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ABSTRACT In this paper, we present the application of a projective geometry tool known as conformal
geometric algebra (CGA) to transmission line theory. Explicit relationships between the Smith Chart,
Riemann Sphere, and CGA are developed to illustrate the evolution of projective geometry in transmission
line theory. By using CGA, fundamental network operations, such as adding impedance, admittance, and
changing lines impedance can be implemented with rotations, and are shown to form a group. In addition,
the transformations relating different circuit representations, such as impedance, admittance, and reflection
coefficient are also related by rotations. Thus, the majority of relationships in transmission line theory are
linearized. Conventional transmission line formulas are replaced with an operator-based framework. Use of
the framework is demonstrated by analyzing the distributed element model and solving some impedance
matching problems.

INDEX TERMS Transmission lines, network theory, network design, geometry, applied mathematics.

I. INTRODUCTION
A. CONTEXT AND MOTIVATION
Complex numbers are ubiquitous in science and engineering
mainly because they provide a powerful way to represent
and manipulate rotations. Despite their usefulness, complex
numbers are limited to rotations in two-dimensions. This is a
serious drawback given that many problems in physics and
engineering are inherently multi-dimensional. As a work-
around, most high-dimensional problems are solved using
matrices of complex numbers, effectively modeling a high-
dimensional space using sets of 2D sub-spaces. While an
amazing set of problems have been tackled using this tech-
nique, the solutions can be overly complicated and often
miraculous. Furthermore, it produces theories and models
that are difficult to understand and extend.

A better approach might be to use a high dimensional
algebra for high dimensional problems. For it stands to reason
that if the ability to efficiently handle rotations in two dimen-
sions has been so successful in science and engineering,
then a similar ability in higher dimensions should be even
more so.

B. PREVIOUS WORK
Projective geometry has been used as a conceptual tool
to generate various impedance charts since the 1930’s [1].
Several such charts, including the Smith Chart, can
be constructed using stereographic projection onto the

Riemann Sphere. Although it has been known to microwave
engineers for over 50 years, the Riemann sphere continues
to spark interest [2]. Unfortunately, the inability of complex
algebra to handle rotations in three-dimensional space makes
the Riemann Sphere an impractical tool. In order to make
use of projective geometry, a higher algebra is required.
Quaternions can be used for three-dimensional applications
such as the Riemann sphere, but they do not scale to four or
higher dimensions. In addition, neither quaternions nor com-
plex numbers are adequate tools for non-euclidean geometry,
which is the natural geometry for several parts of transmission
line theory [3].

Geometric Algebra (GA) subsumes complex algebra,
quaternions, linear algebra and several other independent
mathematical systems. Additionally, GA supports both arbi-
trary dimensions and non-euclidean geometries, making it an
attractive tool for applications in transmission line theory.
The usage of geometric algebra in electrical engineering
was pioneered by E. F. Bolinder in the 1950s, and contin-
ued throughout his career [4]–[6]. Unfortunately, it does not
appear that anyone directly extended his work. We attribute
this to the complexity and specialization of his applications
combined with the rapid development of the geometric alge-
bra during his time. However, recently there has been a
resurgence of interest in using GA in electrical engineering
problems, as demonstrated by the invited cover article of the
2014 ‘‘Proceedings of the IEEE’’ entitled ‘‘Geometric
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Algebra for Electrical and Electronic Engineers’’ [7]. In part,
this interest is due to the publication of application-oriented,
comprehensive texts on the subject [8], [9], making geometric
algebra more accessible to scientists and engineers than ever
before.

C. OUTLINE
In this paper we present the application of the pro-
jective geometry tool known as Conformal Geometric
Algebra (CGA) to transmission line theory. CGA is a spe-
cific construction in GA which is used to linearize confor-
mal transformations. Although somewhat foreign to RF and
Microwave engineers at this time, CGA has been successfully
applied in the fields of computer graphics [10]–[12] and
robotics [13].

Section II begins with a geometric interpretation of com-
plex numbers, as used in linear system theory. This example
is given to provide context and demonstrate that projective
geometry is implicit in the conventional theory currently used
by engineers. Once these observations are put forth, trans-
lation from complex algebra into geometric algebra begins.
First, complex numbers representing values of reflection
coefficient are translated into vectors of a two-dimensional
geometric algebra. Next, the Smith Chart is mapped onto the
Riemann Sphere using stereographic projection in Section III.
The sphere is used in Section IV to demonstrate that the
different circuit representations are related by rotations of
the sphere. Section V provides some example applications
of the sphere. Various shortcomings associated with the
Riemann Sphere are identified and this motivates the use
conformal geometric algebra (CGA). The basics of CGA are
briefly described and then its application to transmission line
theory is presented in Section VI. This approach leads to the
identification of a group structure present in the discrete
circuit elements, and depicts their actions on the Smith
Chart. The discrete element operators are used in Section VII
to explore the distributed element model of a transmission
line. It is shown that mismatched transmission lines produce
non-euclidean rotations which encircle their characteristic
impedance, and these are uniquely represented with CGA.
Next, some simple impedance matching circuits are ana-
lyzed in Section VIII for demonstration. Section IX presents
an argument for the adoption of CGA transmission line
theory. This section can be read out of order, but is pre-
sented last so that some of the claims may be appreci-
ated. Finally, the results are compiled in Section X and
discussed.

Although a brief introduction to GA is given, fluency in
geometric and conformal geometric algebra requires addi-
tional study. Comprehensive introductions to these sub-
jects is beyond the scope of this article, and have been
adequately presented elsewhere [8], [9], [14]. We hope
that the results and arguments put forth incite a curiosity
and desire in those unacquainted with the subject to learn
more.

FIGURE 1. The effect of a linear system on a harmonic input signal. The
original solid sinusoid is phase shifted by θ and amplitude scaled by α,
producing the dashed sinusoid.

II. GEOMETRIC ALGEBRA AND PROJECTIVE GEOMETRY
A. COMPLEX NUMBERS LINEARIZE PHASE SHIFTS
Engineers use complex numbers in a variety of creative ways.
One of the most fruitful applications of complex numbers is
to linearize the operation of phase shifting harmonic signals.
This technique is used in linear system analysis, where arbi-
trary signals are represented by sums of harmonic signals.
As is well known, given a harmonic excitation applied to a
linear system, the response will be a harmonic signal of the
same frequency but with a possible change in amplitude and
phase shift. The effect of these transforms are represented
graphically in Figure 1. From an operational perspective,
linear time invariant (LTI) systems are operators limited to
transforms of phase scaling and amplitude shifting, when
acting upon harmonic signals.

FIGURE 2. Rotating a helix about the longitudinal axis creates a phase
shift in the projected sinusoid.

Since the effect of all linear systems is limited to these two
transformations, it pays to represent them as concisely as pos-
sible in the algebra. The scaling operation is implemented by
scalar multiplication, but the shift operation requires a trick.
Referring to Figure 2; first, a new dimension (e2) is added
orthogonal to the existing two, producing 3-dimensional
space. Next, the sinusoid is modeled as the perpendicular
projection of a helix. Given this construction, it can be seen
that rotating the helix about its longitudinal axis produces
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a phase shift in the projection of the sinusoid. Thus, we have
replaced a shift operation with a rotation in a plane. Finally,
by recognizing that a linear systemmay be represented by the
transformation itself, the sinusoid may be forgotten, and the
rotation and scaling information retained.

B. THE NEED FOR HIGHER DIMENSIONS
In microwave engineering, and other disciplines rooted in
wave-mechanics, the mathematical operations required to
describe a system extend beyond shift and scale. However,
most of the required operations for transmission line analysis
are Möbius transformations. Therefore, the ability to repre-
sent Möbius transformations with rotations should provide
a great increase in algebraic efficiency. As has been well
documented by David Hestenes and others [8], [9], [15], this
can be done using Conformal Geometric Algebra (CGA).
Frequently, CGA is introduced by way of stereographic pro-
jection [8]. This approach provides a transitional geometry
between the original two-dimensional euclidean space and
the four-dimensional Minkowski space of CGA. Addition-
ally, it illustrates how the Riemann sphere naturally fits into
the scheme. The relationship of the algebras from the com-
plex plane to CGA may be expressed,

C H⇒ G2︸ ︷︷ ︸
Smith Chart

−→ G3︸︷︷︸
Riemann Sphere

−→ G3,1︸︷︷︸
CGA

. (1)

Before stereographic projection into three-dimensional
space can be done efficiently, Geometric Algebra has to be
adopted. Therefore, we start by translating complex algebra
into geometric algebra, and then move onto the Riemann
Sphere and its relationship to the Smith Chart.

C. INTRODUCTION TO GEOMETRIC ALGEBRA
Geometric Algebra introduces new types of mathematical
objects and operators beyond those defined by complex
or vector algebra. In this section we introduce some basic
concepts, but move on quickly to the application at hand.
A good introduction to GA aimed at electrical engineers can
be found in the article by Chappell et. al. [7], but those
seeking a comprehensive introduction to GA can refer to the
first two chapters of [8] or the first part of [9].

Given a set of vectors which span a space, the elements
of the corresponding geometric algebra are generated by
employing a product known as the outer product, denoted
with a wedge:∧. The outer product between two non-parallel
vectors produces a new kind of element called a bivector.
Just as vectors represent directed length, bivectors represent
directed areas. In a similar way, the outer product of three
vectors creates a trivector, four vectors create a quadvector,
and so on. An illustration of these elements and the vectors
which generate them is shown in Figure 3. Various N-vectors
can be combined to form a single multivector, analogous
to the way complex numbers combine real and imaginary
parts. Geometric concepts such as quantities, operators, and
subspaces are represented by objects within the algebra and
this produces clarity and concision.

FIGURE 3. Interpretation of some elements within Geometric Algebra,
highlighting their creation through the use of the outer product. From left
to right there is; a scalar, vector, bivector and tri-vector.

Many results of Geometric Algebra follow intuitively once
commutativity it abandoned. Start by assuming that the
square of a vector is a scalar and that the addition of two
vectors produces another vector. We can then write

(a+ b)2 = a2 + b2 + 2 (ab+ ba). (2)

So the quantity (ab+ ba) must be a scalar. Define this
symmetric product as the inner product, which is a familiar
concept.

a · b ≡
1
2
(ab+ ba) (3)

Next, separate the product of two vectors into symmetric
and asymmetric parts

ab =
1
2
(ab+ ba)︸ ︷︷ ︸

symmetric

+
1
2
(ab− ba)︸ ︷︷ ︸

asymmetric

. (4)

Since commutativity is not assumed, we are forced to
interpret the asymmetric part, so define the outer product
to be

a ∧ b ≡
1
2
(ab− ba). (5)

Given a ∧ a = 0, the outer product can be interpreted as
the measure of collinearity, analogous to the inner product
as a measure of perpendicularity. The outer product can be
interpreted as the oriented area swept out by sliding one
vector along the other, as shown in Figure 3. Combining both
inner and outer product into a single balanced product known
as the geometric product gives the algebra substantial power
and allows for vector inersion. The three products are related
by the fundamental equation,

ab = a · b+ a ∧ b. (6)

The workings of GA are best understood with some exam-
ples, so the next section introduces the geometric algebra of a
plane. This algebra will be used to translate complex numbers
into our model.

D. THE PLANE
Given a two-dimensional GA with the orthonormal basis,

ei · ej = δij. (7)

The geometric algebra consists of scalars, two vectors, and
a bivector,

{ α︸︷︷︸
scalar

, e1, e2︸ ︷︷ ︸
vectors

, e1 ∧ e2︸ ︷︷ ︸
bivector

}. (8)
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FIGURE 4. Geometric Algebra for a plane, illustrating the basis elements.
e1 and e2 are vectors, and e1 ∧ e2 is a bivector.

An illustration of the algebra and it’s basis is shown
in Figure 4. The highest dimensional element in a geometric
algebra is commonly referred to as the pseudoscalar, which
in this case is a bivector. Note that due to the orthogonality, the
geometric product between the two basis vectors is equivalent
to the outer product,

e1e2 = e1 · e2 + e ∧ e2 = e1 ∧ e2. (9)

And since the outer product is asymmetric, interchanging
the order of a series of vectors in a product changes it’s sign.

e1e2 = −e2e1 (10)

Using these properties it can be seen that left multiplying
a vector by the bivector rotates it clockwise 90◦.

(e1 ∧ e2) e1 = e1e2e1 = −e21e2 = −e2 (11)

Right multiplying a vector by the bivector rotates it
counter-clockwise by 90◦.

e1 (e1 ∧ e2) = e1e1e2 = e21e2 = e2 (12)

And, the bivector squares to −1.

(e1 ∧ e2)2 = e1e2e1e2 = −1 (13)

Because of this property, the bivector can be used to replace
the unit imaginary. For concision, bivector elements will be
written with paired subscripts as such,

e12 ≡ e1e2. (14)

E. PROJECTIONS, REFLECTION, AND ROTATIONS
A major advantage of GA is that operators are represented
as elements within the algebra. Since the geometric product
between two vectors contains all the information regarding
their relative directions, it can be used to define projections.
By multiplying the vector awith the square of a unit vector n,
it can be decomposed into parts parallel and perpendicular to
n.

a = an2 = (an) n = (a · n) n︸ ︷︷ ︸
a‖

+ (a ∧ n) n︸ ︷︷ ︸
a⊥

(15)

The parallel component is the projection of a onto n, while
the perpendicular component is the rejection of a from n. This
formula can be used in the computation of reflections. The
reflection of a vector a in the hyperplane perpendicular to the
normalized vector n is

a′ = −nan. (16)

To prove that this is a reflection, decompose a into parts
parallel and perpendicular to n, and note that the parallel com-
ponent commutes with n while the perpendicular component
anti-commutes with n.

−nan = −n
(
a⊥ + a‖

)
n

= −na⊥n− na‖n

= n2a⊥ − n2a‖
= a⊥ − a‖ (17)

Which is a reflection in the hyperplane normal to n.
Rotations can be constructed by cascading two reflections,
but we just present the formulas directly since electrical
engineers are familiar with complex numbers. Because e12
squares to −1, we can use Euler’s identity to write,

Z = eθe12 = cos θ + sin θe12. (18)

This is an example of a rotation operator known as a
rotor in GA, and it acts through the geometric product. For
example, to rotate the vector e1 clockwise by angle θ we form

Ze1 = eθe12e1 = cos θe1 − sin θe2. (19)

While this formula works in two dimensions, rotations
in three dimensions and above require a double-sided, half-
angle formula so it is best to adopt it from the beginning.
The same rotation expressed with the double-sided formula
becomes,

e
θ
2 e12e1e−

θ
2 e12 = cos θe1 − sin θe2. (20)

A frequently used algebraic operation is to reverse the
order of all vectors within a product, known as reversion and
representedwith a tilde (~). The reverse of a rotor is computed
to be,

Z̃ = cos θ + sin θ ˜e12 = cos θ − sin θe12. (21)

Using this notation, the rotation of a vector a by a rotor Z
is written,

a′ = ZaZ̃ . (22)

If the rotor has a magnitude other than unity, it will affect a
scaling operation as well as a rotation. In this case, the oper-
ator is called a spinor. The next section shows how complex
numbers can be identified as spinors in a two-dimensional
geometric algebra, and mapped into vectors.

F. TRANSLATING COMPLEX NUMBERS
To keep different objects in the various algebras distinct,
we write complex numbers in bold face lower-case: z, GA
vectors in italic: z, and spinors/multivectors in uppercase
italic: Z . Scalars in all algebras are equivalent, and are repre-
sented with greek italics, α, β, unless agreement with existing
theory demands otherwise. In complex algebra there is no
distinction between rotation/dilation operators and vectors.
However, in GA, vectors are vectors and rotation/dilation
operators are spinors. Choosing which object to map a com-
plex number onto is a design choice. We choose to model
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impedance, admittance, and reflection coefficient values as
vectors, while the effects of changing domains or adding
circuit elements are modeled as spinors.

FIGURE 5. Map between the complex plane, spinor e12-plane, and
a vector plane.

The conversion from complex numbers to vectors is done
in two steps. First, complex numbers are identified as the
spinors of a two-dimensional GA. These spinors can be
transformed into vectors by choosing a reference direction.
Graphically, this can be visualized as a map between the
complex plane, the spinor plane, and the vector plane, as
illustrated in Figure 5. Given the geometric algebra for a plane
defined in the previous section, a complex number can be
directly associated with a 2D spinor in the e12-plane,

z = α + βi︸ ︷︷ ︸
complex number

H⇒ Z = α + βe12︸ ︷︷ ︸
2D spinor

. (23)

The spinor is then mapped to a vector by choosing a
reference direction. This may be done by left multiplying
with e1.

Z H⇒ e1Z = e1α + βe1e12 = αe1 + βe2︸ ︷︷ ︸
vector

. (24)

Although trivial, the need for this explicit map is useful
when translating operations on the complex numbers to their
vector equivalents. For example, complex conjugation trans-
lates to reversion of the spinor, which in turn translates into
reflection of the vector in the hyperplane normal to e2.

z† = α − βi H⇒ Z̃ = α − βe12 (25)

e1Z̃ H⇒ αe1 − βe2 = −e2ze2 (26)

Additionally, complex inversion differs from vector inver-
sion by a reflection in the hyperplane normal to e2.

z−1 =
z†

z†z
=

z†

|z|2
H⇒

Z̃
|Z |2

(27)

e1
Z̃
|Z |2
H⇒ −e2z−1e2 (28)

When a complex number is associated with a spinor,
a rotation orientation (clockwise vs counter clockwise) must
be chosen. We choose to represent rotations by the conven-
tions used in [8],

z′ = RzR̃. (29)

Given this choice, a clockwise rotation by θ in the e12-
plane is accomplished by the spinor,

R = e
θ
2 e12 . (30)

Therefore the relation between a rotation in complex alge-
bra and spinors is

z′ = e−θ jz⇒ z′ = e
θ
2 e12ze−

θ
2 e12 . (31)

The rotation orientation of complex number aligns with the
reversed rotor on the right-hand side of the formula.

III. THE RIEMANN SPHERE
A. INTRODUCTION
Solving transmission line problems in terms of reflection
coefficient is advantageous because passive devices are con-
fined to a closed space, the unit circle. This removes the
singularities produced by ideal shorts and open circuits in the
impedance or admittance domain. By overlaying the contours
of the Smith Chart onto the unit circle, the operations of
adding impedance and admittance can be handled graphi-
cally. The result is a highly efficient nomogram which can be
used to visualize and compute how various circuit elements
alter the reflection coefficient.

Extending this approach, the Riemann Sphere constrains
both passive and active devices to a closed space, the
unit sphere. More importantly, it allows the transformation
between impedance, admittance and reflection coefficient to
be accomplished through rotations. The Riemann Sphere, as
it relates to the Smith Chart, has been explored by a variety
of researchers [1], [2], [16]. However, it does not share the
widespread adoption similar to the Smith Chart. Perhaps this
is due to the increase in geometric complexity without a
sufficiently rich algebra, or perhaps because spheres are hard
to draw!

B. GEOMETRIC ALGEBRA OF THREE
DIMENSIONAL SPACE
This section introduces the geometric algebra of three dimen-
sional space so that it can be used to work with the Riemann
Sphere. Starting with an orthonormal vector basis defined by,

ei · ej = δij. (32)

The geometric algebra of space is generated and contains
the following elements,

α︸︷︷︸
1−scalar

, ei︸︷︷︸
3-vectors

, eij︸︷︷︸
3−bivectors

, e123︸︷︷︸
1-trivector

. (33)

Again, the term pseudoscalar is used to describe the high-
est dimensional blade in any geometric algebra, which in
this case is a tri-vector. An illustration of the vector and
bivector basis is shown in Figure 6. The geometric algebra can
be used to define projections, reflections, rotations, and all
other vector algebra operations, but we limit our attention to
rotations. First, note that each bivector squares to minus one,

e212 = e223 = e231 = −1. (34)
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FIGURE 6. Geometric algebra for three dimensional space, illustrating the
vector and bivector basis.

When bivectors are multiplied together they return
bivectors.

e12e23 = −e31 (35)

e12e31 = −e21 (36)

e31e12 = −e23 (37)

These multiplication rules may be recognized as those
of the quaternion algebra, and indeed quaternions are noth-
ing more than spinors of a three dimensional space. The
beauty is that rotations can be implemented in an identical
way as in two-dimensions. To demonstrate, take a vector
a = e1 + e2 + e3 and rotate it in the e12-plane by an angle θ .

a′ = e
θ
2 e12ae−

θ
2 e12 (38)

= e
θ
2 e12 (e1 + e2 + e3) e−

θ
2 e12 (39)

To compute the result the rotor can be distributed to each
component individually and then combined to form the total
result. Doing this illustrates how vectors within the plane of
rotation are affected, while vectors orthogonal to the plane
of rotation are left invariant. Computing the rotation of each
component,

e
θ
2 e12e1e−

θ
2 e12 = cos θe1 − sin θe2 (40)

e
θ
2 e12e2e−

θ
2 e12 = cos θe2 + sin θe1 (41)

e
θ
2 e12e3e−

θ
2 e12 = e3. (42)

Finally, sum the components to form the final result.

a′ = (cos θ + sin θ) e1 + (cos θ − sin θ) e2 + e3 (43)

Rotations of this sort will be used extensively in the appli-
cations to follow.

C. STEREOGRAPHIC PROJECTION
Stereographic projection onto the Riemann Sphere is a well
known procedure but we will review it to make clear our
notation and demonstrate the concision of geometric algebra.
Beginning with a plane representing the reflection coefficient
domain, the conventional contours familiar to Smith Chart
users are drawn. This plane is spanned by the orthonormal
vectors e1 and e2, as shown in Figure 7. These vectors cor-
respond to the real and imaginary components of complex
number as described in the previous section. Due to use of

s-parameters in multi-port network analysis, we label the
reflection coefficient plane the S-plane.

FIGURE 7. Vector basis set for the smith sphere.

FIGURE 8. Stereographic projection of reflection coefficient plane
(s-plane) onto Riemann Sphere. The point s in the plane is mapped to the
point p on the sphere.

From the e12−plane, an additional dimension is added
perpendicular to the existing two labeled e3 producing a
three-dimensional geometric algebra, as defined in the pre-
vious section. To eliminate the added degree of freedom,
the entire S-plane is mapped to the surface of a unit sphere
through stereographic projection, defined as follows. Let s
be a point in the S-plane and p be the corresponding point
lying on the surface of the unit sphere. A ray connecting the
projection point e3 to the point in the S-plane ‘s’ is drawn,
as illustrated in Figure 8. The intersection of the ray with the
surface of the sphere defines p. When |s| < 1, the ray is be
projected through the S-plane, onto the interior of the sphere.

D. PROJECTION UP TO SPHERE
The first step is to determine p given s. From Figure 8 it is
geometrically obvious that

p = e3 + λ (s− e3) , (44)

where λ is some scalar. The condition that p lie on a unit
sphere as well as orthonormal condition on e3 provides the
following constraints,

p2 = 1 e23 = 1 e3 · s = 0. (45)

Enforcing these conditions allows λ to be found,

p · p = (e3 + λ (s− e3)) · (e3 + λ (s− e3))

1 = 1+ λ2
(
s2 + 1

)
− 2λ

λ =
2

s2 + 1
. (46)
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Putting this back into eq (44) provides the functional rela-
tionship for a point on the sphere in terms of a point on the
S-plane.

p =↑ (s) ≡ e3 +
2

s2 + 1
(s− e3) (47)

Although the proof was based on geometry of mapping a
plane to a sphere, the result holds true for any dimension [8].
Equation (47) may be re-arranged to separate components in
the original plane and added dimension.

↑ (s) =
(
s2 − 1
s2 + 1

)
e3 +

(
2

s2 + 1

)
s (48)

E. PROJECTION DOWN TO PLANE
The second step in stereographic projection is to map a point
on the sphere back to a point on the plane. Begin by observing
that points e3, p, and s are collinear, as expressed by

e3 ∧ p+ p ∧ s = e3 ∧ s. (49)

FIGURE 9. Relationship of bivectors involved in stereographic projection.

This bivector equation may be illustrated by drawing
a 2D slice of the sphere defined by e3 and s, as shown
in Figure 9. Next, decompose p into components parallel and
perpendicular to e3.

p = e3 (e3 · p)︸ ︷︷ ︸
p‖

+ e3 (e3 ∧ p)︸ ︷︷ ︸
p⊥

(50)

Using this in (49),

e3 ∧
(
p‖ + p⊥

)
+
(
p‖ + p⊥

)
∧ s = e3 ∧ s

e3p⊥ + p‖s = e3s. (51)

Multiplying by e3 and solving for s, we find

s =↓ (p) ≡
e3 (e3 ∧ p)
1− e3 · p

. (52)

This formula can be interpreted as the rejection of p
from e3, normalized by a factor of (1 − e3 · p). It should be
recognized that while we have used the variable s to represent
a point on the S-plane, these formulae hold true regardless of
the interpretation of the plane.

IV. CIRCUIT TRANSFORMATIONS
Once the functional relationship between the plane and
sphere are known, operations within the plane can be trans-
lated into operations on the sphere. In this section the trans-
formations between reflection coefficient, impedance, and
admittance are shown to be implemented by rotations of
the sphere. The commutative diagram shown in Figure 10
illustrates the scheme.

FIGURE 10. Commutative diagram illustrating the purpose of
Stereographic projection.

A. S-TO-Z
Instead of immediately resorting to mathematical proof, the
relationship between reflection coefficient and impedance
can be deduced geometrically by inspecting some values in
both domains. Up-projecting the points ±1, 0, and ∞ to
the sphere gives the north/south and east/west poles mean-
ingful values. By labeling each pole with the corresponding
normalized impedance value, as shown Figure 11, a pattern
arises. The observed relationship between the s and z at the
poles suggest that these two representations are related by a
90◦ rotation in the e13-plane.

FIGURE 11. The Smith Chart mapped to the Riemann sphere. The poles in
the e13-plane labeled with values in both reflection coefficient s, and
impedance z-domains.

To test this hypothesis, start with the point ps in terms of s,

ps = e3 +
2

s2 + 1
(s− e3). (53)

Rotate the point by 90◦ in the e13 plane, producing pz.

pz = e−
π
4 e13pse

π
4 e13

= e1 +
2

s2 + 1
(−s1e3 + s2e2 − e1) (54)
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and then down-project into the plane.

z =
e3 (e3 ∧ pz)
1− e3 · pz

=
1

1− 2s1
s2+1

(
e1 +

2
s2 + 1

(s2e2 − e1)
)

(55)

Which after some tedious simplifications produces,

z =
1+ s
1− s

, (56)

proving the hypothesis. The rotor which rotates the s into z is
defined as

Rzs ≡ e−
π
4 e13 . (57)

The inverse transformation from impedance to reflection
coefficient can be found by reversing the rotation orientation,

Rsz = R̃zs = e
π
4 e13 . (58)

The subscript ordering makes sense when the rotors are
used in the sandwich formula.

pz = RzspsR̃zs = RzspsRsz (59)

Once the original point ps is transformed into
impedance pz, the plane is re-interpreted as the Z-plane.

B. Z-TO-Y
In the complex domain, impedance and admittance values are
related by complex inversion.

y = z−1 (60)

Complex inversion is a widely used transform, so it is well
known that it can be achieved through rotation of the Riemann
sphere by 180◦ about the real axis [17]. Again, this can be
deduced by up-projecting the points ±j, 0, and ∞ onto the
sphere and noticing how they move after an inversion, or
through a proof similar to the last section. However, since
this transform is well known it suffices to simply express it in
rotor form. As described in Section II-F, complex inversion
is equivalent to vector inversion followed by reflection in the
hyperplane normal to e2,

py = e2e3pze3e2. (61)

Since two reflections produce a rotation, this can be
expressed a 180◦ rotation in the e23-plane (analogous to a
rotation about the real-axis),

Rzy ≡ e2e3 = e−
π
2 e23 . (62)

Because the rotation is through 180◦, the inverse is itself.

Rzy = Ryz (63)

C. S-TO-Y
The remaining transform between admittance and reflec-
tion coefficient can be found by combining the previous two.

TABLE 1. Basis transformations, their associated generating bivectors,
and complex algebra equivalents.

The result must be a rotation because it is a combination of
two rotations.

Rsy = RszRzy = e
π
4 e13e−

π
2 e23

=

√
2
2

(1+ e13)e23

= e
−

π

2
√
2
(e23+e21) (64)

In three dimensions, taking the dual of the bivector argu-
ment gives the axis of the rotation.

(e23 + e21) e123 = −e1 + e3 (65)

Which demonstrates that this is a rotation about the
(e3 − e1)-axis. The relationships between the different circuit
representations are illustrated by the graph in Figure 12.

FIGURE 12. Graph representing of transformations relating different
domains. Each path is labeled with the respective bivector.

D. SUMMARY
To summarize, Table 1 lists the various basis transformations
and their generating bivectors, otherwise known as genera-
tors. Each is compared to the equivalent expression in com-
plex algebra.

E. ALTERNATIVE PERSPECTIVES
The Riemann Sphere model presented above leaves the pro-
jection point and plane stationary throughout the analysis,
while the projected point p is rotated about the sphere.
In doing so, it forces one to re-interpret the projection plane
each time a basis transformation is employed. A geometrical
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FIGURE 13. Intrinsic and Extrinsic models for the Riemann Sphere.
(a) Extrinsic model of the Riemann Sphere, as seen projected onto the
e13-plane. The second rotation from pz → py is about the horizontal axis.
(b) Intrinsic model of the Riemann Sphere, as seen projected onto the
e13-plane.

FIGURE 14. Intrinsic model of the Riemann Sphere in 3-dimensions.

interpretation of this extrinsic interpretation is illustrated in
Figure 13a. An alternative model is to fix a given circuit’s
position on the sphere and use different projection points and
planes when translating into different 2D sub-spaces. This
construction has the advantage that a physical circuit has a
unique position on the sphere, and can be simultaneously pro-
jected into all domains, as illustrated in Figure 13b, and 14.
The three different projection points are labeled as points of
infinity in their respective domain. In contrast to the extrinsic
model, the later interpretation may be called intrinsic model.
The terms extrinsic/intrinsic are borrowed from a the subject
of Euler angles, in which a similar dichotomy exists.

Using the intrinsic model, the different circuit representa-
tions can be seen as different basis sets, related by rotations.
Any problem should be invariant to the basis that is chosen
to frame it, and projective geometry provides this invariance.
The basis rotors found above may be for either the intrinsic or
extrinsic model. In the extrinsic model, the rotors act on the
projected points laying on the sphere. In the intrinsic model

the reversed rotors act on the projection point and plane.
The bivectors must be reversed with translating between the
intrinsic and extrinsic interpretations because the basis frame
must rotate in an opposite orientation as points on the sphere.
In the interest of simplicity and backward compatibility, we
stick to the extrinsic model for the following analysis, but
knowing that other perspective exist is useful.

V. APPLICATIONS
A. BASIC USE OF DOMAIN TRANSFORMS
To demonstrate usage of the basis rotors, an ideal short with
impedance z = 0, is transformed from the impedance domain
into the reflection coefficient domain. First, up-projecting 0
onto the sphere,

pz = ↑ (0) = −e3. (66)

Then rotate into the reflection coefficient domain,

ps = Rsze3Rzs

=
1
2
e
π
4 e13 (e3) e−

π
4 e13

= −e1. (67)

Then down project into the plane

s =↓ (ps) =↓ (−e1) = −e1. (68)

Which is the expected result. Obviously, for this trivial
example the overhead of projecting up and down outweighs
any efficiency gained from linearizion. However, once the
projective space becomes familiar there is no need start in
2D or down-project a result. For numerical applications up or
down projecting are unnecessary unless the input or output of
a given calculation is required to be translated.

B. INPUT IMPEDANCE OF A TRANSMISSION LINE
In this section we demonstrate how the domain rotors can also
be used to transform circuit operators. Specifically, the effect
of a matched transmission line is rotated from the reflection
coefficient domain to the impedance domain. Interpreting the
original e12-plane as a reflection coefficient, the action of
cascading a matched transmission line of length θ in front
of the load performs a rotation of −2θ degrees in the plane,
which may be written

p′ = eθe12pe−θe12 . (69)

For brevity, define the matched line operator acting on
s-parameters to be

Ls = Ls (θ) ≡ eθe12 . (70)

Any functional dependence on arguments, ie L(θ ), is be
dropped unless relevant to the problem. For this section,
and this section only, the operator subscripts s, z, and y are
used to denote the basis of an operator. In future sections,
the functional invariance provided by CGA makes switching
domains unnecessary and operator subscript are used for
other purposes.
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Given the operator for a matched transmission line in
reflection coefficient domain, the equivalent operator in the
impedance domain can be found by employing the basis
rotors on the input and output quantities. This is done in three
steps; first, transform the input quantity from impedance to
reflection coefficient, apply the known Ls operator, and then
transform back to impedance. The mapping is depicted in the
commutative diagram shown in Figure 15.

FIGURE 15. Commutative diagram illustrating how operators are
transformed between different basis.

To illustrate, the computational flow is described
step-by-step.

1) Take the original impedance vector z and project it onto
the sphere yielding pz.

pz = ↑(z) (71)

2) Transform to s-parameters with the basis rotation.

ps = RszpzRzs (72)

3) Apply the matched transmission line operator Ls,

p′s = LspsL̃s. (73)

4) Transform back to impedance space.

p′z = Rzsp′sRsz (74)

Since all of these operators are rotations, the composite
effect is also a rotation. To determine the net result, the series
of operations may be written in a single expression,

p′z = Rzs

apply line︷ ︸︸ ︷
Ls RszpzRzs︸ ︷︷ ︸

Z2S

L̃s Rsz

︸ ︷︷ ︸
S2Z

. (75)

Using the properties of reversion, equation (75) may be re-
written as,

p′z = (RzsLsRsz) pz (RzsLsRsz)
∼ . (76)

Which gives the relationship between the matched line
operator in the impedance and reflection coefficient,

Lz = RzsLsRsz. (77)

Thus, circuit operators are transformed into different rep-
resentations just like circuit quantities, a property known as

covariance [9]. This is a major conceptual and computational
advantage of using geometric algebra for projective geome-
try. To determine Lz the rotors are expanded and simplified,

Lz = RzsLsRsz
= e−

π
4 e13eθe12e

π
4 e13

= cos (θ)+
1
2
(1− e13) sin θe12 (1+ e13)

= cos (θ)− sin θe23
= e−θe23 . (78)

The effect of a series transmission line in the impedance
domain is a rotation in the e23-plane. Interpreting the result
geometrically, it is obvious that rotating the e12-plane by 90◦

about the e2-axis produces e23, so the proof is not really
neccesary. Note that when θ = π

2 , a series transmission line
is equivalent to the basis transformation between impedance
and admittance. The matched line operator can be translated
into admittance similarly,

Ly (θ) = RyzLz (θ)Rzy
= e

π
2 e23e−θe23e−

π
2 e23

= e−θe23

= Lz (θ). (79)

This shows that a matched transmission line effects
impedance and admittance in an identical way. By combining
the Riemann sphere with the power of rotors, expressions
provided by the conventional two-dimensional theory are
substantially simplified. Additionally, the functional form of
the circuit is not dependent on the domain in which it is inter-
preted, which removes the need to constantly switch domains
within a single problem. In other words, the framework is
domain-invariant. A comparison of the matched transmission
line bivectors and their corresponding formula in the conven-
tional two-dimensional theory is shown in Table 2.

TABLE 2. Comparison of the generators representing a matched
transmission line compared to their complex algebra equivalents.

C. PROBLEMS, AND THE NEED FOR
ANOTHER DIMENSION
It has been shown that by employing the Riemann sphere,
the three major circuit representations may be related through
rotations, producing a geometrical relationship between
impedance, admittance and reflection coefficient. Addition-
ally, the start of an operator-based approach to circuit theory
has been demonstrated by mapping the effects of a matched
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transmission line onto the sphere and rotating it into the
impedance domain. Throughout the developments, geomet-
ric algebra provides the necessary machinery to efficiently
discuss these geometric concepts algebraically.

While the developments thus far are not without benefit,
the system is missing several important features required for
practical usage. Rotations and domain transformations are
linearized but common operations such as addition and scal-
ing are awkward to accomplish on the sphere. The solution
to this problem is to add an additional dimension of negative
signature, producing a geometry that is known as Conformal
Geometric Algebra (CGA) [8]. The relationship between
the geometric algebras used for the Smith Chart, Riemann
Sphere, and Conformal models are illustrated below.

C H⇒ G2︸ ︷︷ ︸
Smith Chart

−→ G3︸︷︷︸
Riemann Sphere

−→ G3,1︸︷︷︸
CGA

(80)

All of the basis transformations, and transmission line
rotors developed on the Riemann sphere are directly re-usable
in the CGA framework, so no work is lost by moving
into CGA.

VI. CONFORMAL GEOMETRIC ALGEBRA AND
TRANSMISSION LINE THEORY
A full introduction to CGA is out of the scope of this paper.
However, the fundamentals of CGA have been sufficiently
explained by numerous other authors [8], [9], [15], [18], and
we direct the unacquainted to these resources. Our introduc-
tion of CGA by way of stereographic projection is similar to
that given in [8].

A. MAPPINGS
As with stereographic projection, the purpose of CGA is to
map vectors into a space of higher dimension to simplify
certain operations. For our purposes, CGA is used to convert
Möbius transformations into rotations. Building off the stere-
ographic projection model, a vector in a plane is mapped onto
a point on the Riemann Sphere by,

p =
(
x2 − 1
x2 + 1

)
e3 +

(
2

x2 + 1

)
x. (81)

Add to this a new dimension of negative signature rep-
resented by the vector e4, producing a four-dimensional
vector X .

X =
(
x2 − 1
x2 + 1

)
e3 +

(
2

x2 + 1

)
x + e4 (82)

Because e24 = −1 the vector X is null, meaning X2
= 0.

Therefore, X and λX represent the same point, a property
known as homogeneity. Exploiting this property, X can be
simplified by multiply by

(
x2 + 1

)
yielding,

X =
(
x2 − 1

)
e3 + 2x +

(
x2 + 1

)
e4. (83)

At this point we have an orthonormal vector basis,

e21 = e22 = e23 = −e
2
4 = 1. (84)

Those familiar with relativity will recognize this geometry
as that of space-time. The basis generates a geometric algebra
containing the following blades.

α︸︷︷︸
1−scalar

, ei︸︷︷︸
4-vectors

, eij︸︷︷︸
6−bivectors

, eijk︸︷︷︸
4-trivectors

, I︸︷︷︸
1-pseudoscalar

(85)

Here the e12-plane is identified as the original 2D space, and
e34-plane contains the added dimensions. A consequence of
the vector basis having a mixed signature is that any bivector
containing e4 will have a positive square. This expands the
concept of rotations to include hyperbolic rotations. Applying
Euler’s identity with a bivector of positive square yields,

eθe14 = cosh+ sinh θ. (86)

The e34-plane plays a special role and is known as the
Minkowski plane, commonly labeled E0,

E0 ≡ e3 ∧ e4. (87)

It is convenient to further define a null basis.

eo =
1
2
(e4 − e3) (88)

e∞ = e4 + e3 (89)

These two vectors represent the points of infinity and zero,
as their subscripts suggest. They have the properties,

e2o = e2∞ = 0 (90)
e∞eo = −1+ E0. (91)

In terms of the null basis, a vector x in the original space
of e12 is mapped upwards to a conformal vector X , by the
following.

X = ↑(x) = x +
1
2
x2e∞ + eo (92)

The inverse, downwards map, is the made by normalizing
the conformal vector then rejecting it from the Minkowski
plane.

x = ↓ (X) =
X ∧ E0
−X · e∞

E−10 (93)

In the above formula and all others, we adhere to the
convention that the inner and outer products take precedence
over the geometric product. Rotations in different planes
within the CGA space implement various operations in the
original space that are non-linear, such as translation and
involution (negation). Both rotation and reflection operators
follow similar forms, and are referred to as versors in CGA.
Reviewing some common results from the literature [8], a list
of CGA operators which we will make use of are provided
in Table 3 along with their complex equivalents.

19930 VOLUME 5, 2017



A. Arsenovic: Applications of CGA to Transmission Line Theory

TABLE 3. Common versors used in CGA, and their complex equivalent.

B. ADDITION OF IMPEDANCE AND ADMITTANCE
The difficulty of implementing addition on Riemann Sphere
is remedied with the use of CGA as we will now show. The
additional of a series impedance is modeled as a translation
in the impedance domain. In CGA, a translation by the vector
z is achieved with a rotation in the e∞ ∧ z plane.

Tz = 1+
1
2
e∞z (94)

To determine the equivalent operator in the s-domain, the
operator is rotated by the appropriate basis transformation.

Rz = RszTzRzs (95)

Because it is physically meaningful to distinguish resis-
tance and reactance, we solve for translation in each compo-
nent independently. Of course, the results can be combined
to handle arbitrary impedances. Interpreting the e1 direction
as resistance, the effect of adding a normalized resistance of
amount r is produced by,

Tr = 1+
r
2
e∞e1 = e

r
2 e∞e1 . (96)

Computing the resultant rotation in the s-domain.

Rr = e
π
4 e13e

1
2 e∞re1e−

π
4 e13

=
1
2
(1+ e13)(1+

1
2
re31 +

1
2
re41)(1− e13)

= 1+
r
2
e3(e4 + e1)

= e
r
2 (e34−e13) (97)

Modeling the addition of a normalized reactance x by a
translation in e2, the reactance rotor is found,

Rx = e
π
4 e13e

1
2 e∞xe2e−

π
4 e13

= e
x
2 (e12−e24). (98)

A similar analysis yields the rotor for adding conductance
and susceptance.

Rg = RsyTgRys

= e
−

π

2
√
2
(e23+e21)e

1
2 e∞ge1e

π

2
√
2
(e23+e21)

= e
g
2 (e34+e13) (99)

Rb = RsyTbRys

= e
−

π

2
√
2
(e23+e21)e

1
2 e∞be2e

π

2
√
2
(e23+e21)

= e
b
2 (e12+e24) (100)

The rotors Rr and Rx will rotate a load about circles of
constant reactance and resistance, while Rg and Rb will rotate
a load about circles of constant susceptance and conductance,
respectively. The effects of each rotor as seen on the reflec-
tion coefficient plane are shown in Figure (16). These rotors
sweep out the familiar impedance and admittance contours
of the Smith Chart. However, because these rotations are
non-euclidean they cannot be succinctly represented within
complex algebra. Instead, one has to cascade three individual
operations: transform to impedance, translate, transform to
reflection coefficient. This difficulty is one reason the Smith
Chart is used as a nomogram.

C. BIVECTOR ALGEBRA AND DISCRETE ELEMENT GROUP
One advantage of using geometric algebra is that it exposes
the group structure underlying the transformations [19].
Identifying the bivectors for the impedance/admittance rotors
found above.

R ≡ e34 − e13 (100a)

X ≡ e12 − e24 (100b)

G ≡ e34 + e13 (100c)

B ≡ e12 + e24 (100d)

A bivector group can be found by employing all combina-
tions of the commutator product, defined by

A× B ≡
1
2
(AB− BA) , (101)

to the bivectors R,X ,G and B. When this is done, two new
bivectors are found.

N ≡ e14 (102)

Q ≡ −e23 (103)

The rotors which make use of these bivectors are defined,

Rn ≡ e− ln(n)e14 (104)

Rq ≡ eqe23 . (105)

To determine what operations these bivectors represent, an
arbitrary load can be rotated in the bivector planes ofN andQ,
while recording its path on the 2D reflection coefficient plane.
Doing so generates the contours shown in Figure (17), which
are recognized as contours of the Carter Chart [1] (known
in other fields as a Wulff Net). These contours correspond
a change in characteristic impedance magnitude and phase
components. This can be proven by rotating the bivectors
into the impedance domain, and ensuring they correspond to
dilation and rotation generators. First, transform N .

RzsNRsz = e
−π
4 e13e14e

π
4 e13 = e34 (106)
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FIGURE 16. Effects of Rotations in bivectors R,X ,G, and B. (a) Rotation
in R ≡ e34 − e31. (b) Rotation in X ≡ e12 − e24. (c) Rotation in
G ≡ e34 + e13. (d) Rotation in B ≡ e12 + e24.

Which is the bivector that generates dilations, while

RzsQRsz = −e
−π
4 e13e23e

π
4 e13 = e12. (107)

Which is the bivector that generates rotations in the original
2D space. The Carter Chart is a polar coordinate system in

FIGURE 17. Effects of Rotations in bivectors N and Q. The contours are
that of the Carter Chart. (a) Rotation in N ≡ e14. (b) Rotation in Q = −e23.

impedance domain that has been transformed into the reflec-
tion coefficient domain. Explicitly defining the operators
for changing characteristic impedance is useful for analyz-
ing transmission line dynamics, as demonstrated in the next
section.

TABLE 4. Commutator table for discrete circuit bivector group.

The Smith Chart with impedance and admittance contours
combined with the Carter Chart represent paths formed from
the rotors of a bivector group. This group contains elements
of impedance, admittance, and characteristic impedance
change, and so it might be referred to as the discrete ele-
ment group. Table 4 provides the commutator relations which
define the group. Identifying circuit elements as a bivector
group has many important consequences. All of the equiva-
lent circuit relationships, duality properties, and infinitesimal
behaviors can be derived from properties of the group.
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The pairs of bivectors used to generate each chart are
orthogonal.

R · X = G · B = Q · N = 0 (108)

So that pairs commute, as one would expect. Each pair is
also inter-related by duality.

RI = X (109)

GI = B (110)

QI = N (111)

Which shows there is a complex structure within the bivec-
tor algebra, as expressed by the equations.

Z = rR+ xX = (r + xI )R (112)

Y = gG+ bB = (g+ bI )G (113)

P = qQ+ nN = (q+ nI )Q (114)

The pairs can also be related to one another through the
operation of reflection in the hyperplane normal to e4, analo-
gous to time-reversal in Space-Time Algebra [20].

x̄ ≡ e4xe4 (115)

This produces the relationships.

R̄ = G (116)

X̄ = B (117)

N̄ = N (118)

Q̄ = −Q (119)

All of the bivectors are simple, meaning they square to a
scalar. Classifying the bivectors based on the sign of their
square turns out to be useful. Borrowing some terminol-
ogy from Space-Time Algebra, it may be said that R,X ,G
and B are light-like, N is space-like, and Q is time-like,
meaning,

R2 = X2
= G2

= B2 = 0 (120)

N 2
= −Q2

= 1. (121)

Because the signature we have employed is opposite that
used in Space-Time Algebra, our meaning of space-like and
time-like is inverted.

VII. DISTRIBUTED ELEMENT MODEL
A fundamental part of transmission line theory is the dis-
tributed element model. In this model, a uniform transmis-
sion line is represented as an infinite sum of infinitesimal
lumped elements cascaded together, a unit cell of which is
shown in Figure (18). Normally the properties of transmis-
sion line are studied through differential equations relating
voltages and currents along the lines, but we will examine the
dynamics produced by this model through the CGA operator
framework.

A unit cell of the distributed element model is composed
of reactance X , resistance R, susceptance B, and conduc-
tance G. As shown in the previous section, the effect of each

FIGURE 18. Distributed element model.

component in the distributed element model is a rotation in
the conformal model. Therefore, to determine the effect of
an infinitesimal element, we need to compute the effect of
an infinitesimal rotation. Following the approach in [9], the
rotation of a vector a by a small bivector δB may be written

e−δBaeδB = a+ δa× B+ δ2 (. . .). (122)

Where× is the commutator product, and δ2 (. . .) are higher
order terms which disappear as δ becomes infinitely small.
The subsequent rotation of another small bivector C yields,

e−δcCe−δbBaeδbBeδcC = a+ a× (δbB+ δcC)+ δ2 (. . .)

' e−(δbB+δcC)ae(δbB+δcC) (123)

Illustrating that to first order, small rotations commute
and the bivector of the rotation is simply the sum of their
bivectors. Returning to the distributed element model, the
total rotor for a single unit cell as depicted in Figure 18 is,

e
x
2Xe

r
2Re

b
2Be

g
2G (124)

Where x, r, b and g are scalars, and X ,R,B, and G are the
bivectors given in section VI-C. In the limit that x, r, b and g
become infinitely small, the rotor for a distributed element
unit cell becomes

lim
x,r,g,b→0

e
x
2Xe

r
2Re

b
2Be

g
2G ' e

1
2 (xX+rR+bB+gG). (125)

Once the limit is taken, the values of x, r, b and g become
distributed, meaning they have units inversely proportional to
distance. The rotor for a section of line of length l, is therefore

Rxrbg ≡ e
l
2 (xX+rR+bB+gG). (126)

Expanding the generator and grouping like terms yields,

Rxrbg=
l
2
((x+b) e12+(x−b) e24+(g+r) e34+(g−r) e13).

(127)

This bivector contains all of the physics of a distributed
element transmission line. It produces bivectors which are
outside of the discrete element group. The e12 and e34 com-
ponents are recognized as euclidean rotations and dilations,
respectively. Anticipating the importance of these bivectors
in the analysis to follow, assign variables and make note of
their properties.

L ≡ e12 (128)

A ≡ e34 (129)
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FIGURE 19. Rotations produced by a lossless distributed element model, showing the effects of different ratios of distributed reactance and
susceptance. The rotation direction (clockwise vs counterclockwise) changes depending on the signs of b and x . (a) Rotations with b

x > 1.
(b) Rotations with b

x = 1. (c) Rotations with b
x < 1.

They are orthogonal,

L · A = 0, (130)

dual to one-another,

AI = L, (131)

and affected by time-reversal with

Ā = A (132)

L̄ = −L. (133)

Additionally, L is time-like, and A is space-like. The rotors
which employ these bivectors can be defined,

Rl ≡ eθe12

Ra ≡ e−
1
2 ln(α)e34 .

While the subscripts l and a do not match the scalar argu-
ments of the rotor, they do match bivector variables and the
description for the circuits which produce them, i.e. a line
and attenuator. To explore the effects of the various bivector
components in eq (127), we examine a few special cases of a
the distributed element transmission line model.

A. LOSSLESS
In the case of a lossless line the resistance and conductance
are zero, g = r = 0. In this case we are left with rotations in
both e12 and e24 in amounts that depend on the difference
between b and x. The nature of these rotations can best
understood by visualizing their effect on the Smith Chart, as
shown in Figure 19. When b

x = 1, the distributed element
bivector reduces to e12. This produces a euclidean rotation of
the reflection coefficient centered at 0, shown in Figure 19b.
Rotations of this type are expected from an ideal lossless
transmission line, and produce paths known as StandingWave
Ratio (SWR) Circles. Depending on the signs of b and x,
either clockwise or counterclockwise rotations are produced.
These two scenarios depict right-handed, and left-handed
transmission lines.

In the case where the normalized susceptance is larger that
the reactance, b

x > 1, the rotation shown in 19a is pro-
duced. This is a non-euclidean rotation centered about the

normalized characteristic impedance of the line, a fact proved
later in this section. A transmission line of this type is more
susceptive than the reference impedance. The term more
susceptive generally impliesmore capacitive, but this requires
a sign choice for bwhich we choose not to make at this point.
Leaving the sign ambiguous allows for artificial transmission
lines. In either case, the sign only changes the direction of the
rotation, so its a minor difference to the geometry. The final
case, b

x < 1, is similar to the susceptive case, but is more
reactive rather than susceptive.

In the extremes that bx � 1 or bx � 1,the generators reduce
toB andX , and produce the rotations shown in Figure 16. This
makes sense, because summing a series of mostly reactance
elements is equivalent to a lumped reactance and likewise
for susceptance. Reflecting on Figure 19, we see there is a
smooth transition between: pure susceptance, a susceptive
line, a matched line, a reactive line, and pure reactance.

B. NON-PROPAGATING
Before examining lossy lines, it helpful to look at the effects
of non-propagating lines, i.e. x = b = 0 but g 6= 0
and/or r 6= 0, because they are dual to the lossless case.
Looking at eq (127), these conditions will produce rota-
tions in e34 and e13 in amounts depending on the ratios
of r and g. Proceeding in a similar way as with the loss-
less lines, the contours created by such rotations are plot-
ted on the Smith Chart in Figure 20. In the extremes that
g
r � 1 or g

r � 1, the rotation bivectors reduce to G
and R, as shown in Figure 16. Analogous to the lossless
cases, there is a smooth transition between: pure conductance,
a conductive attenuator, a matched attenuator, a resistive
attenuator, and pure resistance.

C. LOSSY
In the general case of lossy lines several different rotations
can be produced. In general they are all spirals, which cen-
ter about the characteristic impedance. We examine a few
cases of lossy lines in Figure 21. When b

x =
r
g = 1,

the line is matched, and this results in a rotation centered
about the center of the Smith Chart as shown in Figure 21b.
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FIGURE 20. Rotations produced by a distributed loss, showing the effects of different ratios of distributed resistance and conductance. The
rotation direction (clockwise vs counterclockwise) changes depending on the signs of g and r . (a) Rotations with g

r > 1. (b) Rotations with
g
r = 1. (c) Rotations with g

r < 1.

FIGURE 21. Rotations produced by lossy lines. The amount of loss is exaggerated from typical values to show the characteristics of the
rotation. (a) Rotations with b

x = 1, g
r > 1. (b) Rotations with b

x = 1, g
r = 1. (c) Rotations with b

x = 1, g
r < 1.

The bivector contains only components in e12 and e34, which
are recognized as euclidean rotation and scaling operators.
As the line becomes more conductive g

r > 1, the characteris-
tic impedance moves downwards and to the right. And when
the line becomes more resistive g

r < 1, the characteristic
impedance moves upwards and to the left.

While more work could be done to characterize the
dynamics of different transmission lines, we move on to
an alternative model for the same circuit which uses a
matched/mismatched dichotomy instead of the distributed
elements. By relating the two models components of the
distributed element bivector are given physical meaning.

D. RELATING THE DISTRIBUTED ELEMENT AND
TRANSFORMER MODELS
When b

x 6= 1 and/or r
g 6= 1, the distributed element model

results in a mismatched transmission line. Another way to
represent a mismatched transmission line is to sandwich a
matched line in between two impedance steps of equal but
inverse impedance changes. This may be referred to as the
transformer model. An illustration of a mismatched trans-
mission line realized in half-space, and the corresponding
impedance step circuit model is shown in Figure 22. A change
in line impedance can be modeled as a scaling and rotation
in the impedance domain, operations which are implemented
with N and Q bivectors as found earlier. It is most common

FIGURE 22. A lossless mismatched transmission line in half-space
(above) and it’s equivalent circuit model (below). The Rn-blocks represent
impedance discontinuities, and the RL a matched line.

to deal with changes in real characteristic impedance, which
is equivalent to scaling, so we focus on effects of N for now.
The rotor used to scale an impedance by a factor of n, i.e.
z→ nz was found to be

Rn = e−
1
2 ln(n)e14 . (134)

An impedance scaling of inverse amount n → 1
n , is equal

to the reversed rotor,

e
−

1
2 ln

(
1
n

)
e14
= e

1
2 ln(n)e14 = R̃n (135)

Using this result, a lossless, mismatched transmission line
may be represented in the transformer model as,

R̃nRlRn = e
1
2 ln(n)e14eθe12e−

1
2 ln(n)e14 . (136)
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This equation could be interpreted as boosting the
e12 plane, borrowing language from relativity. A relationship
between the transformer and distributed element models must
exist because they represent the same physical circuit. This
knowledge allows us to equate the rotors for each model.

e
l
2 (xX+bB) = e

1
2 ln(n)e14eθe12e−

1
2 ln(n)e14 (137)

Explicit relationship between these two parameterizations
can be found by further equating their generators, which
requires the bivector argument for the transformer model to
be found. To do this, note that rotating a rotor is equivalent to
rotating it’s bivector argument [9].

ReBR̃ = eRBR̃ (138)

Where R is a rotor and B is a bivector. This allows the
transformer’s generator to be found by,

Rne12R̃n = e
1
2 ln(n)e14θe12e−

1
2 ln(n)e14

= θ (cosh (ln (n)) e12 + sinh (ln (n)) e24). (139)

Which provides an interpretation for the e24 component in
the distributed element bivector as the result of mismatching
a lossless line. Setting eq (139) equal to eq (127), produces
the following relationships,

l
2
(x + b) = θ cosh (ln (n)) (140)

l
2
(x − b) = θ sinh (ln (n)). (141)

This pair of equations may be solved for the impedance
scaling factor n in terms of distributed elements.

n =

√
x
b

(142)

Similarly, the electrical length of the line can be found.

θ =
l
2

√
xb (143)

Thus, the impedance scaling factor n is the normalized
characteristic impedance of the lossless transmission line
between the impedance steps. This proves the earlier claim
that the rotations shown in Figure 19 rotate about the line’s
characteristic impedance. To see this, note that eq (136)
moves the impedance value n to the origin, rotates by θ , then
moves the origin back to an impedance value of n. Therefore,
the new center of rotation will be at an impedance of n.
Computing where Rn moves the center of the rotation can
done explicitly.

↓ RneoR̃n = ↓ e−
1
2 ln(n)e14 (e4 − e3) e

1
2 ln(n)e14

= ↓ (−e3 + cosh (ln (n)) e4 + sinh (ln (n)) e1)

= tanh
(
1
2
ln (n)

)
e1

=
n− 1
n+ 1

e1 (144)

Which is the reflection coefficient for an impedance value
of n, as claimed.

E. UNITS OF DISTRIBUTED ELEMENTS
The meaning of b and x as normalized quantities may appear
strange given no characteristic impedance has been defined.
In essence, if b and x are set to be equal, then we have
implicitly defined the characteristic impedance. To see this,
express b and x in terms of the characteristic impedance and
admittance.

x =
x ′

Z0
b =

b′

Y0
(145)

Where x ′ and b′ are the un-normalized values of distributed
reactance and susceptance, respectively. By setting

x
b
= 1. (146)

We have implied

x ′

Z0

Y0
b′
= 1

x ′

b′
= Z2

0 . (147)

Which defines Z0. Similarly the product of xb in eq (143)
defines the normalized propagation constant,

√
xb =

√
x ′

Z0

b′

Y0
=
γl

γ0
(148)

F. SYSTEMATIC METHOD FOR DETERMINING EQUIVALENT
CIRCUITS OF MISMATCHED TRANSMISSION LINES
So far, two parameterizations for a specific class of mis-
matched transmission lines have been developed. Namely,
the distributed element model containing reactance and sus-
ceptance has been related to a lossless transmission line
mismatched by an impedance scaling. It is conjectured that
the general case of a arbitrarily mismatched lossy line can
be modeled as matched transmission line sandwiched in
between two arbitrary impedance steps, given by,

R̃nR̃qRlRaRqRn. (149)

This rotor has 4 degrees of freedom (n, q, θ, α), which
matches that of the distributed element model (r, x, g, b), as
required. The commutation relations of the bivectors allows
the transformer model to be put into the more concise form,

˜RnqRlaRnq. (150)

Where,

Rla = eθe12−ln(α)e34 (151)

Rnq = e−(qe23+ln(n)e14). (152)

The statement expressing the equivalence between the
transformer model and the distributed element model is most
concisely written.

˜RnqRlaRnq = Rxrgb (153)

Given this expression, determining relationships between
the two parameterizations reduces to equating the generators
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for each rotor, a procedure which can be done systemati-
cally. A thorough classification of transmission lines and the
relationship between the transformer and distributed element
model would be interesting to work out in the future.

G. DISCUSSION
The CGA operator framework has been used to derive the
effects of distributed element transmission lines without dif-
ferential equations. However, we are not suggesting the clas-
sic analysis of transmission lines by way of the telegrapher’s
equations should be forgone. Instead, our goal has been
to demonstrate that the unique ability of CGA to handle
non-euclidean rotations allows the physics of non-matched
transmission lines to be more accurately expressed. The rela-
tionship between the distributed circuit and transformer mod-
els has been derived, and the characteristic impedance was
shown to be a fixed point of the CGA rotations for lossless
lines. It is interesting that the three specific classes of trans-
mission lines correspond to the three classes of Möbius trans-
formations [17]. The lossless lines are elliptic, the distributed
loss lines are hyperbolic, and the lossy lines are loxodromic.
This can be proved by an analysis of their fixed points. Addi-
tionally, because every Möbius transformation has two fixed
points, every mismatched transmission line produces two
characteristic impedances, one of which is active. Increasing
the radius of the Smith Chart beyond unity allows both fixed
points to be seen. While a fixed point analysis with CGA
would be interesting, we instead move on to demonstrate an
example application to impedance matching, and leave the
fixed point analysis for future study.

VIII. IMPEDANCE MATCHING
In this section the results derived thus far are applied to
problems of impedancematching. Specifically, the topologies
of single shunt stub tuner and the impedance transformer are
solved. Both of these problems are approached with the same
technique.

1) Determine the operator representation of the network
2) Invert the operator, to produce an equation for the

unknown load
3) Solve for the rotor parameters.

By using CGA operators, all networks have similar functional
forms regardless of their domain. Therefore, we choose to
solve the problem entirely in terms of reflection coefficient
(the s-domain), so that it can be visualized on the Smith Chart.
The invertability of the verser product makes computing the
solution straightforward, but does not grantee a simple result.

A. TRANSMISSION LINE STUBS
Terminated transmission lines, aka ’stubs’, are commonly
employed in problems of impedance matching at microwave
frequencies where lumped elements are not realizable. Given
the operator for a lossless transmission line, the suscep-
tance of transmission lines terminated with either a short
or open circuit may be found and implemented with the

susceptance rotor. The conformal vector for an open circuit
in the s-domain is

↑ (e1) = e1 + e4 (154)

The susceptance of a lossless transmission line terminated
in an ideal open circuit is then,

RysRl (e1 + e4)R∼l R
∼
ys = sin (2θ) e2 − cos (2θ) e3 + e4

(155)

Similarly for a shorted shunt stub

RysRl (−e1 + e4)R∼l R
∼
ys = − sin (2θ) e2 + cos (2θ) e3 + e4

(156)

Because this result occupies only three dimensions, it can
be visualized. As θ varies, the susceptance of the stubs sweep
out circular paths in a 3-dimensional subspace defined by
the trivector e2 ∧ e3 ∧ e4. As shown in Figure 23, the
open and short stubs are vectors that rotate about the e4-axis
antipodally. As they cross the E0-plane they pass through the
eo and e∞ vectors.

FIGURE 23. Subspace projection of conformal vectors representing the
susceptance of shorted/opened transmission lines.

Down projecting this open stub returns the familiar formula

↓ (sin (2θ) e2 − cos (2θ) e3 + e4) = tan (θ)e2 (157)

Using this result, the operator for a shunted transmission
line terminated with an ideal open circuit is constructed.

Ros ≡ e
1
2 tan(θ)(e12+e24) (158)

Similarly,the operator for a shunted transmission line ter-
minated with an ideal short circuit is,

Rss ≡ e−
1
2 cot(θ)(e12+e24) (159)

Loss present within the stubs can be added by cascading
the dilation rotor given in table 3. For example, to add loss to
the shorted shunt stub

e−
1
2 ln λe34e−

1
2 cot(θ)(e12+e24) (160)

The loss factor λ can be replaced by a function of electrical
length θ if desired. More detail on lossy transmission lines is
given in Section VII.
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B. SHUNT STUB IMPEDANCE MATCHING
A shunt stub matching circuit provides a network topol-
ogy that can match an arbitrary load impedance to some
line impedance at a given frequency. The network is shown
in figure 24a, where ZL is the load impedance, Z0 is the line
impedance, and θ and φ are the series and shunt line-lengths,
respectively. The problem is to choose θ and φ so that the
input reflection coefficient 0in is zero.

FIGURE 24. Networks for single stub impedance matching. (a) Single stub
matching network. (b) Inversion of the single stub matching network.

The desired condition is a match at the input, i.e. a reflec-
tion coefficient of 0. Starting from this known condition, the
problem may be solved in reverse by inverting the network
in figure 24a to produce the network shown in figure 24b.
From this orientation the matched line impedance is seen
through the series transmission line, then the shunted stub.
In language of operators, this inverted network takes eo
through a B-rotation, then a L-rotation, to end up at some
desired load reflection coefficient 0L . An illustration of the
path produced by these operators, as seen projected on the
Smith Chart, is shown in Figure 25. The combined operator
for the network is a expressed by

0L = eθe12e
1
2 cot(φ)Beoe−

1
2 cot(φ)Be−θe12 (161)

Down-projecting the results gives the formula,

γL = ↓ 0L

= −(
1
2
cos(2θ )+

1
2
cos(2(φ-θ )))e1

+ (
1
2
sin(2θ )−

1
2
sin(2(φ-θ )))e2 (162)

Which is complicated, but by noticing that the magnitude
of the reflection coefficient is only influenced by the shunt

FIGURE 25. A possible path from eo to 0L produced by the inverse shunt
stub network.

stub, taking the magnitude and angle (with respect to e1)
decouples the interdependence,

|γL |
2
=

1
4 tan2 (φ)+ 1

(163)

tan (6 γL) =
tan (2θ)+ 2 tan (φ)
2 tan (2θ) tan (φ)− 1

(164)

These can be inverted to give direct expressions for the stub
lengths

φ = arctan
(

1
2 |γL |

√
1− |γL |2

)
(165)

tan (2θ) =
2 tan (φ)+ tan (6 γL)
2 tan (φ) tan (6 γL)− 1

(166)

C. IMPEDANCE TRANSFORMER
A impedance transformer is a circuit topology used to match
real load impedance by using 90◦ section of mismatched
transmission line. Given a known system and load impedance,
the design goal is to determine the line impedance which
creates the matched condition, 0in = 0. A circuit diagram
for this topology is show in Figure 26, where Z0 is the system
impedance, nZ0 is the transformer’s line impedance, and ZL
is the load.

FIGURE 26. Network for an impedance transformer.

As described in Section VII-D, the operator for this circuit
may be constructed from an impedance step, a matched line
of 90◦, and another impedance step of inverse magnitude.

Rml = R̃nRlRn
= e

1
2 ln(n)e14e

π
2 e12e−

1
2 ln(n)e14 (167)

= cosh (ln (n)) e12 + sinh (ln (n)) e24. (168)

An illustration of the path created from these operators is
shown in Figure 27. By using a line of 90◦, the L-rotation
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FIGURE 27. Path taken by a matched load as produced by a mismatched
transmission line.

rotates the load by π . Proceeding in a similar way as with
the single stub problem, the circuit is inverted so that the
system impedance is seen through the line. This produces
expressions for the normalized load impedance directly.

γL = ↓
(
˜RmleoRml

)
= − tanh (ln (n)) e1

=
1− n2

1+ n2
e1 (169)

The result is usually given in the impedance domain.

zL = ↓
(
RzsRmleo ˜RmlRzs

)
=

1
n2e1

(170)

Which is the correct, but expressed in normalized units.
To solve the more general case in which the load is not real,
the same steps are applied but with the more general operator
for a line of unspecified length. Down-projecting ˜RmleoRml
produces the equations.

|γL |
2
=

tan2 (θ) sinh2 (ln (n))

tan2 (θ) cosh2 (ln (n))+ 1
(171)

tan (6 γL) = −
1

tan (θ) cosh (ln (n))
(172)

These expressions are intertwined in both θ and n as one
would expect by looking at the Carter Chart.

IX. ADVANTAGES OF CGA
For those unfamiliar with geometric algebra, making use of
our results will require a significant investment. Therefore,
this section presents arguments for why the investment might
be made.

a: GEOMETRIC INSIGHT
The most important advantage of using CGA is the geometric
insight it provides. The inability of complex algebra to han-
dle more than two dimensions causes much of the structure
present in transmission line theory to be hidden. For example,
the normalized input impedance of a normalized load z as

seen through a lossless transmission line is conventionally
described by the following formula.

z+ j tan (θ)
1+ zj tan (θ)

(173)

This formula has no geometric interpretation. In contrast,
CGA allows this relationship to represented as a rotation in
the e23 plane by an angle of 2θ . It has been shown how
CGA naturally leads to the discrete element bivector group
and non-euclidean rotations. In addition, the Smith Chart
and the Riemann Sphere have been identified as part of a
coherent evolution of projective geometry that eventually
leads to CGA.

b: SIMPLICITY
One criticism of the current theory is that it is more
complicated than the traditional, two-dimensional theory.
To reflect, the CGA framework has replaced a set of Möbius
transformations in a Euclidean plane, with rotations in a
4-dimensionalMinkowski space. In other words, complicated
transformations in a simple space have been replaced by
simple transformations in a complicated space, a reoccur-
ring theme in electrical engineering. The conventional two-
dimensional space is simpler precisely because it fails to
accurately model the sophistication of the physics. There are
many cases in which usage of this simplified space is advan-
tageous, and it is not expected that CGA will replace every
instance of computation that engineers make on a daily basis.
However, simplicity should not be confused with familiarity.

From a modeling perspective, the ability of the CGA
operator formalism to consistently transform operators and
operands is an increase in both clarity and simplicity. This
property, known as covariance, has been demonstrated by
transforming transmission line operators to different domains
and in representing a mismatched transmission line as
matched line that is operated on by an impedance mismatch.
Additionally, this approach is more easily implemented in
software.

c: SCALABILITY
An inherent problem with the conventional theory is its lack
of scalability. Because the individual transformations are
non-linear, each additional component increases the overall
complexity of a result. For example, to compute the effect
of adding series resistance on the reflection coefficient using
conventional theory, one does the following: take the present
value of reflection coefficient s, and transform it to the
impedance domain.

z =
1+ s
1− s

(174)

Next, add the resistance r , producing the new load
impedance z′.

z′ = z+ r (175)

VOLUME 5, 2017 19939



A. Arsenovic: Applications of CGA to Transmission Line Theory

Then transform back into reflection coefficient, s′.

s′ =
z′ − 1
z′ + 1

(176)

Finally, compile of these operations into a single equation,

s′ =
1+s
1−s + r − 1
1+s
1−s + r + 1

(177)

Due to this lack of scalability, the entire expression
becomes uninterpretable. In response, engineers invent
graphical aids such as Smith Chart. Compare eq (177) with
its equivalent expression in CGA.

S ′ = e
r
2 (e34−e13)Se−

r
2 (e34−e13) (178)

Not only does this representation separate the operand
from operator, but it has a definite geometric interpretation.
By supporting non-euclidean rotations, the familiar contours
of the Smith Chart can be expanded to include impedance
transformations, and the effects ofmismatched lines. In CGA,
each individual transform, as well as an arbitrary number
of cascaded transforms are all represented with rotations.
Therefore, once the mathematics of rotations is mastered,
problems of great complexity can be tackled.

d: DOMAIN INVARIANCE AND SINGULARITY AVOIDANCE
As just demonstrated, the dependence of a circuit’s mathe-
matical complexity on the choice of representation forces one
to switch domains regularly. The domain invariance produced
by CGA solves this problem completely. Additionally, many
of the singularities caused by values of 0 and∞ are removed
by using CGA, regardless of the chosen domain. These singu-
larities are removed by replacing the concept of distance with
that of direction, an important feature of projective geometry.

e: UNIVERSALITY
It has been argued elsewhere [21] that the adoption of geomet-
ric algebra is a necessary step required to unify the splintered
world of applied mathematics. We agree with this perspec-
tive and further believe that universal adoption is inevitable.
At first glance, the construction presented in this paper may
appear highly specialized, and applicable only to transmis-
sion line theory. However, the G3,1 algebra is identical to
the Space-Time Algebra (STA) used by physicists working
with relativity. It is likely that many analogues can be made
between the circuit transformations and Lorentz transforma-
tions, a topic which deserves study. In addition to the efforts
of physicists, many results in CGA have been produced by
engineers working in fields of computer graphics and com-
puter vision. The universality of GA makes this type cross-
disciplinary collaboration practical.

X. CONCLUSION
A. VERIFICATION AND SUMMARY OF RESULTS
The versors and their generating bivectors developed in the
later sections are summarized in Table 5. Many of the results
presented were found using galgebra [22], an open-source
symbolic clifford algebra module for python. galgebra is

TABLE 5. CGA generating bivectors and versors for circuit components.

especially useful for many of the tedious down-projection
computations. In addition, all of the results have been numer-
ically verified to be consistent with the conventional theory,
where possible. These numerical tests were done using using
the open-source python module clifford. A git reposi-
tory containing the verification suite is available online at
https://github.com/arsenovic/. Questions and comments on
the code are welcomed by the author.

B. DISCUSSION
The application of Conformal Geometric Algebra to trans-
mission line theory has been presented. The preliminary
results appear promising and justify continued development
of the subject. To review, the fundamental network operations
such as adding impedance or admittance elements and cas-
cading transmission lines have been implemented with rota-
tions in a four dimensional Minkowski space. Additionally,
it has been shown that the different circuit representations:
impedance, admittance, and reflection coefficient, are also
related by rotations. In doing so, the majority of relationships
in transmission line theory have been linearized. Common
transmission line formulae have been replaced with a bivector
algebra and an associated operator framework. A demonstra-
tion of the framework has been made by computing rotors
for mismatched transmission lines, and solving impedance
matching problems. All of the results presented have been
verified to be numerically consistent with the conventional
theory, where possible. Finally, an argument for the adoption
of the current theory has been presented, and we hope it is
convincing.

C. FUTURE WORK
We plan to follow this paper with another demonstrat-
ing continued applications of CGA transmission theory.
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Some areas of interest mentioned throughout this paper are
transmission line classification, fixed points analysis, and
active impedance matching. Other areas which we think will
produce useful results are multi-section impedance trans-
formers, periodic structures (filters), artificial transmission
lines, and reflectometer calibration. Symmetric N-port struc-
tures could also be investigated, given that they are generally
decomposed into a set of one-port circuits. In addition to
various circuit architectures, the CGA operator framework
should be useful for uncertainty propagation, given that all of
the functions are reduced to rotations. A foundation for this
work has already been accomplished in [23].
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