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ABSTRACT Due to limited radio resources, non-orthogonal multiple access (NOMA) is a promising
technology to enable massive connectivity in future 5G and beyond wireless networks. However, it suffers
from the multiple access interference, which usually requires a high detection complexity to mitigate.
In this paper, we consider NOMA with sparse multiple-access sequences, so as to leverage the message
passing algorithm (MPA) for low-complexity and high-reliability multiuser detection. The optimal sparsity
of spreading sequences is analyzed by minimizing the average bit error rate in the asymptotic large-
system limit. Based on the analysis, the optimal sparse sequences that optimize the performance of
MPA detector are designed in a systematically hierarchical way. The sparse structure is constructed given
the target girth. Then, the values of nonzero entries are determined to maximize the minimum distance. The
detection performance of the designed sparse sequences is presented for both additive white Gaussian noise
and Rayleigh fading channels. Simulation results show the superiority of the proposed design in comparison
with existing schemes.

INDEX TERMS Detection performance optimization, message passing algorithm (MPA), non-orthogonal
multiple access (NOMA), sparse multiple-access sequences.

I. INTRODUCTION
Non-orthogonal multiple access (NOMA) [1], [2] has been
widely recognized as a promising technology to address
the challenge of massive connectivity in future 5G wireless
networks [3]. In NOMA, the system works in an overload
way, i.e., K users share N orthogonal resources, e.g., time
slots or orthogonal subcarriers, for K > N . Therefore, in
NOMA systems, the multiple access interference (MAI) is
usually severe, which should be carefully alleviated by using
complicated multiuser detection (MUD).

A. PRIOR WORKS
The way that K users share N resources can be described
using a multiple-access matrix, denoted by S, each column
of which represents the spreading sequence of each user.
Many schemes have been proposed to implement NOMA
with relatively low implementation complexity. One widely
researched scheme is to superpose the signals of two users

and transmit them on one resource [4], and the corresponding
matrix is simply S =

[
1 1

]
. Large gap between the channel

gains of pairing users is expected so that successive interfer-
ence cancellation MUD can be applied [5]. This scheme can
achieve the sum capacity of the channel and can be extended
to more than two users, and the system load, defined as K/N ,
takes integer values.

To achieve more diverse load, the matrix S has to be
elaborately designed.Many researchers proposed to construct
sparsely structured matrix so as to take advantage of sparse
signal processing, i.e., the message passing algorithm (MPA)
to largely reduce the practical complexity of MUD. The
concept of sparse (also named low-density) spreading struc-
ture was introduced in [6], wherein the iterative soft-in-soft-
out MUD based on MPA was studied and the advantage of
this scheme was presented by simulation. This structure has
further been applied to the orthogonal frequency division
multiplexing system over the multipath fading channel and
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achieved significant performance improvement [7]. Recently,
sparse code multiple access that jointly designs symbol map-
ping and sparse sequences was proposed in [8]. The sparse
matrices discussed in these works are generated randomly or
found by trial-and-error.

When NOMA meets sparse signal processing, the key
point lies in the multiple-access sequences. It is important
to construct the optimal sparse sequences to achieve the best
performance. The optimal sequences that can achieve both
the sum capacity and themaximum sparsity were investigated
in [9]. However, constructing the sparse matrix that optimizes
the performance of the relevant MPA detector is more chal-
lenging, since there are no closed-form expressions for the
relationship between the detection performance of MPA and
the sparse sequences. Despite of the difficulty, the average
performance can be evaluated by the asymptotic large-system
limit analysis [10]–[13]. By establishing a probability density
model for the entries of sparse spreading sequences, a method
based on statistical mechanics was proposed to analyze the
optimal detection performance [11] as well as the spectral
efficiency of the scheme [10]. By letting the sparsity go to
infinity at a smaller rate, the authors in [12] and [13] studied
the performance of MPA and concluded that MPA detection
for the sparsely spread system is asymptotically optimal.
Besides the asymptotic large-system limit analysis, for finite-
size multiuser systems, an iterative procedure utilizing the
extrinsic information transfer chart was proposed in [14] to
design the degree distribution for the low-density signature
structure. Based on the sparse structure of low-density parity-
check codes, the signature (value of non-zero entries) design
was investigated in [15] and [16].

B. CONTRIBUTION
The above mentioned works do not provide a systematic
design of the optimal sparse sequences that optimizes the
performance of MPA detector, especially with the constraints
on the transmission efficiency and the detection complexity.
It is critical for the practical application of NOMA to deal
with the MAI with low-complexity and high-reliability. This
motivates our work. The main contributions of the paper can
be summarized as follows:

• We propose a systematic scheme to construct the sparse
sequences in a hierarchical way with the aim of optimiz-
ing the performance of MPA. With this scheme, we are
able to implement NOMA using sparse signal process-
ing, i.e., MPA for low-complexity and high-reliability
multiuser detection.

• We analyze the average BER of MPA in the asymp-
totic large-system limit by deriving the density evolution
formula for the MPA detector, and formulate an opti-
mization problem minimizing the average BER with the
constraints on the system load and detection complexity.
To solve the nonlinear integer programming problem,
we propose an efficient algorithm to find the optimal
sparsity.

• Based on the optimal sparsity using the large-system
limit analysis, the optimal sparse sequences are designed
in a hierarchical way. First, given the target girth, the
sparse structure is constructed by leveraging the progres-
sive edge growth method. Then, in regard to the choice
of the values of nonzero entries, the minimum distance
between two transmitted signals is maximized to further
optimize the performance of MPA.

• The error performance of the designed sparse sequences
is investigated for both AWGN and Rayleigh fading
channels. The influence of constraints on the detection
is illustrated, and the superiority of the proposed scheme
is demonstrated in comparison with other schemes.

C. ORGANIZATION
The rest of the paper is organized as follows. Section II
presents the general system model of NOMA with sparse
sequences, the factor graph representation and the MPA
for multiuser detection. Section III performs the asymptotic
large-system analysis of MPA and optimizes the sparsity by
minimizing the average BER. The optimal sparse sequences
are designed in a hierarchical way in Section IV. Section V
evaluates the detection performance of the designed sparse
sequences, and Section VI concludes the paper.

II. SYSTEM MODEL
A. NOMA WITH SPARSE SEQUENCES
Consider a NOMA system where K users share N orthogonal
resources and K > N . The system load is defined as β = K

N ,
which measures the user capacity, the ability of accommo-
dating users in the system and the efficiency of the system.
Assume that each user is equipped with one antenna and
consider the uplink channel where the users simultaneously
transmit to the base station.

Let xk denote the transmitted symbol of user k with a
normalized average power of 1, i.e., E[x2k ] = 1, ∀k =
1, · · · ,K . Assume that the symbols {xk} take values from the
constellation alphabetX with equal probability. In this paper,
we consider binary phase-shift keying (BPSK) modulation,
thus X = {+1,−1}. Each user spreads its symbol onto the
N resources using a sequence. Let the spreading sequence
of user k be sk = 1

√
3k

[s1k , . . . , sNk ]T where 1
√
3k

is the

normalization factor such that ‖sk‖2 = 1. The symbol xk
is modulated with the spreading sequence sk with positive
amplitude Ak . Assume that all symbols are transmitted with
the same amplitude A. Let x = [x1, x2, . . . , xK ]T be the
transmitted vector and S = [s1, . . . , sK ] denote the multiple-
access matrix, which represents the way users share the
resources. The channel of user k on theN resources is denoted
by the N × 1 vector hk . The received signal, which is the
superposed version of the transmitted signals from all users,
can be written in discrete-form as

y =
K∑
k=1

Ahk � skxk + w

= AH � Sx+ w, (1)
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FIGURE 1. The factor graph representation of sparse sequences with
dv = 2 and df = 3.

where y = [y1, y2, . . . , yN ]T is the received signal vector
collected from the N resources, and w ∼ CN (0, I) denotes
the white Gaussian noise vector, � represents the entrywise
product and H = [h1, . . . ,hK ] is the channel matrix. The
channel considered here is either AWGN channel, where
hnk = 1,∀n, k , or Rayleigh fading channel, where hnk fol-
lows i.i.d CN (0, 1). The signal-to-noise ratio (SNR) of each
user is equal to 20 log10 A dB.

To reduce the detection complexity, the matrix S is
designed to be sparse so as to leverage the low-complexity
MPA detection to achieve near optimal performance. Specif-
ically, each symbol is spread over a relatively small number
of the N resources and each resource is used by a relatively
small number of the K users. We define an N × K binary
indicator matrix, denoted by G = {gnk}N×K , where ’1’s
indicate the nonzero entries in S, i.e., for ∀n, k , if gnk = 0,
set snk = 0; if gnk = 1, set snk 6= 0. With S being sparse, the
signalmodel (1) can be represented by the factor graph, where
the transmitted symbol xk , denoted by variable node, and the
received symbol yn, denoted by function node, are connected
by edge ek,n if gnk = 1, and the gain corresponding to the
edge is snkhnk√

3k
A.

The variable and function node sparsity are defined as the
number of edges connected with them, respectively and also
equal to the number of nonzero entries in columns and rows of
the matrix S. The matrix S is regular if the variable nodes and
the function nodes are of identical sparsity respectively, oth-
erwise it is irregular. Regular matrices potentially outperform
irregular ones in terms of spectral efficiency and bit error
probability [11]. Therefore, in this paper, we focus on regular
structures. Let dv and df denote the variable and function node
sparsity respectively, and we have dv =

∑N
n=1 gnk ,∀k and

df =
∑K

k=1 gnk ,∀n. Fig. 1 shows the factor graph of sparse
sequences with dv = 2 and df = 3. For regular structures, the
following relationship must be satisfied:

β =
df
dv
. (2)

B. MPA DETECTION
MPA is an iterative detection performed over the factor graph.
In each iteration, messages that measure the a posterior
probability of the variable node are sent to the connected
function nodes; each function node then computes messages
to send back to the variable nodes based on the observed
signal and the previously received messages. For detailed

description, we refer the readers to [6]. Let v(t)k→n and u
(t)
n→k be

the messages sent along edge ek,n between variable node xk
and function node yn in the t-th iteration. The messages
are represented in the form of log-likelihood ratio (LLR)
for BPSK. The update equations are given by (3) and (4)
(on bottom the next page).

v(t)k→n =
∑
j∈ζk\n

u(t−1)j→k , (3)

where ζk (ζn) is the index subset of function (variable) nodes
connected to xk (yn), called its neighborhood; ζk \ n denote
the neighborhood of xk excluding yn.

The initial condition of the iteration is v(0)k→n = 0. After
the messages have converged or the maximum number of
iterations T has beenmet, all the messages coming to variable
node xk are summed to compute the final LLR vk→n =∑
j∈ζk

u(T )j→k , which can be used to make a final decision for

symbol xk or be sent to the following decoding module.

III. ASYMPTOTIC LARGE-SYSTEM ANALYSIS
As there is no closed-form expression for the relationship
between the detection performance of MPA and the sparse
sequences, it is intractable to optimize the sparse sequences
directly. To overcome this difficulty, we firstly investigate the
performance of MPA in the asymptotic large-system limit, by
letting K ,N →∞ with their ratio β fixed.

In the large-system limit, the average bit error rate (BER)
will be evaluated for the limiting variable and function node
sparsity of the matrix, based on which an optimization prob-
lem that minimizes the average BER is formulated with
constraints on the system load and detection complexity.
We perform the large-system limit analysis by adopting the
density evolution (DE) framework. It was first introduced to
calculate the threshold of the sum-product decoding [17] and
was used to search for the capacity-approaching low-density
parity check codes (LDPC) [18]. DE is an effective tool
for analyzing the dynamic behavior of belief-propagation-
like algorithms. We will first derive the DE formula for the
MPA detector and analyze the impact of sparsity on the
performance. We then formulate an optimization problem to
minimize the averageBERwith the constraints of system load
demand and detection complexity. An efficient algorithm is
proposed to obtain the optimal variable and function node
sparsity.

A. ANALYSIS OF MPA BY DENSITY EVOLUTION
Assume that the indicator matrix G is uniformly and ran-
domly picked from the indicator matrix ensemble for the
given sparsity distribution. Nonzero entry snk is drawn i.i.d
from the distribution ps with zero mean and unit variance.
Average performance will be evaluated by DE.

Large-system limit renders the random sparse graphs to be
locally tree-like, which ensures that the incoming messages
are independent. DE treats the sent messages as indepen-
dent random variables, and tracks the probability density
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function (PDF) of the messages. Without loss of generality,
assume that all inputs are +1 and that the messages follow
Gaussian distribution. This approximation has good perfor-
mance as elaborated in [17], and we will show later that
it is valid in this case. Moreover, the MPA detector fulfills
the symmetry condition [13], which leads to σ 2

= 2m
for a Gaussian distribution with mean m and variance σ 2.
Thus, tracking the mean of the message is enough, which
dramatically reduces the computational complexity of DE.

Let v and u be the message from a variable node and
a function node, respectively. The DE formula for the
MPA detector is given as follows.
Theorem 1: Denote mu and mv as the mean of u and v,

respectively. Then, mu and mv are calculated by (5) and (6)
in the t-th iteration, respectively, written as

m(t)
u =

2A2

dv

∫
∞

−∞

1

α 4ev
(ev+1)2

+ 1
·

1

4πm(t)
v
e
−

(v−m(t)v )2

4m(t)v dv, (5)

m(t)
v = (dv − 1)m(t−1)

u , (6)

where α = df−1
dv

A2. The initial condition is

m(0)
u =

2A2

dv(α + 1)
. (7)

Proof: See the appendix.
After the maximum number of iterations T has been met

or the messages have converged, the final message v follows
a Gaussian distribution N (m∗v , 2m

∗
v ) with m

∗
v = dvm

(T )
u . The

equivalent average SNR is m∗v/2 and the BER is given by

BER = Q
(√

m∗v
)
, (8)

whereQ(x) is theQ-function of standard normal distribution.
We will use the derived DE formula (5) and (6) to evaluate

the performance ofMPA in the large-system limit and provide
some insights on the influence of sparsity and system load.

Fig. 2 shows the asymptotic average BER achieved by the
MPA detector for various sparsity settings (dv, df ) and fixed
load β = 1.5. The single user bound, which is the BER of
orthogonal multiple access system (OMA) system, is also
plotted for comparison. It reveals that the performance of
MPA approaches the single user bound as SNR increases.
It is observed that, for fixed system load, the performance
improves with increasing sparsity in the medium and high
SNR regime, and the improvement reduces as the sparsity
increases further. This feature is further examined in Fig. 3,
which plots the variation of the BER vs. sparsity for different

FIGURE 2. The asymptotic average BER of MPA in large-system limit for
various sparsity settings (dv ,df ) and the fixed load β = 1.5.

FIGURE 3. The variation of the asymptotic average BER vs. sparsity for
different fixed system loads and SNR = 8 dB.

fixed system loads. The performance is improved dramati-
cally when dv increases from 2 to 6 and remains approxi-
mately the same when dv is beyond 6.

Fig. 4 presents the variation of BER vs. the system load
given SNR = 8 dB. The BER performance becomes worse as
the system load increases, as expected. Moreover, there is a
threshold of system load for each variable sparsity, beyond
which the performance deteriorates rapidly.

B. OPTIMIZATION OF SPARSITY
Denote Pe as the average BER performance of MPA detec-
tor in the asymptotic large-system limit. According to the

u(t)n→k = log

∑
i∈ζn\k
xk=+1

exp

(
−

1
2 (yn −

∑
i∈ζn

snihni√
3i
Axi)2 +

∑
i∈ζn\k

xi
2 v

(t)
i→n

)

∑
i∈ζn\k
xk=−1

exp

(
−

1
2 (yn −

∑
i∈ζn

snihni√
3i
Axi)2 +

∑
i∈ζn\k

xi
2 v

(t)
i→n

) , (4)
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FIGURE 4. The variation of the asymptotic average BER vs. system load
under SNR = 8 dB.

previous analysis, Pe is a function of df and dv when SNR is
fixed. We formulate an optimization problem that minimizes
the average BER with the constraints on the system load and
the detection complexity. The optimization problem is given
by

min
dv, df

Pe (9a)

s.t. β ≥ β0, (9b)

df ≤ d f , (9c)

dv, df ∈ N+ ≥ 2, (9d)

where β0 is the required minimum system load, and inequa-
tion (9c) gives the detection complexity constraint, because
the complexity of MPA is O(|X |df ) [15]. Constraint (9d)
means dv and df can only take positive integer values larger
than 2.With these objective function and constraints, we have
formulated a nonlinear integer programming problem.

This problem is hard to solve because no analytic expres-
sion can be derived for Pe

(
dv, df

)
, as MPA is a nonlinear iter-

ative detectionmethod. By leveraging the previous analysis of
MPA and investigating the characteristics of the problem, we
will propose an efficient algorithm to search for the optimal
solution.
Theorem 2: If we extend the feasible region to the real

domain, i.e., remove the integer constraint (9d), the optimal
solution to (9a) is obtained when constraints (9b) and (9c) are
satisfied with equality simultaneously.

Proof: Suppose there exists an optimal sparsity pair
(d ′v, d

′
f ), for which one of the following three cases is valid:

1) β ′ = β0, d ′f < d f ; 2) β ′ > β0, d ′f = d f ; 3) β ′ > β0,

d ′f < d f , where β ′ =
d ′f
d ′v
.

For case 1), keep β ′ fixed and increase (d ′f , d
′
v) to

(d (1)f , d (1)v ) so that d (1)f = d f . This will improve the detection

performance, i.e., Pe(d
(1)
v , d (1)f ) < Pe(d ′v, d

′
f ), so that (d ′v, d

′
f )

is not optimal. For case 2), decrease β ′ by increasing d ′v so that
the detection performance is improved. For case 3) we can

TABLE 1. Proposed algorithm for design of optimal sparsity.

verify that (d ′v, d
′
f ) is not optimal in a similar manner. Thus

the proposition is true.
When the integer constraint is added, the optimal spar-

sity pair may not be the point that satisfies constraints (9b)
and (9c) with equality any more, but it will be close to the
optimal value. Based on this observation, an algorithm is
proposed in TABLE 1, where bzc means getting the largest
integer smaller than or equal to z. The algorithm starts from
the integer point nearest to the boundary of the feasible
region and searches along the descent direction of objective
function. The total number of points possible to be searched is
evaluated to be (d (1)f − 2)(d (1)v ). Therefore, the complexity of

the algorithm isO
(
(d f − 2)b d f

β0
c

)
. Since the searching space

is limited, the algorithm will converge after a few loops. In
each loop, the algorithm can search all the points superior to
the current one in the feasible region. Thus the solution of the
algorithm is optimal.

We will give the optimization results for various configu-
rations of constraint parameters.
Result 1: Given SNR = 8dB and the system load demand

β0 = 1.5, the optimal sparsity under various d̄f settings is
presented in TABLE 2.
Result 2: Given SNR = 8dB and the complexity constraint

parameter d̄f = 6, the optimal sparsity under various load β0
is presented in TABLE 3.

IV. SPARSE SEQUENCES DESIGN
Based on the large-system limit analysis, in the following,
the optimal sparse sequences that optimize the performance
of MPA detector is designed in a systematically hierarchical
way, as illustrated in Fig. 5. First, the dimensions of the
matrix are determined and the sparse structure is constructed
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FIGURE 5. The schematic diagram of the proposed hierarchical scheme for the sparse sequences design.

TABLE 2. The optimal sparsity under various d̄f , SNR=8 dB, β0 = 1.5.

TABLE 3. The optimal sparsity under various load, SNR=8 dB, d̄f = 6.

given the target girth. This step gives the indicator matrix.
Then, the values of nonzero entries are designed with the
aim of maximizing the minimum Euclidean distance of the
transmitted vector, to optimize the detection performance.

A. SPARSE STRUCTURE DESIGN
Given the variable and function node sparsity, the next step
is to design the sparse structure that gives the position of
nonzero entries in the matrix. This is performed under the
condition of limited dimension, which may lead to cycles
in the factor graph. The MPA over cycle-free factor graphs
provide optimal detection, but cycles especially small cycles
deteriorate the performance of MPA. Hence it is necessary to
mitigate the influence of the cycles. The girth of a factor graph
is defined as the length of the smallest cycle in the graph, and
the smaller the girth, the worse the performance will be.

To guarantee the performance, a tolerable girth is set for
this procedure and the goal is to construct the factor graph
with girth meeting the requirement from an ensemble of
factor graphs given the sparsity.

The problem of constructing sparse factor graphs was
widely researched in LDPC [19]. Typical LDPC construction
methods is introduced as follows. Gallager’s construction
is based on a banded structure in check matrix with ran-
dom submatrices. There is no guarantee that small cycles
are not present. Progressive edge growth (PEG) is a graph
based method, where edges are added to the factor graph

progressively in an edge-by-edge manner, so as to maximize
the local girth at the current variable node. Thus, PEGmethod
avoids the occurrence of small cycles [20], and it is adopted in
this paper to generate the indicator matrix, given the sparsity.

The following proposition gives the range of the number
of resources so as to satisfy the girth requirements with the
given sparsity.
Theorem 3: Consider a regular indicator matrix with vari-

able sparsity dv and function sparsity df . Given the desired
girth g, the number of rows in the matrix, denoted by N , is in
the interval [Nl,Nu) where

Nl =
[(df − 1)(dv − 1)]

g−2
4 − 1

1− dv
df (dv−1)

+ 1,

Nu =
[(df − 1)(dv − 1)]

g
2 − 1

df −
df
dv
− 1

(10)

Proof: The girth g is lower bounded and upper bounded
by g ≥ 2(btc + 2) and g ≤ 4btc + 2, respectively [20] where

t =
log(Ndf −

Ndf
dv
− N + 1)

log[(dv − 1)(df − 1)]
− 1. (11)

Therefore we have the bound for t given by

g− 2
4
≤ t <

g
2
− 1. (12)

Substituting (11) into (12) and solving (12), we can obtain the
lower and upper bound given in (10).

There are actually multiple factor graphs satisfying the
girth requirement. We will select the one with minimum
dimension in order to make the system more flexible. The
algorithm to generate the optimal sparse structure is listed
in TABLE 4.

The following example gives the constructed indicator
matrices, denoted by G(dv,df ),g, given the target girth g and
sparsity (dv, df ).
Result 3: Given (dv, df ) = (2, 3), if we set the target girth

g = 6, the indicator matrix is

G(2,3),6 =


1 0 1 0 1 0
1 0 0 1 0 1
0 1 1 0 0 1
0 1 0 1 1 0

, (13)
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TABLE 4. Algorithm for the construction of optimal indicator matrix.

if we set the target girth g = 8, the indicator matrix is then

G(2,3),8

=



1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 1 0 0 0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0 0 1
0 0 0 1 0 0 1 0 0 0 1 0


.

(14)

B. NONZERO ENTRY VALUE DESIGN
This section addresses the problem of choosing the values
of nonzero entries in the matrix S for the best detection
performance. The distance spectrum, related to the matrix
and the constellation alphabet, determines the performance of
optimal detection. The distance between two arbitrary trans-
mitted vectors x1, x2 ∈ X is defined by D = ‖AS(x1 − x2)‖.
Let 1X = {0,±2} and 1XK be the set of length K vectors
with entries taken values from 1X . The minimum distance
is thus given by

Dm = min
1x∈1XK ,1x 6=0

D(S,1x).

D(S,1x) =

√√√√√ N∑
n=1

∣∣∣∣∣
K∑
k=1

1
√
3k

Asnk1xk

∣∣∣∣∣
2

(15)

Since constant-modulus value is in favor of implementa-
tion, we assume the nonzero entries snk = ejθ , θ ∈ [0, 2π )
for hnk = 1 and denote S as the matrix set with such unit-
modulus value. Particularly, the BER is approximately pro-
portional to e−Dm at high SNR. Therefore, given the indicator
matrix, we design the optimal matrix with the maximum
minimum distance.

However, finding the optimal matrix is generally an
intractable problem with high complexity. The following
proposition provides a method of reducing the size of search-
ing space.

Proposition 1: ([16],Theorem 3) Let G be the indicator
matrix with cycles in the corresponding factor graph and
denote E as the edge subset that after delating the edges
inside, the graph becomes a tree. The optimal matrix with
the maximum minimum distance is in the subset {S|snk =
ejθk , θ1 = 0, θ2, · · · , θK ∈ [0, π2 ) for en,k ∈ Ē and
snk = ejθnk , θnk ∈ [0, 2π ) for en,k ∈ E}.

Nevertheless, it is still complicated to search for the opti-
mal matrix when G is of relatively large dimension or spar-
sity. To simplify the problem, an efficient way is to limit
the non-zero entries of each row of S to take values from
the same finite constellation, represented by {ai}, and the
size of the constellation equals to the function sparsity df .
Specifically, non-zero entries of each row take distinct values
from {ai}, i = 0, 1, · · · , df − 1. Furthermore, let {ai} satisfy
the row-wise unique decodability requirement, that is for two
distinct transmitted vector x1, x2 and x1 6= x2, Sx1 6= Sx2
element-wisely, which guarantees that S is uniquely decod-
able. A empirically good design based on extensive simula-
tion is [15]

ai = exp (j
2π
C
i), i = 0, 1, · · · , df − 1, (16)

where C = 4df
gcd (2,df )

is chosen to get good distance spectrum.
Let S(dv,df )(N ,K ) represent the designed N × K multiple-

access matrix with sparsity (dv, df ). In the following, a simple
example is given to demonstrate the design procedure.
Example 1: Setting β0 = 1.5, d̄f = 3 and given SNR=8dB,

the optimal sparsity is (2, 3) according to TABLE 1. Then
let the target girth g = 6 and the constructed optimal indi-
cator matrix is shown by (13). The value constellation is
ai = exp (jπ6 i), i = 0, 1, 2 according to (16). Thus the
constructed matrix is

S(2,3)(4,6)=
1
√
2


1 0 ej

π
6 0 ej

π
3 0

1 0 0 ej
π
6 0 ej

π
3

0 1 ej
π
6 0 0 ej

π
3

0 1 0 ej
π
6 ej

π
3 0

. (17)

Other matrices for various parameter settings can be con-
structed in a similar way.

V. NUMERICAL RESULTS AND DISCUSSION
In this section, we simulate the BER performance of the
designed sparse sequences under different conditions. Firstly,
we will depict the performance of MPA for AWGN channel
and investigate the influence of constraints.

Fig. 6 presents the performance of three sparse matrices
designed with various complexity parameter d̄f , identical
system load β0 = 1.5 and target girth g = 6. The single
user bound is provided as a benchmark, as the optimal per-
formance for OMA. It can be seen that the detection com-
plexity can be traded for better performance approaching the
single user bound in high SNR regime. Our NOMA scheme
using the designed matrices S(3,5)(48,80) and S(4,6)(228,342) can
accommodate 50% more users than OMA scheme with a
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FIGURE 6. The average BER under matrices with various d̄f , the same
β0 = 1.5 and g = 6.

FIGURE 7. The average BER under matrices with various β0, the same
d̄f = 6 and g = 6.

performance loss of only about 0.07dB at BER = 10−5 over
the single user bound.

The performance of sparse matrices for various system
loads is shown in Fig. 7 for the same complexity parameter
and target girth. The increasing load incurs performance loss
and especially, increasing the load from 2 to 2.5 aggravates
the loss, which is also demonstrated in Fig. 4. Despite the high
load, S(3,6)(78,156) achieves an excellent BER performance,
almost as good as S(4,6)(228,342) at high SNR.

Fig. 8 illustrates the performance of sparse matrices for
various girths when β0 = 1.5 and d̄f = 3. Note that not all
girth setting can obtain corresponding regular sparse matrix,
for example for sparsity (2, 3), g = 8 regular sparse matrix
cannot be found. Given the sparsity, girth influences the
dimension of the matrix and the optimality of MPA detection.
It shows that the performance of S(2,3)(48,72) and S(2,3)(12,18)
have very small gap but are better than S(2,3)(4,6). This implies
that large girth improves the performance, but the impact
becomes weaker as girth increases.

FIGURE 8. The average BER under matrices with various girth, the same
β0 = 1.5 and d̄f = 3.

FIGURE 9. The average BER in Rayleigh fading channel when the rates of
various schemes are identical.

Assuming perfect channel state information at the receiver,
we simulate the performance of the proposed scheme over
Rayleigh fading channel. Fig. 9 gives the average BER per-
formance of S(4,8)(348,696) and S(3,6)(78,156) with the system
load β = 2. The performance of the NOMA scheme in [7]
with also 200% overload and OMA with QPSK modulation
are provided for comparison. It reveals that the proposed
NOMA scheme outperforms the other two while achieving
the same spectral efficiency. It can be observed that the
proposed NOMA scheme is able to obtain the diversity gain
in fading channel through spreading the signal over several
resources. The diversity gain the NOMA scheme can obtain is
approximately the same as the designed variable sparsity. The
theoretical BER of OMA-QPSK with diversity gain being 3
and 4 are also plotted to verify the observation.

VI. CONCLUSION
In this paper, we consider the NOMA with sparse multiple-
access sequences, so as to leverage the message passing
algorithm (MPA) to largely reduce the practical complexity
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of MUD. Particularly, the optimal sparse sequences that opti-
mize the performance of MPA detector have been investi-
gated. To make the problem tractable, the optimal sparse
sequences are designed in a systematically hierarchical way.
The optimal sparsity of sequences is analyzed by minimiz-
ing the average BER in the asymptotic large-system limit.
On this basis, the sparse structure is constructed given the
target girth and then the values of nonzero entries are chosen
with the aim of maximizing the minimum distance. Simu-
lation results have shown the detection performance of the
designed sparse sequences in both AWGN and Rayleigh fad-
ing channel. It shows that by careful choice of parameters,
the performance of the sparse NOMA schemes can approach
the single user bound at high SNR while supporting system
overload. The superiority of the proposed scheme in Rayleigh
fading channel due to the ability of obtaining diversity gain
is revealed.

Appendix
Proof of Theorem 1
According to (3), v is equal to the sum of the incoming
messages from other connected function nodes, denoted by
uj, j = 1, · · · , dv − 1, i.e.,

v =
dv−1∑
j=1

uj. (18)

Since uj’s are i.i.d. and have the same mean, the mean of v
at the t-th iteration is updated as

m(t)
v = (dv − 1)m(t−1)

u . (19)

To calculate mu, Gaussian approximation for interference
is exploited. Specifically, the signal received at resource n can
be written as

yn =
snkhnk
√
3k

Axk + znk , (20)

where znk =
∑

i∈ζn\k

snihni√
3i
Axi + wn contains interference and

Gaussian noise. When dv is large enough, the central limit
theorem works; then znk approximately follows a Gaussian
distribution N (µz, σ 2

z ) with

µz =
∑
i∈ζn\k

snihni
√
3i

AE(xi), (21)

σ 2
z =

∑
i∈ζn\k

|sni|2|hni|2

3i
A2Var(xi)+ 1, (22)

where E(xi) and Var(xi) denote mean and variance of xi
respectively, written as

E(xi) =
evi→n − 1
evi→n + 1

, (23)

Var(xi) =
4evi→n

(evi→n + 1)2
. (24)

Therefore, the message u(t)n→k reduces to

u(t)n→k =
2

σ
2(t)
z

s∗nkh
∗
nk

√
3k

A(yn − µ(t)
z ). (25)

Given snk , hnk and yn, taking the mean of (25) over v with
distribution N (mv, 2mv), we obtain (we omit (t) for brevity)

mu(S,H, yn) =
2s∗nkh

∗
nk

√
3k

A
[
Ev(

1
σ 2
z
)yn − Ev(

µz

σ 2
z
)
]
. (26)

For all +1 input, we have yn ∼ N (
∑
i∈ζn

snihni√
3i
A, 1). Note that

the nonzero entries of S are i.i.d variables with zero mean and
unit variance, and hnk is either equal to 1 or follows Gaussian
distribution with zero mean and unit variance. Taking the
expectation over the randomness of S,H and yn, the first term
and the second term in the right of (26) respectively equal to

E
[
2s∗nkh

∗
nk

√
3k

AynEv(
1
σ 2
z
)
]
=

2A2

dv
Ev
(

1
αVar(xi)+ 1

)
, (27)

E
[
2s∗nkh

∗
nk

√
3k

AEv(
µz

σ 2
z
)
]
= 0. (28)

Substituting (27) and (28) into (26), we can obtain (5).
To begin with, because of no message from the observed
signal, let E(xi) = 0,Var(xi) = 1 to obtain the initial
condition.
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