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ABSTRACT With the popularity of smart mobile devices, ‘‘context-aware’’ applications have attracted
intense interest, for which location is one of the most essential contexts. Compared with outdoor localization,
indoor localization has received much more attention from both academia and industry these days. Given the
widespread use of WiFi hotspots, the received signal strength (RSS) fingerprint-based indoor localization
technique is considered as a promising and practical solution because of its relatively high accuracy and low
infrastructure cost. Inspired by our observation that sparsity is inherent to the WiFi signal, we present a new
RSS fingerprint-based indoor localization approach, called SparseLoc. Through sparse representation of the
fingerprints, SparseLoc can estimate a smart mobile device’s location with a small error most of the time.
Although the correlation between neighboring fingerprints affects the localization accuracy, SparseLoc uses
the similarity between principal components of fingerprints to alleviate this effect. Based on the empirical
experiments, we demonstrate that SparseLoc improves the localization accuracy by over 25% compared with
the existing WiFi signal-based localization methods.

INDEX TERMS Indoor localization, RSS fingerprint, sparse representation, sparse dictionary, orthogonal
matching pursuit.

I. INTRODUCTION
The widespread use of smart mobile devices and the increas-
ing demand of context-ware services have attracted much
attention on developing the localization techniques since the
location information is a significant context in numerous
applications [8], such as patient-care-aid in hospital, rescue-
aid in disaster areas, and navigation for the tourists and
mobile robots. Although the outdoor localization has been
well established due to the commercial success of GPS,
indoor localization is still in its early age. Numerous indoor
localization techniques have been proposed. However, none
of the existing techniques has been widely deployed.

Given the widespread use of the WiFi hotspots, the
received signal strength (RSS) fingerprint based indoor
localization technique is considered as a promising and

practical solution because of its relatively high accuracy and
low infrastructure cost. In the approach, a vector of RSSs
from detectable Access Points (APs) is served as the fin-
gerprint of a location. Then, the realtime RSS, called online
fingerprint, is compared against the pre-stored fingerprint
database to estimate the realtime location. Although existing
RSS fingerprint based indoor localization technologies have
obtained relatively high accuracy, it is still not sufficient to
meet the high accuracy demand from some applications.

We have investigated the property of the RSS finger-
prints and found strong sparsity for the RSS fingerprints
at the same location. Through Principal Component Analy-
sis (PCA) [10], the fingerprints at one location with 12 APs
are transformed to 12 components (details in Section III). The
magnitude of each component is shown in Figure 1. It can
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FIGURE 1. Magnitude of components of the fingerprints of one location
through PCA.

been seen that one component has much bigger magnitude
than others in the fingerprints. It means that the fingerprints
at a location are compressible [3] and can be linearly repre-
sented by few basis vectors, i.e. they are sparse.
Motivated by sparse representation applied in face recog-

nition [20], [23], we introduce sparse representation to indoor
localization to leverage the sparsity in RSS fingerprints.
In the image area, feature faces are extracted from the image
database to sparsely represent the online images [24]. Faces
that can be linearly represented by the current feature faces
with a tiny residual would be classified to the current class.
Because indoor localization can be considered as a clas-
sification problem, we may classify the fingerprints in a
similar way.

A. PROBLEM STATEMENT
Motivated by the widespread availability of WiFi hotspots
and smart mobile devices equipped with WiFi communica-
tion modula, we wish to implement a new WiFi based local-
ization approach on the smart mobile devices that leverages
the sparsity of RSS fingerprints to improve the indoor local-
ization accuracy. To the best of our knowledge, this work is
the first to utilize sparse representation in indoor localization.

However, because of the correlation between fingerprints
of neighboring locations, directly using sparse representation
leads to inaccurate positioning since the fingerprints of a
location could sparsely represent the fingerprint of the neigh-
boring location. This problem does not exist in face recogni-
tion since there is hardly any correlation between faces from
different classes. Therefore, we must redesign the existing
sparse representation algorithm to solve this problem.

In this paper, we propose a new indoor localization
approach, named SparseLoc. SparseLoc is a RSS fingerprint
based approach leveraging the sparsity of fingerprints. It first
records the fingerprints of every reference point (location)
and extracts a sparse dictionary for each point, which is
used in sparse representation. For an online fingerprint,
if it could not be approximately represented by a refer-
ence point’s sparse dictionary, it would not be located to
this reference point. In order to alleviate the effect of the

correlation between fingerprints of neighboring locations, the
mean fingerprint of a reference point is used in sparse repre-
sentation. The principal component of the mean fingerprint is
extracted by the sparse dictionary and compared to the princi-
pal component of the online fingerprint. An online fingerprint
is located to a reference point only if the online fingerprint
can be approximately represented by the sparse dictionary of
this reference point and its principal component is similar
to the principal component of the mean fingerprint of the
reference point. Extensive experiments show that SparseLoc
outperforms the traditional methods in localization accuracy
by up to 25.7%.

The main contributions of this paper are as follows:
• We introduce sparse representation to indoor
localization.

• We design the first indoor localization approach,
called SparseLoc, that leverages the sparsity of RSS
fingerprints.

• We implement SparseLoc on smart mobile devices.

B. ORGANIZATION
Section II introduces the preliminary of our approach.
Section III analyzes the sparsity of RSS fingerprints. Some
design considerations are elaborated in Section IV. Section V
presents the design details of SparseLoc. In Section VI,
we evaluate the performance of our approach through empir-
ical experiments. Section VII presents some related work.
Finally, Section VIII concludes the paper.

II. PRELIMINARY
This section introduces the concept of sparse representation
and its application in face recognition, which is a typical
application of sparse representation and has inspired us to do
this work. This section also introduces an algorithm, called
Orthogonal Matching Pursuit (OMP) [18], which is used in
SparseLoc.

A. SPARSE REPRESENTATION
Sparse representation means that a high-dimensional signal
is compressible and most information of this signal can be
represented as a linear combination of a few elementary
signals (bases) [7].

Consider a signal x in RN , it can be represented by a set
of N × 1 basis vectors (elementary signals) {9i}

N
i=1 as

x = 9s (1)

In which, s is the coefficient vector. If some components
of s are zero, the signal can be represented by parts of
N elementary signals. The collection of the elementary sig-
nals with nonzero coefficients is called a sparse dictionary.

Sparse representation has been widely used in noise
reduction, compression, feature extraction, pattern classifi-
cation, etc. In pattern classification, a signal that can not be
approximately represented by a class’s dictionary is consid-
ered not belonging to this class.
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B. APPLICATION IN FACE RECOGNITION
In face recognition, face images within the same category
usually have similar features, and thusly they are highly
correlated. The sparse-representation-based face recogni-
tion [20], [26] utilizes the above phenomenon to sparsely
represent a high-dimensional face image f through a feature
vector of much lower density called sparse dictionary D.
Formally, a sparse representation can be formalized as
follows.

f = Dc+ r (2)

where c denotes the vector sparse coefficients, and r repre-
sents the residual after sparse representation.

For a face image f t to be classified, if it belongs to a class, it
can be approximately represented by the sparse dictionary D
of that class via a constrained l1-minimization, as shown in
Equation (3)

ĉ = argmin
c
‖c‖1 s.t. ‖f t − Dc‖2 < ε (3)

where ε represents the dense small noise in f t . If f t belongs
to a class, the residual r = f t − Dc should be pretty small;
otherwise, the corresponding residual would be relatively
large. Thus, a face image can be classified based on the
magnitude of the corresponding residual.

C. ORTHOGONAL MATCHING PURSUIT (OMP)
OMP is a greedy algorithm. Given a signal, a set of probable
bases and the representation requirements, OMP is to find a
subset of bases that can approximately represent the signal
and meet the representation requirements.

For a signal with a set of probable bases, OMP first finds
the basis nearest to the original signal as the first dictionary
element. If there are already some bases in the dictionary,
OMP first calculates the residual r of the signal after project-
ing the signal on the vector space expanded by the chosen
bases in the dictionary as follows:

ĉ = arg min
c∈Rk
‖f −8 · c‖2 (4)

r = f −8 · ĉ (5)

where f is the original signal and 8 is the current dictionary
containing the chosen bases. Then, among the unchosen prob-
able bases, OMP chooses the basis nearest to r as the next
dictionary element. The OMP algorithm does not stop until
meeting all the representation requirements. The representa-
tion requirements can be the number of chosen bases reaches
a certain value or the residual r is smaller than a certain value.
Finally, OMP outputs the subset of the bases that have been
chosen by the algorithm.

III. SPARSITY ANALYSIS
To bring in sparse representation, it should been shown that
there exists sparsity in RSS fingerprints. Sparsity means
that through some sort of transformation, most information
of a high-dimensional signal exists in a limited number of
dimensions.

We use Principal Component Analysis (PCA, also known
as singular value decomposition [10]) to show the sparsity
in RSS fingerprints. PCA uses orthogonal transformation to
covert possibly correlated variables (signals) into a set of
values of linearly uncorrelated variables called principal com-
ponents. Given a collection of fingerprints F = [f 1, . . . , f N ],
PCA finds the principal components in it. It first calculate the
covariance matrix by

C =
FTF
N − 1

(6)

C is the covariance matrix. Then, PCA diagonalizes C to get

3 = PTCP (7)

where the diagonal elements in 3 mean the power of those
components. The component with the biggest power is con-
sidered as the principal component.

We set an experiment on the 9th floor in our office build-
ing to analyze sparsity in fingerprints. We randomly choose
a position as the reference point on the 9th floor. Over
100 fingerprints of the reference point are collected by an
Android mobile phone. Each fingerprint consists of 12 RSS
values of 12 APs. Through PCA, the fingerprints transformed
to 12 components. The magnitude (ratio to the summation)
of each component is shown in Figure 1. It can been seen
that one component (principal component) has much big-
ger magnitude than others, and most of components are
negligible. So, most information of these fingerprints exists
in a limited number of dimensions after transformation and
can be linearly represented by few basis vectors, i.e. they are
sparse. We get the similar results for sparsity analysis at other
positions.

IV. DESIGN RATIONALE
In this section, we show that the typical sparse representation
method could not be directly applied to RSS fingerprint
based indoor localization. We discuss the two challenges and
provide the corresponding solutions.

A. CHALLENGES
The sparse-representation-based method described in
Subsection II-B cannot be directly applied to fingerprint-
based localization problem due the following two challenges:
1) the construction of the sparse dictionary; 2) the strong
correlation of WiFi signal among nearby reference points.

In fingerprint-based indoor localization, given a collec-
tion of training samples (F = [f 1, . . . , f N ], in which
f i = [si1, . . . , siM ], sij is the RSS of the jth AP), it cannot
be directly used as sparse dictionary, because the number
of training samples N (collected through site survey) can
be much larger than the dimension of RSS fingerprint M
(the number of available APs). Thus, the collected training
samples actually form a over-complete dictionary, which is
not sparse. As a comparison, in face recognition, the number
of collected training samples is usually much less than the
dimension of face images.
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Moreover, because of the WiFi propagation characteris-
tic, fingerprints of nearby reference points may be highly
correlated. We use Pearson product-moment correlation
coefficient [12] to analyze the correlation between the fin-
gerprints of nearby references points. Two positions on the
9th floor in our office building are chosen as the refer-
ence points. The distance between these two points is about
1 meter. Collections of 30 fingerprints corresponding to these
two neighboring reference points are analyzed and the corre-
lation coefficient is 0.7665, which means strong correlations
between the fingerprints. We get the similar results for corre-
lation analysis at other positions. Therefore, it is insufficient
to distinguish RSS fingerprint through residual alone. As a
comparison, in face recognition, face images are sparsely
distributed in a high-dimensional space, which does not have
such a high correlation phenomenon.

In the following subsections, we present our solutions to
these two challenges.

B. TRAINING THE SPARSE DICTIONARY
From the above discussion, it is sufficient to find a subset
of the collected training samples in order to form a sparse
(incomplete) dictionary. The challenge is how to find an
appropriate subset of the training samples. Before we discuss
how to select the subset to construct the incomplete dictio-
nary, we need to first give a formal definition of an incom-
plete dictionary, and discuss why incomplete dictionary is
necessary.

1) INCOMPLETE DICTIONARY
Definition 1 (Incomplete Dictionary): Given a dictionary

D = [d1, d2, . . . , dk ] ∈ RM×k , where any d i and d j (1 ≤
i, j ≤ k) are linearly independent, if k < M , then D is
incomplete.

Definition 1 can be described as: a dictionary D is an
incomplete dictionary if the size of the dictionary (k) is
smaller than the dimension of the fingerprints (M ). As a
comparison, if k ≥ M , then D is over-complete.

The reason for our focus on incomplete dictionary is that,
theoretically, every M -dimensional fingerprint can be com-
pletely represented by an over-complete dictionary, which
results in zero residual. As the residual is the metric to do
the classification task, the over-complete dictionary leaves no
room for localization.

However, for a reference point, we can construct an incom-
plete dictionary D from the over-complete dictionary X =
[x1, . . . , xz] (z > M ) consisting of all the collected training
samples, which satisfies a l2-minimization [26] as follows:

min
c
‖f −

z∑
i=1

xici‖2 s.t. ‖c‖0 = k (8)

D = {xj | ∀j, cj 6= 0} (9)

where f is another fingerprint (not inX) of the given reference
point, and l0- norm ‖c‖0 denotes the number of non-zero
elements in the sparse coefficient vector. Those training

fingerprints with non-zero coefficient represent the key fea-
tures of the fingerprint f . Therefore, they are chosen to from
the sparse dictionary D.
The basic idea to construct an incomplete dictionary is

relatively simple. Any element in X with zero coefficient is
removed. Thus, all elements in X with non-zero coefficients
finally generate the incomplete dictionary.
Since directly applying Equation (8) to generate the incom-

plete dictionary is time-consuming, we employ OMP, a sub-
optimal and greedy solution (the detailed description refers to
Section II-C). OMP first finds the nearest fingerprint to f and
selects it as the first dictionary element. Then, it repetitively
projects f onto the current dictionary (Equation (4)), gets the
residual r (Equation (5)), and chooses the nearest fingerprint
to r as the next dictionary element until there are k elements
in the dictionary.

2) SELECTION OF MAIN FINGERPRINT
According to Equation (8), the selection of the fingerprint f is
also a key issue in training the sparse dictionary. f is called the
main fingerprint. We can collect a fingerprint or choose the
mean fingerprint (the mean value of all the training samples)
as f . We believe that the mean fingerprint might be the better
choice. An arbitrary fingerprint may not be able to reflect
the RSS characteristics of a given reference point due to the
random noise. We believe the mean fingerprint can represent
the characteristics more reliably since it has eliminated most
white noise.

To verify the above argument, we conduct an experiment
to show the superiority of the mean fingerprint. In this experi-
ment, at each of the total 100 reference points, 15 fingerprints
are collected as the training samples. For each reference
point, we use the mean fingerprint of the 15 fingerprints and
another collected fingerprint to train two sparse dictionaries,
respectively. Then, each of the 15 fingerprints is sparsely rep-
resented by the two sparse dictionaries, respectively. Finally,
the total 3000 residuals obtained through the sparse rep-
resentations are used to calculate the mean and variance.
The statistical magnitude of the residuals is used to evalu-
ate the two sparse dictionaries. Smaller statistical magnitude
of the residuals means that the corresponding dictionary is
more representative.

The experiment results show that the mean magnitude of
the residuals is 5.93 when using mean fingerprint, while
the mean value of the residuals is 6.43 when using another
collected fingerprint as the main fingerprint. Moreover, the
variance of residuals is 23.8 when using mean fingerprint,
which is much smaller than 33.05, the variance of resid-
uals when using another collected fingerprint. This means
the residuals is more stable when using mean fingerprint.
As shown in Figure 2, 90% of the mean magnitude of the
residuals is smaller than 12 when using mean fingerprint,
while it is 13.7 when using another collected fingerprint as
the main fingerprint. In summary, it is reasonable to use the
mean fingerprint as the main fingerprint to generate a sparse
dictionary.
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FIGURE 2. Cumulative distribution function of the Magnitude of the
Residuals.

C. ADDRESSING THE CORRELATION ISSUE
As mentioned in Section IV-A, the propagation characteristic
of WiFi signal results in a high correlation among the RSS
fingerprints of nearby reference points, which reduces the
significance of a small residual, and finally affects the local-
ization accuracy.

When a fingerprint collected at a reference point A is
sparsely represented by the sparse dictionary at the reference
pointB near toA according to Equation (3), the corresponding
residual might also be relative small due to the correlation
effect. Thus, the fingerprint collected at the reference point A
might be considered as a fingerprint collected at the reference
point B.
To mitigate the influence of the correlation, we introduce

an additional metric, principal component, together with the
residual, to determine the classification result. In this paper,
the principal component f µ of a fingerprint f corresponding
to a dictionary D is represented as

fµ = D · ĉµ (10)

in which

ĉµ = arg min
cµ∈Rk

‖f − D · cµ‖2 (11)

The rationale to choose the principal component as an
additional metric is that the principal components of the
two fingerprints associated with two nearby reference points
are usually different from each other because the principal
component reflects the key characteristic of a fingerprint.

To mitigate the correlation effect, the principal component
of a fingerprint f 1 is compared with the principal component
of the fingerprint f 2 collected at a reference point to deter-
mine whether f 1 is collected at this reference point. Then,
the issue is how to choose f 2. Generally, f 2 should reflect
the general characteristic of the fingerprints collected at the
given reference point. We can randomly pick a fingerprint or
select the mean fingerprint. Based on the experiment results
in subsection IV-B.2, we think the mean fingerprint is a
preferable choice.

Hence, in our approach, once a mobile device needs to
determine whether its location is close to a reference point,
it first collects a RSS fingerprint f t , and projects the finger-
print f t to the corresponding dictionary D of this reference

point to get the coefficient vector ĉt by

ĉt = arg min
cµ∈Rk

‖f t − D · ct‖2 (12)

Then, the corresponding principal component f tµ and
residual r can be calculated as

f tµ = D · ĉt (13)

r = f t − f tµ (14)

Similarly, the mean fingerprint of this reference point can
be also projected to the dictionary D to get the principal
component of the mean fingerprint, denoted as ¯f µ. Thus,
the principal component and residual can be combined to
generate a joint metric l as

l = λ‖f tµ − ¯f µ‖2 + (1− λ)‖r‖2 (15)

where λ ∈ (0, 1) is a tradeoff to balance the relative weights
between the principal component and the residual. Generally
speaking, the smaller the value of l is, the closer to the
reference point the device is.

V. SPARSELOC
In this section, we present the detailed procedure of
SparseLoc. First, Subsection V-A gives an overview of
SparseLoc. Then, Subsections V-B and V-C present the
detailed descriptions of the two phases of SparseLoc,
i.e. training phase and matching phase, respectively.

A. OVERVIEW
As illustrated in Figure 3, SparseLoc has two phases: training
phase and matching phase. In the training phase, SparseLoc
trains a sparse dictionary at each reference point through
OMP (the detailed description refers to Section II-C). At the
end of the training phase, both the sparse dictionary and the
principal component of themean fingerprint at each reference
point are recorded in the fingerprint database.

In the matching phase, a fingerprint to be localized is
sparsely represented through the sparse dictionary at every
reference point, and is divided into two components: the
principal component and the residual. Through the joint
metric l (defined in Equation (15)), the fingerprint’s position
is determined accordingly.

In the following subsections, Subsections V-B and V-C
present the detailed descriptions of the training phase and
matching phase, respectively.

B. TRAINING PHASE
In this phase, SparseLoc first selects some positions as the
reference points. At every reference point, SparseLoc collects
multiple fingerprints and records them into the fingerprint
database. Based on the collected fingerprints, the mean fin-
gerprint at each reference point can be calculated.

Then, at each reference point, SparseLoc uses the mean
fingerprint to train the sparse dictionary. Formally, given a
collection of fingerprints F = [f 1, . . . , f N ] ∈ RM×N and
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Algorithm 1 Training Phase of SparseLoc
Input:

N : number of fingerprints at each reference point;
p: number of reference points;
Fi = [f i1, . . . , f iN ] ∈ RM×N , (i = 1, . . . , p): the
collections of training fingerprints of the i-th reference
points.
k: the optimal size of the sparse dictionary.

Output:
Di = [d1, . . . , dk ], (i = 1, . . . , p): the Sparse dictionary;
ci ∈ Rk : the coefficient vectors;
f iµ: the principal component of the mean fingerprint at
the i-th reference point;
ri: the residual of the mean fingerprint at the i-th
reference point.

1: for the i-th reference point, i = 1, . . . , p do
2: Calculate the statistical mean value f i of fingerprints.

f i =
1
N

N∑
j=1

f i,j (16)

3: Initialize: Di = 0M×k , ci = 0k ,
set of fingerprint index:Si = {1, 2, . . . ,N }.

4: Initialize residual: ri = f i.
5: for q = 1, 2, . . . , k do
6: Find the index l of q-th dictionary element dq from Fi,

which is nearest to current residual ri;

l = argmin
j∈Si
‖ri − f ij‖ (17)

d ip = f il
Si = Si − {l}

(18)

7: Get the coefficients ci and the residual ri of representation
of the current dictionary by projecting the mean finger-
print f i to the current dictionary Di with the least square
method:

ci = arg min
c∈Rk
‖f i − Di · c‖2 (19)

ri = f i − Di · ci (20)

8: end for
9: Get the residual ri and the principal component of the

mean fingerprint f µ of the i-th reference point.

ri = f i − Di · ci
f iµ = Di · ci

(21)

10: end for

the mean fingerprint f̄ , the sparse dictionary can be obtained
through the optimal algorithm described in Equation (8) or
the sub-optimal algorithm called OMP. Since the optimal

solution of Equation (8) is time-consuming, SparseLoc uses
OMP (refer to Section II-C) to balance between solution
quality and time efficiency.

Once the sparse dictionary D = [d1, d2, . . . , dk ] ∈ RM×k

has been determined, SparseLoc will sparsely represent the
mean fingerprint according to Equation (2), i.e., f̄ = Dc+ r,
where f̄ denotes the mean fingerprint. Furthermore, through
the l1-minimization formalized in Equation (3), a mean fin-
gerprint is partitioned into two parts: 1) principal component
f̄ µ ∈ RM , where f̄ µ = Dc, and 2) residual r ∈ RM , where
r = f̄ − f̄ µ. Because the residual of mean fingerprints is
mainly caused by the white noise, SparseLoc only records
the principal components.

Since Equation (2) does not present an algorithm to obtain
a principal component, we need to find a way to compute f̄ µ.
Because, for a given reference point, its sparse dictionary is
fixed, to find f̄ µ is equal to determine the appropriate vector
of sparse coefficients c.

Once the sparse dictionary has been established, the vec-
tor of sparse coefficients that represents f can be calcu-
lated according to Equation (22). Here, ‖c‖1 is l1-norm,
which means a sample could faithfully be represented with
least elements. ‖f − Dc‖22 means the fingerprint is repre-
sented by the sparse dictionary with a small residual. Since
the l1-minimization process is time-consuming, a more effi-
cient l2-minimization process as Equation (23) has been
proposed, which uses collaborative representation [26]. Here,
the l2-norm leads to almost the same result as l1-norm. Thus,
we adopt the regularized least square method inherent to
Equation (23) to get the optimal c, which in turn can calculate
the appropriate principal component.

ĉ = argmin
c
{‖f − Dc‖22 + σ‖c‖1} (22)

ĉ = argmin
c
{‖f − Dc‖22 + σ‖c‖

2
2} (23)

In summary, once the sparse dictionary is identified,
SparseLoc sparsely represents the mean fingerprint f̄ through
the regularized least square method, and obtain the principal
component of the mean fingerprint accordingly.

At the end of the training phase, both of the sparse dic-
tionary D = [d1, . . . , dk ] and the principal component of
the mean fingerprint f̄ µ will be recorded in the fingerprint
database.

The algorithm of training phase in SparseLoc is illustrated
as Algorithm 1. In Step 2, SparseLoc first calculates the
mean fingerprint of the reference point. Then, in Steps 4-8,
the algorithm uses the mean fingerprint to train an incom-
plete dictionary from the training fingerprints. To train the
dictionary, the algorithm employs the OMP [18] to find the
sub-optimal solution. Once the sparse dictionary has been
established, SparseLoc projects the mean fingerprint onto
the dictionary in Step 7. Finally, the residual and the prin-
cipal component are calculated by the dictionary in Step 9.
Both of the sparse dictionary and the principal compo-
nent of the mean fingerprint are recorded in the fingerprint
database.
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FIGURE 3. Overview of SparseLoc.

Computational Complexity: The computational complex-
ity of Equation (16) is O(MN ), where M is the dimension of
fingerprints andN is the number of fingerprints of a reference
point. Equation (17) has the same computational complexity.
The complexity of Equation (19) is O(Mk2), where k is the
Sparse dictionary size. In a summary, the algorithm com-
plexity is O(pMk3 + pkMN ), in which p is the number of
reference points. Moreover, the training phase can run on a
server, which significantly reduces the overhead of mobile
devices.

C. MATCHING PHASE
In fingerprint-based localization, the ‘‘logical’’ distance
between fingerprints represents the physical distances
between the corresponding localization points. So, the dis-
tance formula to calculate the ‘‘logical’’ distances between
fingerprints is crucial for the localization accuracy.

In SparseLoc, a fingerprint is sparsely represented through
a sparse dictionary, and the sparse representation partitions
the fingerprint into two parts: the principal component and
residual. Given a fingerprint f t to be localized, SparseLoc
first projects it to the incomplete dictionary D of each refer-
ence point in the form of f t = Dct + rt , where f tµ = Dct is
the principal component, and rt is the corresponding residual.

As analyzed in Section IV-C, a fingerprint f t being classi-
fied to a location must meet two requirements: 1) the resid-
ual should be small, which means the fingerprint could be
approximately represented by the corresponding dictionary;

2) the principal components of the mean fingerprint and
f t should be similar, so that the correlation among nearby
reference points would not affect the localization accuracy.

The algorithm of matching phase of SparseLoc is illus-
trated as Algorithm 2. For each reference point, SparseLoc
calculates its logical distance to f t . After loading the sparse
dictionary from the fingerprint database, SparseLoc projects
the f t onto the dictionary in Step 2. Then, in Step 3, Sparse-
Loc obtains the residual and the corresponding principal
component. In Step 4, the algorithm uses a new metric to
calculate the logical distance.

After SparseLoc obtains the distance between the online
fingerprint and each reference point, it selects the reference
point with the smallest logical distance as the target location.
Computational Complexity: The computational complex-

ity of Equations (24), (25), and (26) are O(Mk2), O(Mk),
and O(M ), respectively. Hence, the computational complex-
ity of Algorithm 2 isO(Mpk2). This part of algorithm runs on
the mobile device.

VI. EXPERIMENTS AND EVALUATION
This section describes the details on experimental evalu-
ation of SparseLoc. Real RSS data were collected in an
office building. The performance is evaluated from many
different aspects. The localization error is defined as the
Euclidean distance between the estimated location and the
corresponding actual location. We compare SparseLoc with
two well known indoor localization approaches, RADAR [2]
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Algorithm 2 Matching Phase of SparseLoc
Input:

p: number of reference points;
f t : the online fingerprint;
Di: the Sparse dictionary of the i-th reference point;
f iµ: the principal component of the mean fingerprint at
the i-th reference point;
ri: the residual of the mean
fingerprint at the i-th reference point.

Output:
li: the logical distance from the online fingerprint to the
i-th reference point.

1: for the i-th reference point, i = 1, . . . , p do
2: Project the online fingerprint f t to the dictionary Di with

the least square method.

ct = arg min
c∈Rk
‖f t − Di · c‖2 (24)

3: Get the residual rt and principal component f tµ at the i-th
reference point.

rt = f t − Di · ct
f tµ = Di · ct

(25)

4: Calculate the distance li

li = λ‖f iµ − f tµ‖2 + (1− λ)‖rt‖2 (26)

5: end for

FIGURE 4. The Testbed.

(a RSS fingerprint based approach) and EZ [6] (a RSS model
based approach).

A. EXPERIMENTS SETUP
We built the testbed on the 9th floor in an office building,
illustrated in Figure 4. The experiments were carried out in
an open space with the area of 272m2. 12 APs were visible in
the area. For our experiments, we used a mobile phone

FIGURE 5. Performance of SparseLoc and RADAR on different fingerprint
database size.

(Motorola ME722 with Android 2.3) to collect the finger-
prints. The software for fingerprint collection was developed
with the Android application program interface. 100 refer-
ence points were labeled in the area. 15 fingerprints were col-
lected at each reference point to form the fingerprint database
and 5 online fingerprints at each of 80 locations were used to
evaluate the localization accuracy, unless stated otherwise.

B. TRAINING DATABASE
In this subsection, we designed experiments to evaluate the
influence of the size of training database.

1) TRAINING EXPERIMENT 1
In this experiment, We varied the number of training finger-
prints collected at each reference point from 12 to 15 and used
them to train the sparse dictionary. Other 5 fingerprints at
100 locations are collected as the testing online fingerprints to
evaluated the performance of the sparse dictionaries. Figure 5
shows the mean localization error of RADAR and SparseLoc
in the tests. Both of the algorithms perform stably in their
mean localization error. And SparseLoc also shows a signif-
icant improvement tendency when increasing the number of
training samples.

2) TRAINING EXPERIMENT 2
In this experiment, 25%, 50%, 75%, or 100% of the reference
points were randomly chosen and 5 more fingerprints were
collected at these points to train the optimal dictionary size k
and λ. Figure 6 illustrates the mean localization errors with
different fractions of training points. The results are stable
enough, which infers that SparseLoc could use only part of
the reference points to train the parameters k and λ. So, we
decided to use only 25% of the points to train the parameters
of SparseLoc in order to reduce the preliminarywork. Andwe
got k = 6 with λ = 0.42, which were used in the following
experiments.

C. DISTANCE METRIC
In this experiment we compared the performances of four
distance metrics. The first metric is the metric of SparseLoc.
The second metric uses coefficients as the only input
as l = ‖Dc−Dct‖2, while the third metric uses the residuals
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TABLE 1. Mean localization errors for different metrics.

FIGURE 6. Performance of SparseLoc on Different Size of Training Points.
The result remained stable on different sizes.

FIGURE 7. Cumulative Distribution Functions of Localization Errors for
Different Distance Metrics.

as l = ‖r‖2. And the last one is the metric of sparse repre-
sentation (SR) according to Equation (22) as l = λ‖ct‖2 +
(1 − λ)‖rt‖2 . The experiment was set on four different
corridors as shown in Figure 4. The mean localization errors
are shown in Table 1. And Figure 7 depicts the cumulative
distribution function of localization errors for each metric.
The metric of SparseLoc has better performance compared
to other metrics.

D. ALGORITHM EVALUATION
The localization accuracy of SparseLoc is evaluated in this
subsection. It is compared with two RSS-based indoor local-
ization algorithms: RADAR and EZ.

FIGURE 8. Localization Errors of Different Reference Point Densities.

1) LOCALIZATION EXPERIMENT 1
We first did an experiment by varying the density of the
reference points. In the experiment, we picked up 25%, 50%,
75% or 100% reference points from the original finger-
print database by expanding the spacing between the points.
The corresponding mean localization errors are showed in
Figure 8. As expected, the errors decreasewhen the number of
reference points increase. SparseLoc always performs better
than RADAR in different densities of reference points.

2) LOCALIZATION EXPERIMENT 2
In this experiment, the mean values of the localization errors
of SparseLoc, RADAR and EZ are evaluated. The mean
localization error of SparseLoc is 1.125m, 25.7% smaller than
1.515m of RADAR, while EZ presents a mean localization
error of 8.06m. Note that EZ takes a long time to adaptively
optimize its results. So, its performance is not good in our
short period experiments. In addition, the standard devia-
tion of SparseLoc is 1.91m while the standard deviation of
RADAR is 2.33m.

Then, the Cumulative Distribution Function (CDF) of
localization errors for each algorithm is drawn in Figure 9.
It can be concluded that about 80% fingerprint localiza-
tion errors are smaller than 2m for SparseLoc compared to
70% for RADAR. And 90% of the errors for SparseLoc is
smaller than 3.5m and RADAR reaches 90% at more than 5m.
In addition, EZ shows a clearly worst performance in our
environment according to Figure 9.

In addition, a detailed error histogram is shown in
Figure 10. It could be concluded that the concrete quantity
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FIGURE 9. The Cumulative Distribution Function of Localization Errors of
the Online Testing Fingerprints. 90% of the errors in SparseLoc is smaller
than 3.5m and RADAR reaches 90% at more than 5m.

FIGURE 10. The Histogram of Errors of the Online Testing Fingerprints.
The quantity of errors smaller than 3m for SparseLoc is larger than the
quantities for RADAR and EZ.

of errors smaller than 3m for SparseLoc is larger than the
quantity for RADAR, while EZ shows no superiority in either
small errors or large errors. The quantity of errors larger
than 3m for RADAR always exceed those for SparseLoc.
Thus, compared to RADAR and EZ, SparseLoc performs
better in localization accuracy.

Then, the localization errors of each online fingerprint is
compared among different approaches. Because EZ shows
a relatively worst performance, we only compare the local-
ization errors of RADAR and SparseLoc. In this experiment,
a value ratio = (ERADAR − ESparseLoc)/ESparseLoc is calcu-
lated for each online fingerprint, whereERADAR andESparseLoc
denote the localization errors for RADAR and SparseLoc,
respectively. The CDF of the ratio is shown in Figure 11.

Figure 11 shows that in less than 8% cases the localization
errors for RADAR are smaller than the ones for SparseLoc,
with ratio ≤ 0. However, more than 20% cases the localiza-
tion errors for RADAR are more than 50% larger than the
ones for SparseLoc, with ratio ≥ 0.5.

With the experiment results above, SparseLoc performs
better than RADAR and EZ in many aspects.

VII. RELATED WORK
These days, indoor localization has become a very active
research area. In this section, we present a brief overview of
the existing works in this area.

FIGURE 11. The Performance of RADAR Compared to SparseLoc at Each
Reference Point. 20% of the localization errors for RADAR are more than
50% larger than the ones for SparseLoc.

A. SPECIALIZED INFRASTRUCTURES OR EQUIPMENTS
Some technologies rely on specialized infrastructure or
equipments. For example, an ultrasound based system
named Cricket [16] and an RFID based system named
LANDMARC [15] require additional hardware infrastruc-
tures being deployed at various locations as well as on
the localization devices. FM-based technology [5] and
CSI-based technology [22] make use of existing signals
in indoor environments. Visible light based positioning
systems [4], [13], [14] are also presented in recent years.
However, they need additional equipments deployed on the
localization devices to collect the signals.

B. INERTIAL SENSING
Inertial sensing does not rely on additional infrastructures.
It uses the sensors such as accelerometer, gyroscope and
barometer to sense human motion so as to estimate the loca-
tion. However, it has been proved that the localization error of
inertial sensing accumulates. Therefore, some approaches to
prevent the accumulation of errors were proposed in [1], [17],
and [19]. A symbolic algorithm, called WILL [21], uses iner-
tial sensing to draw the topology of the tracks of devices, and
matches it with the topology of the environment. However,
inertial sensing has to get the initial location of the object to
do localization.

C. RSS-BASED INDOOR LOCALIZATION
RSS-based technologies use the RSS to locate the target
device. Specifically, there are two main approaches of the
technology: model-based and fingerprint-based.

1) MODEL-BASED APPROACHES
In model-based approaches, there are many geometrical mod-
els that reflect the signal attenuation caused by the propa-
gation distance such as TIX [9]. EZ [6] is a model-based
approach, which could train a model automatically. How-
ever, these model-based approaches typically earned poor
accuracy.
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2) FINGERPRINT-BASED APPROACHES
Fingerprint-based approaches record the RSS vectors as the
fingerprints of reference locations and compare the realtime
RSS against the pre-stored fingerprint database to estimate
the realtime location [11], [25]. One simple and practi-
cal solution of fingerprint-based approach is RADAR [2].
Fingerprint-based approaches are also fused with inertial
sensors [27] to provide better localization accuracy. For its
relatively high accuracy and low hardware infrastructure
requirement, fingerprint-based indoor localization technol-
ogy has been accepted as an effective method in indoor local-
ization. However, some applications require higher accuracy,
which is hard to be satisfied by the existing approaches.

In this paper, we introduce a new indoor localization tech-
nology using sparse representation, which takes advantage
of the sparsity in fingerprints. Compared to existing works,
SparseLoc can get higher accuracy by using the widespread
WiFi infrastructure.

VIII. CONCLUSION
SparseLoc is a novel RSS fingerprint based indoor
localization approach, which is the first one to apply sparse
representation in indoor localization. It does not require any
specialized infrastructures or equipments. Because of the
correlations between the RSS fingerprints at neighboring
locations, we have introduced a new metric and a new
algorithm to make sparse representation workable for indoor
localization.

To evaluate the performance of SparseLoc, we have imple-
mented the approach on mobile devices. Fingerprints were
collected from real WLAN environments. We evaluated
the performance of SparseLoc and compared the approach
with RADAR and EZ. The average localization accuracy
is improved by more than 25%. In addition, the computa-
tion complexity of SparseLoc is feasible to implement the
approach on most of the off-the-shelf smart mobile devices.
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