
ber of bits are set to ‘‘1’’ to indicate a probability. For
instance, a probability of 0.4 is represented by a bit stream
containing 40% 1s and 60% 0s. If a probability (e.g. 0.4) is
the failure probability of a basic event, a ‘1’ or ‘0’ indicates
one failure or one success of the basic event respectively.

Fig. 2(a-d) show several logic gates used for stochastic
computation in this paper, including a buffer, an inverter
(NOT), an AND, and an OR gate. In Fig. 2, the probabilities
are encoded into bit streams of 10 bits. An output sequence
encoding the output signal probability can be obtained by
propagating the bit streams through the logic gates.

FIGURE 2. Logic gates for stochastic computation: (a) A buffer with a
random binary bit stream as the input; (b) An inverter; (c) An AND gate
with statistically independent inputs; (d) An OR gate with statistically
independent inputs. (The percentage of ‘1’ in a stochastic sequence
indicates the signal probability).

Scaled addition can be implemented by a multi-
plexer (MUX), as shown in Fig. 3. Let A, B, and S indicate
stochastic bit streams for pA, pB and pS respectively. Then,
pC is given by pC = pS ·pA+(1−pS ) ·pB and can be obtained
by propagating the sequences through the MUX. If pS = 0.5,
pC = 0.5(pA + pB).

FIGURE 3. Scaled addition.

B. MEAN CALCULATION UNIT
The fuzzy operation can be implemented by stochastic
computation. The fuzzy numbers can be transformed into the
crisp number by calculating the expected value of the TFNs.
The matrix QB can be obtained and the failure possibilities
with expert weights in the matrix QB can be transformed into

the exact failure probabilities using the stochastic computa-
tional model proposed for this unit.

The fuzzy scalar multiplication of triangular fuzzy number
is characterized by

pw � (pu, pv, pq) = (pw · pu, pw · pv, pw · pq) = (pu, pv, pq),

(10)

which can be implemented with the application of AND
gates.

Assume that u, v, q and w are stochastic bit streams to
encode pu, pv, pq and pw respectively, the failure possibility
ueibj (i ∈ [1, n] and j ∈ [1, k]) in QTFN is described by the
TFN (pu, pv, pq) and the expert weights wi(i ∈ [1, n]) in QW
are represented by pw. Then, pu′ , pv′ and pq′ can be obtained
by analyzing the output sequences u′, v′ and q′ in Fig. 4.

FIGURE 4. Fuzzy scalar multiplication.

As discussed previously, the scaled addition can be imple-
mented by a MUX. The fuzzy addition of triangular fuzzy
numbers is given by (11). Let γ1, η1, δ1, γ2, η2, δ2, S1,
S2, and S3 be stochastic bit streams indicating probabilities
pγ1 , pη1 , pδ1 , pγ2 , pη2 , pδ2 , pS1 , pS2 , pS3 respectively. Then,
the fuzzy addition of TFNs (pγ1 , pη1 , pδ1 ), (pγ2 , pη2 , pδ2 ) can
be performed by using the stochastic model in Fig. 5.

(pγ1 , pη1 , pδ1 )⊕(pγ2 , pη2 , pδ2 )

= (pγ1 + pγ2 , pη1 + pη2 , pδ1 + pδ2 )

= (2(pS1 · pγ1 + (1− pS1 ) · pγ2 ),

2(pS2 · pη1 + (1− pS2 ) · pη2 ),

2(pS3 · pδ1 + (1− pS3 ) · pδ2 )) (11)

Let pS1 = pS2 = pS3 = 0.5, then

(pγ1 , pη1 , pδ1 )⊕ (pγ2 , pη2 , pδ2 ) = (2pγ ′ , 2pη′ , 2pδ′ ).

FIGURE 5. Fuzzy scaled addition.
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The failure possibility of a basic event is then transformed
to a precise failure probability, because the TFN can be
described by the expected value of it. A method to calculate
the expected value of a TFN A (τ, ε, υ) is presented in [11]
and the expected value is given by:

EA = ε +
υ − τ

4
, (12)

where ε is the center of A, τ and υ are left-width and right-
width of A respectively (α > 0, β > 0).

As per Definition 1, A′ is a TFN parameterized by
(α′,m′, β ′),m′ is the center of a membership function uA′ (x),
α′ and β ′ are the lower and upper bounds. The TFN A′ can be
described by (m′-α′, m′, β ′-m′), m′-α′ and β ′-m′ are the left-
width and right-width respectively. As per (12), the expected
value of A′ is obtained by:

EA′ = m′ +

(
β ′ − m′

)
− (m′ − α′)

4
=

2 ∗ m′ + β ′ + α′

4
.

(13)

Hence, the matrix (QM ) that contains the failure probabil-
ities of basic events is given by

QM =

 m̄b1. . .
m̄bk

 =


2∗mb1 + αb1 + βb1

4
. . .

2∗mbk+αbk+βbk
4



=


αb1+βb1

2 + mb1

2
. . .

αbk+βbk

2 + mbk

2

, (14)

where m̄bj is the exact failure probability of the basic
event, converted from the final weighted-mean TFN, and
(αbj ,mbj , βbj ) is the element in the final weighted-mean TFN
matrix (QB) with j ∈ (1, k) and k being the number of basic
events.

FIGURE 6. Triangular Fuzzy number mean.

Equation (14) can be implemented by the stochastic archi-
tecture shown in Fig. 6. Through the propagation of the
stochastic sequences, αbj , mbj , βbj , Sj1 and Sj2, the out-
put probabilities can be obtained by analyzing the output

sequences. Given Sj1 = Sj2 = 0.5, we have m′j =
α
bj+2∗mbj+βbj

4 .

C. FAILURE PROBABILITY CALCULATION UNIT
In stochastic computation, Bernoulli and non-Bernoulli
sequences can be used to represent the initial input
probabilities. As shown in [15], the use of non-Bernoulli
sequences leads to a faster convergence of the output. Hence,
non-Bernoulli sequences are adopted to represent the basic
event’s failure probability m̄bj (j ∈ (1, k), k is the number of
the basic events) in this paper.

Based on a system’s topology, a fault tree can be derived
according to the relationships among events and these rela-
tionships can be modeled by combinations of logic gates.
Then, the output sequence SPT is obtained as

SPT = f (Sm̄b1 , Sm̄b2 , . . . , Sm̄bk ), (15)

where f (·) is the function of the constructed stochastic archi-
tecture due to the system topology; Sm̄bj (j ∈ (1, k)) is the
non-Bernoulli sequence representing the precise failure prob-
ability of bj, i.e., m̄bj , and k is number of basic events. Then,
the failure probability of the top event, i.e., PT , is obtained by

analyzing the output sequence SPT , given by PT =
∑L

i=1 SPT
L .

The stochastic model to obtain failure probability of the top
event is shown in Fig. 7.

FIGURE 7. Stochastic model of failure probability of the top event
calculation.

IV. STOCHASTIC MODEL VALIDATION
To validate the proposed stochastic model, the logic gates
in Fig. 2 (b, c) are verified first. The theoretical proof is
presented as follows:
Theorem 1: For an inverter with a triangular fuzzy num-

ber (TFN) as the input, using the stochastic approach with the
expected value of the TFN encoded as the probability of 1’s
in a long non-Bernoulli sequence as the input, the probability
of 1’s in the output sequence of the inverter has the same
expected value as the output of the inverter using a fuzzy
arithmetic operation (FAO).

Proof: Assume that the input of the inverter is a triangu-
lar fuzzy number (TFN) F1 (α,m, β) and that Z1 and Z2 indi-
cate the output of the inverter using the stochastic approach
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and FAO respectively.F1 denotes a probability value occurred
by an event. As per (13), the expected value of F1 is given by

E (F1) =
2m+ α + β

4
. (16)

In the stochastic model for an inverter, assume that the
input sequence has a probability of a to be ‘‘1’’, then the
expected value of the probability of a 1 in the output sequence
is given by:

u1 = 1− a. (17)

If the fuzzy number F1(α,m, β) is represented by the
expected value E (F1), and E (F1) = a, then the expected
value of Z1 is given by

E (Z1) = 1−
2m+ α + β

4
. (18)

In the fuzzy arithmetic operation (FAO), L-R fuzzy num-
bers are used as the failure possibilities of the basic events.
L-R fuzzy numbers can be defined by a triplet (n, γ , δ) and the
value of n is considered as the expected value of a triangular
fuzzy number from expert assessment [5], [7], [34].

According to (3) and (13), the TFN F1 (α,m, β) is con-
verted into L-R fuzzy number F2 [5] as the input of the
inverter gate:

F2 = (n, γ, δ)

= (E (F1) , λE (F1) , λE (F1))

= (
2m+ α + β

4
, λ

2m+ α + β
4

, λ
2m+ α + β

4
)LR,

where F2 is defined by a triplet (n, γ, δ) and the value of n is
obtained by the expected value of the triangular fuzzy num-
ber F1, λ is a small number from the membership function of
the L-R fuzzy number F2.

According to (4) and (17), Z2 is obtained as:

Z2 = 1− F2

= 1+ (−
2m+ α + β

4
, λ

2m+ α + β
4

, λ
2m+ α + β

4
)RL

=

(
1−

2m+ α + β
4

, λ
2m+ α + β

4
, λ

2m+ α + β
4

)
RL
.

Let m1 = 1 − 2m+α+β
4 , α1 = λ

2m+α+β
4 , according to the

method in [11], the expected value of Z2 is given by:

E (Z2)

=
1
2

(
m1 − α1

∫
+∞

0
L (x) dx + m1 + α1

∫
+∞

0
R (x) dx

)
.

For a symmetric L-R fuzzy number, we have:

E (Z2) = m1 = 1−
2m+ α + β

4
. (19)

Then, we obtain E (Z1) = E (Z2).
This proves Theorem 1.
Theorem 2: For a two-input AND gate with two triangu-

lar fuzzy numbers (TFNs) as the inputs, using the stochas-
tic approach with the expected values of the two TFNs
encoded as the probabilities of 1’s in two long non-Bernoulli

sequences as the inputs, the probability of 1’s in the output
sequences of two-input AND gate has the same expected
value as the output of the two-input AND gate using a fuzzy
arithmetic operation (FAO).

Proof: Assume that the two inputs of the AND gate
are triangular fuzzy numbers (TFNs) F3 (α,m, β) and F4
(γ, n, δ), and that Z3 and Z4 are the outputs of the AND
gate using the stochastic approach and FAO respectively. F3
and F4 denote the probabilities value occurred by events.
In stochastic model, F3 and F4 are represented by the
expected values E (F3) and E (F4) as the probabilities of
a 1 in the input non-Bernoulli sequences. According to (13),
the expected values of F3 and G1 are given as:

E (F3) =
2m+ α + β

4
, (20)

E (F4) =
2n+ γ + δ

4
. (21)

The [15, Lemma 1] shows that for an AND gate with two
non-Bernoulli input sequences with the 1’s probabilities a, b,
if the sequence length is large, the probability of a 1 in the
output sequence of the AND gate follows approximately a
Gaussian distribution with the expected value u2 = ab.
We can obtain:

E (Z3) = E (F3) · E (F4) =
2m+ α + β

4
·
2n+ γ + δ

4
.

(22)

In fuzzy arithmetic operation (FAO) [5], [7], [32], the TFNs
F3 and F4 are converted into L-R fuzzy numbers F5 and F6
as follows:

F5 =
(
2m+ α + β

4
, λ

2m+ α + β
4

, λ
2m+ α + β

4

)
LR
,

F6 =
(
2n+ γ + δ

4
, λ

2n+ γ + δ
4

, λ
2n+ γ + δ

4

)
LR
,

where L(·) and R(·) are called reference functions, λ is a
small number from the membership function of the L-R fuzzy
number F5 and F6.

Assume that F5 and F6 are the two inputs of the AND gate,
according to (7), the output Z4 is obtained as:

Z4 = F5 ⊗ F6

=

(
2m+ α + β

4
·
2n+ γ + δ

4
, 2λ

2m+ α + β
4

·
2n+ γ + δ

4
, 2λ

2m+ α + β
4

·
2n+ γ + δ

4

)
LR
.

(23)

If we set m2 =
2m+α+β

4 ·
2n+γ+δ

4 , α2 = 2λ 2m+α+β
4 ·

2n+γ+δ
4 , according to the method in [11], the expected value

of Z2 is given by:

E (Z4)

=
1
2

(
m2 − α2

∫
+∞

0
L (x) dx + m2 + α2

∫
+∞

0
R (x) dx

)
.

(24)
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For a symmetric L-R fuzzy number, we obtain:

E (Z4) = m2 =
2m+ α + β

4
·
2n+ γ + δ

4
.

Then, we have E (Z3) = E (Z4), which completes the
proof.

The OR gate and other logic functions can be implemented
by the inverter and AND gate.
Theorem 3: For a two-input AND gate with two triangular

fuzzy numbers (TFNs) as the inputs, the stochastic simulation
results (i.e., the probability of a 1 in the output sequence),
obtained by using the expected values of the TFNs encoded
as the 1’s probabilities in the long non-Bernoulli sequences
as inputs, are close to the center of the output fuzzy number
obtained by using a fuzzy arithmetic operation (FAO).

Proof: As a 1’s probability in the output sequence
of the AND gate by stochastic computation approxi-
mately follows a Gaussian distribution, the standard devi-
ation σ reflect the confidence level of the output signal
probability. In [15], for an AND gate with two L bits non-
Bernoulli input sequences to represent the 1’s probability
a and b respectively, the probability of a 1 in the out-
put sequence follows a Gaussian distribution with standard
deviation σ :

σ =
√
a (1− a) b (1− b) /L.

Based on the assumptions of F3 (α,m, β) and F4 (γ, n, δ)
and Z3 in Theorem 2, the standard deviation of Z3 is
calculated as (25), as shown at the bottom of the next page.

The TFNs F3 and F4 are converted into L-R fuzzy numbers
F5 and F6 as above to be the input of AND gate. By applying
the fuzzy arithmetic operation (FAO), we can get the output
Z4 as in (23).

Due to the 3σ rule [33] of a Gaussian distribution, the area
under the normal curve within the range u ± 3σ is 0.9973,
where u and σ are the mean and the standard deviation
respectively. Hence, the 3σZ3 in stochastic computation and
the α2 (the left or right spread of fuzzy number Z4) in FAO are
compared by (26), as shown at the bottom of the next page.

By (26), when L >
9
(
1−EF3

)(
1−EF4

)
4λ2EF3EF4

, we obtain:
1 < 0, which indicates that the stochastic computational
results are located within the range of the fuzzy number
calculated by FAO. This proves Theorem 3.

V. CASE STUDIES
A stochastic analysis is performed for a nuclear power
plant to show the feasibility and the effectiveness of the
proposed model. The results are compared with those
obtained by a fuzzy arithmetic operation (FAO) [5], [7], [32],
Monte Carlo simulation [12]–[14] and the fuzzy expected
value approach (FEVA) [11]. In the nuclear power plant,
the radiation release is a hazard, and assumed as the top event
in fault tree analysis. The radiation release may be caused by
the occurrence of some events. The descriptions of the nuclear
power plant are presented in Table II and Fig. 8.

TABLE 2. The descriptions of the events in nuclear power plant [34].

FIGURE 8. A fault tree for the nuclear power plant [34]. bi indicates the
basic event, i ∈ [1,10].

The linguistic values provided by the expert assessment
unit and corresponding TFNs generated by the transform unit
are presented in Table III.

A. ANALYSIS USING STOCHASTIC COMPUTATION
Table IV shows the weights of the involved five experts in the
assessment of this nuclear power plant.
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TABLE 3. Experts’ TFNs of basic events (‘‘R low’’ and ‘‘R high’’ mean
‘‘reasonably low’’ and ‘‘reasonably high’’ respectively).

TABLE 4. Experts and the corresponding weights [8].

The evaluation results of experts are synthesized in
the mean calculation unit. According to (9), the final
weighted-mean TFN of the basic event bk , k ∈ [1, 10],

TABLE 5. The weight mean TFNs and failure probability m̄
bj of basic

events (L = 1k bits).

is shown in Table V, by propagating the stochastic sequences
through the stochastic circuits Figs. 5 and 6. Here, non-
Bernoulli sequences of 1k bits are used to encode the TFNs
and the weights. According to (13), the failure probability of
the basic event m̄bj , j ∈ [1, 10], can be obtained by using
the non-Bernoulli sequences encoding the final weight-mean
TFNs of the basic events; the obtained results are also shown
in Table V.

For the nuclear power plant in Fig. 8, the stochastic
computational results for 10000 simulations are illustrated
in Fig. 9.

As revealed in the simulation results, PT approximately
follows a Gaussian distribution. The mean and standard devi-
ation of PT are calculated as 0.2614 and 0.0021 respectively,
the values of PT are within the interval [0.254, 0.268].

B. THE FUZZY ARITHMETIC OPERATION
The fuzzy arithmetic operation (FAO) was presented
to solve the fuzzy system reliability analysis problems
in [5], [7], and [32]. The L-R fuzzy numbers defined by
(m, α, β) are suitable to represent the failure possibilities
of hazardous events in industrial systems [24]. The value

σZ3 =

√
2m+ α + β

4
·
2n+ γ + δ

4
·

(
1−

2m+ α + β
4

)
·

(
1−

2n+ γ + δ
4

)
/L. (25)

1 = 3σ Z3 − a2

= 3

√
2m+ α + β

4
·
2n+ γ + δ

4
·

(
1−

2m+ α + β
4

)
·

(
1−

2n+ γ + δ
4

)
/L

− 2λ
2m+ α + β

4
·
2n+ γ + δ

4
. (26)

13472 VOLUME 5, 2017



X. Song et al.: Stochastic Computational Approach for the Analysis of Fuzzy Systems

FIGURE 9. Distribution of PT for 10,000 stochastic simulation runs with
L = 1k bits.

of m is calculated from the expected value of the triangular
fuzzy number from expert assessment [5], [7], [32]. To obtain
the failure possibility distribution functions (or membership
functions), it is assumed that the functions are approximated
by a function of L-R type [5], [7] as

Ui =


L
(
m̄i − x
αi

)
=

1

1+ | m̄i−x
αi
|
, for x ≤ m̄i, αi > 0

R
(
x − m̄i
βi

)
=

1

1+| x−m̄i
βi
|
, for x ≥ m̄i, βi > 0,

(27)

where m̄i is the mean value of the final weight-mean TFN
from the expert assessment; αi and βi indicate the left and
right spreads respectively: αi = βi, i ∈ (1, 10).
As in [5], [7], assume that αi and βi are considered

as the fuzzy relative frequencies; all the values of upi are
equal or less than 0.1, if the deviation from the center value m̄i
is x = ±0.5m̄i. In other words, we assume that the relative
frequency that a value differs from the middle value m̄i by
±50% has a possibility value of only 0.1. According to (27),
we obtain:

1

1+ |
m̄i − x
αi
|

= 0.1, for x ≤ m̄i, αi > 0.

1

1+ |
x − m̄i
βi
|

= 0.1, for x ≥ m̄i, βi > 0.

Then, we have:

αi = βi = 0.0556m̄i. (28)

For the nuclear power plant, by the fuzzy arithmetic opera-
tion (FAO) the L-R fuzzy number PT is obtained as PT =
(mT , αT , βT ) = (0.2611, 0.0251, 0.0251), where mT =

0.2611 is the mean value of the failure possibility of the
occurrence of the top event. The left and right spreads of
the top event are given by αT = 0.0251, and βT = 0.0251.
The membership function of PT is shown in Fig. 10, where
the values of mT , αT , βT are inserted into (27). As shown
in Fig. 10, x1 and x3 are mT − αT and mT + βT respectively

when the membership degree is 0.5, the membership degree
of x2 (mT ) is 1.

FIGURE 10. The membership function of PT , x is the center of PT and
U(x) is the membership degree of PT .

C. DISCUSSION
The top event failure probability obtained by the stochastic
analysis is compared with that by the fuzzy arithmetic oper-
ation (FAO), Monte Carlo (MC) simulation and the fuzzy
expected value approach (FEVA).

1) STOCHASTIC APPROACH VS. FAO
The non-fuzzy values of PT obtained by 10,000 stochastic
experiments are all within the interval [0.254, 0.268], and
the L-R fuzzy number PT is obtained by FAO as (0.2611,
0.0251, 0.0251). The membership function of PT gives the
possibility distribution of PT [23] and is calculated by FAO,
as shown in Fig. 10. The possibility distribution can be con-
verted into a probability distribution [35], [36] via a simple
normalization as:

P(x j) =
U (x j)∑n
i=1 U (x i)

, (29)

where xj is in [a, b], a and b are two values of x in (27) when
the membership degree of PT is 0.1 (i.e., the confidence level
is 90%), P (xj) and U (x j) are the probability and membership
degree of xj respectively, and n is the number of samples
in [a, b]. The probability distributions of PT using the FAO
and stochastic approach (with 10,000 simulation runs and
1000 bits as the sequence length) are shown in Fig. 11. The
comparison of the probability distributions of PT indicates
that all the stochastic simulation results concentrate on the
high probability region of PT .

To obtain a wider spread of the stochastic computational
results, a shorter sequence length of 100 bits is used to obtain
the probability distribution of PT by 10,000 stochastic sim-
ulations. The probability distributions of PT using FAO and
the stochastic approach are shown in Fig. 12. It can be seen
that the distribution of the stochastic computational results
resembles the results obtained by FAO.

According to the simulation results of PT in Fig. 8 and
the 3σ rule [33] of Gaussian distribution, we can obtain the
function to calculate the uPT (i.e., the membership degree
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FIGURE 11. The probability distribution of PT calculated by fuzzy
arithmetic operation (FAO) and the stochastic approach (with
10,000 simulation runs using a sequences length of 1000 bits).

FIGURE 12. The probability distribution of PT calculated by fuzzy
arithmetic operation (FAO) and the stochastic approach (with
10,000 simulation runs using a sequences length of 100 bits).

of PT ), by inserting the value of (u± nσ ) into (27):

uPT =


1

1+
∣∣∣mT−xαT

∣∣∣ , for x ≤ mT , αT > 0

1

1+
∣∣∣ x−mTβT

∣∣∣ , for x ≥ mT , βT > 0

=


1

1+
∣∣∣mT−(u−nσ)αT

∣∣∣ , for x ≤ mT , αT > 0

1

1+
∣∣∣ (u+nσ)−mTβT

∣∣∣ , for x ≥ mT , βT > 0

=


1

1+
∣∣∣ nσ+(mT−u)αT

∣∣∣ , for x ≤ mT , αT > 0

1

1+
∣∣∣ nσ+(u−mT )βT

∣∣∣ , for x ≥ mT , βT > 0

=


1

1+ nσ
αT

, for x ≤ mT , αT > 0

1
1+ nσ

βT

, for x ≥ mT , βT > 0,
(30)

where mT is the mean value of PT calculated by FAO, αT
and βT are the left and right spreads of PT respectively,
µ and σ are the expected value and the standard deviation
of PT from the stochastic simulation, n is the coefficient of σ
in 3σ rule [33] of Gaussian distribution and mT = u.

In this system, αT = βT = 0.0251 and σ = 0.0021;
according to (30) and the 3σ rule of Gaussian distribution,
we obtain the relationship between PT located in the range
(u− nσ, u+ nσ ) and the membership degree of the PT using
the stochastic approach and FAO, as shown in Table VI (the
sequence length used in the stochastic approach is 1k bits,
u and σ are the expected value and standard deviation of
system failure probability PT respectively).

As revealed in Table VI, when the value of PT obtained
by the stochastic analysis falls within the 1σ (68.2%) cen-
terline (the expected value u of the distribution), the uPT
(membership degree of the PT ) calculated by FAO is
above 0.916. When n is 3, the minimum membership degree
of a large percentage (99.7%) of the stochastic computational
results is 0.792.

TABLE 6. The relationship between PT and the membership degree of PT
using the stochastic approach and FAO respectively.

2) STOCHASTIC APPROACH VS.
MONTE CARLO SIMULATION
The results for PT using 10,000 MC simulations with
1000 runs in each simulation are presented in Fig. 13.

FIGURE 13. Distribution of PT using 10,000 MC simulations with
1000 runs in each simulation.

As shown in the simulation results, PT approximately fol-
lows a Gaussian distribution. The mean and standard devia-
tion ofPT are 0.2616 and 0.0139 respectively; all values ofPT
are within the interval [0.215, 0.3073]. The simulation results
by the stochastic approach with non-Bernoulli sequences and
the MC method (equivalent to the use of Bernoulli sequences
as initial inputs) with different numbers of simulations are
shown in Table VII. Fig. 9, Fig. 13 and Table VII indicate that
the stochastic approach accomplishes a faster convergence
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TABLE 7. The PT distribution and run time by Monte Carlo simulation,
FAO and the stochastic approach with different sequence length (L)
(u and σ are the expected value and standard deviation of system failure
probability PT , m is the expected value of PT calculated by FAO, N and L
are respectively the Monte Carlo simulation runs and the stochastic
sequences length).

and requires a shorter runtime compared withMC simulation.
The accuracy (in u) improves with the increase of the length
of the stochastic sequences.

3) STOCHASTIC APPROACH VS. FUZZY
EXPECTED VALUE APPROACH
The notations of lower possibilistic and upper possibilistic
mean values are used to obtain the bounds of the system
failure probability in [11]. The lower possibilistic and upper
possibilistic mean values of a fuzzy number A (α, m, β) is
given by:

MA =

[
MA∗,MA∗

]
= [m−

α

3
,m+

β

3
]. (31)

where m is the center of A, α and β are the left width and right
width of A respectively (α > 0, β > 0). As per Definition 1,
the interval bound given by the lower and upper possibilistic
mean values of A′ is obtained by:

MA′ =

[
MA∗′ ,M

A∗′
]

= [m′ −
m′ − α′

3
,m′ +

β ′ −m′

3

= [
2 ∗m′ + α′

3
,
2 ∗m′ + β ′

3
]. (32)

The expected values given in (13) and the interval bound
by the lower and upper possibilistic mean values of Pbi
calculated by FEVA are shown in Table VIII.

Based on a system’s fault tree in Fig. 8, the expected value
of system failure probability is 0.2611. The closed interval
bounded by lower and upper possibilistic mean values of
system failure probability is [0.1562, 0.3485]. Comparedwith
the stochastic approach, the probability distribution of the
system failure probability (PT ) cannot be obtained by the
fuzzy expected value approach (FEVA).

TABLE 8. The expected values and Interval bounded by lower/upper
possibilistic mean values of basic events’ failure probabilities calculated
by fuzzy expected value approach (Pbi

is the failure probability of basic
event bi , i ∈ [1,10]).

VI. CONCLUSION
This paper proposes a model that consists of an expert
evaluation module and a stochastic computational module
to evaluate the reliability of complex fuzzy systems. In a
fuzzy system, the probabilities of basic events cannot be
accurately determined but can be approximated by linguistic
values from assessment experts, and the linguistic values
are converted to triangular fuzzy number by transformation
unit. In this model, triangular fuzzy numbers are converted
to mean value, the failure possibility of a basic event is
transformed into a crisp failure probability. The proposed
method transforms a fuzzy probability analysis into sim-
ple bit-wise operations on non-Bernoulli sequences of ran-
dom permutations of 1’s and 0’s. The reliability of the fuzzy
system can be obtained by the proposed model. Compared
with the fuzzy arithmetic operation (FAO), the runtime to
obtain the reliability parameters of a fuzzy system is reduced.
The proposed approach results in a faster convergence than
Monte Carlo simulation and can produce a system’s failure
probability distribution that cannot be easily obtained by the
fuzzy expected value approach (FEVA).
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