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ABSTRACT Robust performance of nonlinear systems has attracted phenomenal worldwide attention.
It is well known that deviating argument and stochastic disturbance may derail the evolution properties
of nonlinear systems. Then the following issue has become a major bottleneck: for a given globally
exponentially stable nonlinear system, the perturbed nonlinear system can sustain how much the length
of the interval of the deviating function and the noise intensity so that the perturbed nonlinear system in the
presence of deviating argument and stochastic disturbance may remain to be exponentially stable. In this
paper, theoretical investigation has been made on the robustness of global exponential stability of nonlinear
systems with deviating argument and stochastic disturbance. The allowable upper bounds of the length of
interval of deviating function and the noise intensity are derived for the perturbed nonlinear systems to
remain exponentially stable. It is also proven that, if the length of interval of deviating function and the
noise intensity of perturbed nonlinear systems are lower than the upper bounds derived herein, the nonlinear
systems infected by deviating argument and stochastic disturbance are still exponentially stable. Finally,
we give several simulation examples to demonstrate the efficacy of the proposed results.

INDEX TERMS Nonlinear systems, deviating argument, stochastic disturbance, robustness.

I. INTRODUCTION
Analysis and synthesis of nonlinear systems is a hot
issue [1]–[16]. Many control methods have been developed
for real nonlinear systems, for instance, right coprime fac-
torization approach [1], fixed-time control [2], adaptive con-
trol [3], [6], [8], [9], [15], fault design scheme [4], [5], [11],
output feedback control [7], [14], H∞ control [12], event-
trigger control [13], fuzzy control [16]. In practice, lots of
nonlinear systems possess completely unknown nonlinearity,
unmodeled dynamics, and arbitrary switchings. These high
levels of uncertainty and complexity may seriously influence
the system performance. Furthermore, control schemes for
nonlinear systems still have a long way to go.

Deviating argument, which can have serious impacts in
the running process of nonlinear systems, is one of the
most significant nonsmooth nonlinearities arisen inactua-
tors [17]–[19]. In the last few years, there has been rapidly
growing interest in nonlinear systems with deviating argu-
ment. For example, to describe the stationary distribution of
the temperature of length of wire that is bended, nonlinear

dynamic model with deviating argument is often used. The
right-hand side in nonlinear systems with deviating argument
features a combination of continuous and discrete systems.
Thus, nonlinear systems with deviating argument unify the
advanced and retarded systems. Because this strange prop-
erty, it is pretty hard to design the control strategies for non-
linear systems with deviating argument. From the perspective
of system cybernetics, differential equations and difference
equations are included in the analytical framework [19].
However, it is still obvious that many basic issues on nonlin-
ear systems with deviating argument remain to be addressed,
such as nonlinear dynamics, systems design and analysis.

Stochastic disturbance is recently examined using systems
theory. Stochastic motion, which has a very rich and new
structure, nontrivially generalizes the classical deterministic
process [20]–[23]. Then nonlinear realized stochastic models
come into play important roles inmany real systems including
control engineering, economy and finance. After the suc-
cess of systematic control design for deterministic nonlinear
systems, how to expand promptly and evaluate accurately
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this approach to stochastic nonlinear systems always is a
challenging and meaningful issue.

Meanwhile, as mentioned in [24]–[26], it remains unclear
on how to analyze the robustness of of nonlinear systems
in the presence of external disturbance. There are a large
number of tools available for analyzing the stability of con-
trol systems, including Lyapunov theory, Razumikhin-type
method, comparison principle, monotone/mixed monotone
operator and many others. However, analogous techniques
for robustness analysis of nonlinear systems are still quite
incipient.

Summarizing the above statements, some natural ques-
tions arise: It is generally known that deviating argument
and stochastic disturbance in nonlinear systems can cause
instability or destabilize stable nonlinear systems if the length
of interval of the deviating function or the noise intensity
exceeds a certain limit. The stability of nonlinear systems in
the presence of deviating argument and stochastic disturbance
often depends on their intensity. For a stable undisturbed
nonlinear system, if deviating argument, stochastic distur-
bance, or both are low, the disturbed nonlinear system may
still maintain stable. Therefore, it is interesting to investigate
how much the length of interval of deviating function and
the noise intensity nonlinear systems can withstand without
losing stability. As a matter of fact, robustness of global
exponential stability of nonlinear systems is rarely analyzed
directly with respect to deviating argument and stochastic dis-
turbance. Is it feasible to obtain the allowable upper bounds
of the length of interval of deviating function and the noise
intensity on the perturbed nonlinear systems to remain expo-
nentially stable? This paper will devote to solving the mat-
ters. We reveal the robust performance of nonlinear systems
subjected to deviating argument and stochastic disturbance.
We address theoretically that, for a given exponentially stable
nonlinear systems, if deviating argument, stochastic distur-
bance, or both are lower than the obtained upper bounds
herein, then the perturbed nonlinear systems can keep expo-
nentially stable.

II. EFFECT OF DEVIATING ARGUMENT
Let N and<+ be the sets of natural numbers and nonnegative
real numbers, respectively. Denote <n as the n-dimensional
real space. The Euclidean norm in <n is recorded as ‖ · ‖.
Fix two real-value sequences {αk}, {ηk}, k ∈ N , such that
αk < αk+1, αk ≤ ηk ≤ αk+1 for all k ∈ N with αk →
+∞ as k → +∞. In this section, we will consider the
effect of deviating argument on the exponential stability to
the following nonlinear systems:{

ẏ(t) = f (y(t), y(β(t)), t), t ≥ t0 ≥ 0,
y(t0) = y0,

(1)

where the deviating function β(t) = ηk , if t ∈ [αk , αk+1),
k ∈ N , t ∈ <+, f : <n ×<n ×<+→ <n.
Remark 1: System (1) is a kind of mixed system. Actually,

consider (1) on the interval [αk , αk+1), k ∈ N , when αk ≤

t < ηk , (1) is an advanced system, and when ηk < t < αk+1,
(1) is a retarded system. That is, system (1) can be alternately
advanced and retarded argument.

Throughout this section, suppose that f (·) is local
Lispchitz, that is, there are constants l1 > 0 and l2 > 0, such
that

‖f (X1,Y1, t)−f (X2,Y2, t)‖≤ l1‖X1−X2‖ + l2‖Y1−Y2‖,

for all X1 ∈ <
n, X2 ∈ <

n, Y1 ∈ <
n, Y2 ∈ <

n, t ∈ <+,
and f (0, 0, t) = 0.
Then, it is clear that system (1) has a trivial state y = 0.
Without loss of generality, we assume that system (1) has

an unique state y(t; t0, y0) for any given initial data t0 and y0.
Now, consider the undisturbed system of (1) as follows:{

ẋ(t) = f (x(t), x(t), t), t ≥ t0 ≥ 0,
x(t0) = x0 = y0.

(2)

Obviously, system (2) has the trivial state x = 0 and exists
an unique state x(t; t0, x0) for any given initial data t0 and x0.
Next, the definition of global exponential stability for

system (2) is given.
Definition 1: The state of system (2) is said to be globally

exponentially stable if for any t0 ∈ <+, x0 ∈ <n, there exist
constants l > 0 and κ > 0 such that

‖x(t; t0, x0)‖ ≤ l‖x0‖ exp {−κ(t − t0)} , t ≥ t0, (3)

where x(t; t0, x0) is the state of system (2).
In the following, we give some presumptions:
(A1) There exists a constant α > 0 such that αk+1 − αk ≤

α, k ∈ N .
(A2) α[l1(1+ l2α) exp {l1α} + l2] < 1.
The lemma developed below unmasks the relationship

of state of system (1) in current time t and deviating
function β(t).
Lemma 1: Let (A1) and (A2) hold, and y(t) be a solution

of system (1). Then the following inequality

‖y(β(t))‖ ≤ γ ‖y(t)‖ (4)

holds for all t ∈ <+, where γ = {1 − α[l1(1 +
l2α) exp {l1α} + l2]}−1.

Proof: Fix k ∈ N . Then, for any t ∈ [αk , αk+1), we have

‖y(t)‖ = ‖y(ηk )+
∫ t

ηk

f (y(s), y(ηk ), y)ds‖

≤ ‖y(ηk )‖ +
∫ t

ηk

‖f (y(s), y(ηk ), y)‖ds

≤ ‖y(ηk )‖ +
∫ t

ηk

[l1‖y(s)‖ + l2‖y(ηk )‖]ds

≤ (1+ l2α)‖y(ηk )‖ +
∫ t

ηk

l1‖y(s)‖ds. (5)

Applied Gronwall-Bellman lemma to (5), we obtain

‖y(t)‖ ≤ (1+ l1α) exp {l1α} ‖y(ηk )‖. (6)
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Similarly, for t ∈ [αk , αk+1), it follows

‖y(ηk )‖ ≤ ‖y(t)‖ + l1

∫ t

ηk

‖y(t)‖ds+ l2

∫ t

ηk

‖y(ηk )‖ds. (7)

Together with (6) and (7),

‖y(ηk )‖ ≤ ‖y(t)‖ + α[l1(1+ l2α) exp {l1α} + l2]‖y(ηk )‖,

then

‖y(ηk )‖ ≤ {1− α[l1(1+ l2α) exp {l1α} + l2]}−1‖y(t)‖

= γ ‖y(t)‖,

for t ∈ [αk , αk+1). By the randomicities of t and k ,
(4) holds for all t ∈ <+.

Now, we investigate the effect of deviating argument on the
robustness of global exponential stability of system (1).
Theorem 1: Let (A1) and (A2) hold, and system (2) to be

globally exponentially stable. System (1) still remains to be
globally exponentially stable if α < min(

η

2
, ᾱ, ¯̄α), where ᾱ is

the unique positive solution x̂ of the following equation (8)

l exp{−κ(η − x̂)} +
l2(1+ γ )l

κ
exp

{
2η
[
l1 + 2l2

+

(
1− x̂

[
l1(1+ l1x̂) exp

{
l1x̂
}
+ l2

])−1
l2

]}
= 1, (8)

and ¯̄α is the unique positive solution x̌ of the following
equation (9)

x̌
[
l1(1+ l2x̌) exp

{
l1x̌
}
+ l2

]
= 1, (9)

and η >
ln(l)
κ

> 0.
Proof:For convenience, we write x(t; t0, x0) ≡ x(t) and

y(t; t0, y0) ≡ y(t). From (1) and (2), together with Lemma 1,
for any t ≥ t0 ≥ 0, we have

‖x(t)− y(t)‖

= ‖

∫ t

t0
[f (x(s), x(s), s)− f (y(s), y(β(s)), s)]ds‖

≤ l1

∫ t

t0
‖x(s)− y(s)‖ds+ l2

∫ t

t0
‖x(s)− y(β(s))‖ds

≤ (l1 + l2)
∫ t

t0
‖x(s)− y(s)‖ds+ l2

∫ t

t0
‖y(s)− y(β(s))‖ds

≤ (l1+l2)
∫ t

t0
‖x(s)−y(s)‖ds+l2

∫ t

t0
[‖y(s)‖+‖y(β(s))‖]ds

≤ (l1 + l2)
∫ t

t0
‖x(s)− y(s)‖ds+ l2(1+ γ )

∫ t

t0
‖y(s)‖ds

≤ (l1 + 2l2 + γ l2)
∫ t

t0
‖x(s)− y(s)‖ds

+l2(1+ γ )
∫ t

t0
‖x(s)‖ds. (10)

In addition, from the global exponential stability of sys-
tem (2), then for any t ≥ t0 ≥ 0,

‖x(t)− y(t)‖

≤ (l1 + 2l2 + γ l2)
∫ t

t0
‖x(s)− y(s)‖ds

+l2(1+ γ )
∫ t

t0
l‖x0‖ exp {−κ(s− t0)} ds

≤ (l1 + 2l2 + γ l2)
∫ t

t0
‖x(s)− y(s)‖ds+

l2(1+ γ )l
κ

‖x0‖.

(11)

Applied Gronwall-Bellman lemma to (11), for t0 + α ≤
t ≤ t0 + 2η,

‖x(t)− y(t)‖ ≤
l2(1+ γ )l

κ
‖x0‖ exp {2η (l1 + 2l2 + γ l2)} .

Then

‖y(t)‖ ≤ ‖x(t)‖ + ‖x(t)− y(t)‖

≤ ‖x(t)‖ +
l2(1+ γ )l

κ
‖x0‖ exp {2η(l1 + 2l2 + γ l2)} .

(12)

Note that α < min(
η

2
, ᾱ), by (12) and the global exponen-

tial stability of system (2), for t0 − α+ η ≤ t ≤ t0 − α+ 2η,
we can get

‖y(t)‖ ≤ l‖x0‖ exp {−κ(η − α)}

+
l2(1+ γ )l

κ
‖x0‖ exp {2η(l1 + 2l2 + γ l2)}

, δ‖y0‖,

where

δ= l exp{−κ(η − α)}+
l2(1+γ )l

κ
exp{2η(l1 + 2l2 + γ l2)}.

From (8), we see δ < 1 when α < min(
η

2
, ᾱ, ¯̄α). Setting

λ = −
ln (δ)
η

, we obtain

‖y(t)‖ ≤ exp(−ηλ)‖y0‖. (13)

From the uniqueness of solution of system (1),

y(t; t0, y0) = y
(
t; t0 + (m− 1)η, y(t0 + (m− 1)η; t0, y0)

)
,

(14)

where m is positive integer. Therefore, from (13) and (14),
for t ≥ t0 − α + mη,

‖y(t; t0, y0)‖

= ‖y
(
t; t0 + (m− 1)η, y(t0 + (m− 1)η; t0, y0)

)
‖

≤ exp {−ηλ} ‖y
(
t0 + (m− 1)η; t0, y0

)
‖

= exp {−ηλ} ‖y
(
t; t0+(m−2)η, y(t0+(m−2)η; t0, y0)

)
‖

≤ exp {−mηλ} ‖y0‖.
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Thus, for any t > t0 − α + η, there is a positive integer m
such that t0 − α + (m− 1)η ≤ t ≤ t0 − α + mη,

‖y(t; t0, y0)‖ ≤ exp(−λ(t − t0)) exp(λ(η − α))‖y0‖. (15)

Clearly, (15) also holds for t0 ≤ t ≤ t0 − α + η.
So system (1) is globally exponentially stable.
Remark 2: In many published works, it is supposed that

nonlinear systems are only related to the present or past state.
However, in this paper, nonlinear systems with deviating
argument are related to not only the present state but also the
past and future ones.
Remark 3: Theorem 1 demonstates that if system (2) is

globally exponentially stable, the disturbed system evoked by
deviating argument in (1) may still be globally exponentially
stable when the length of interval of deviating function β(t)
is lower than the obtained bound min(

η

2
, ᾱ, ¯̄α).

Remark 4: The allowable length of interval of deviating
function β(t) in Theorem 1 can be given expediently. By solv-
ing the transcendental equations (8) and (9) viaMATLAB, the
allowable length α of interval of deviating function β(t) can
be effectively estimated.
Remark 5: Wu et al. [19] have investigated the stability

of neurodynamic systems with deviating argument. Whereas,
in this paper, the considered controlled systems are more gen-
eral models, and we can see from the following examples that
the obtained criteria here possess wider application scope.

III. EFFECTS OF DEVIATING ARGUMENT AND
STOCHASTIC DISTURBANCE
Let N and<+ be the sets of natural numbers and nonnegative
real numbers, respectively. Denote <n as the n-dimensional
real space. The Euclidean norm in <n is recorded as ‖ · ‖.
E(·) stands for mathematical expectation. Fix two real-value
sequences {αk}, {ηk}, k ∈ N , such that αk < αk+1, αk ≤
ηk ≤ αk+1 for all k ∈ N with αk → +∞ as k → +∞. Let
(�,F ,P) be a compete probability space with {Ft }t≥t0≥0.
B(t) represents one-dimensional Brownian motion on the
compete space. In this section, we will consider the effects of
deviating argument and stochastic disturbance on the expo-
nential stability to the following nonlinear systems:{

dy(t)= f (y(t), y(β(t)), t)dt + σy(t)dB(t), t ≥ t0 ≥ 0,

y(t0) = y0,
(16)

where the deviating function β(t) = ηk , if t ∈ [αk , αk+1),
k ∈ N , t ∈ <+, f : <n × <n × <+ → <n, σ is the noise
intensity.
Remark 6: System (16) is also a kind of mixed system

in stochastic environment. Actually, consider (16) on the
interval [αk , αk+1), k ∈ N , when αk ≤ t < ηk , (16) is an
advanced system, and when ηk < t < αk+1, (16) is a retarded
system. That is, system (16) can be alternately advanced and
retarded argument in stochastic environment.

System (16) can be regarded as the perturbed system of{
dx(t) = f (x(t), x(t), t)dt, t ≥ t0 ≥ 0,
x(t0) = x0 = y0.

(17)

Throughout this section, suppose that f (·) is local
Lispchitz, that is, there are constants l1 > 0 and l2 > 0, such
that

‖f (X1,Y1, t)−f (X2,Y2, t)‖ ≤ l1‖X1−X2‖+l2‖Y1−Y2‖,

for all X1 ∈ <
n, X2 ∈ <

n, Y1 ∈ <
n, Y2 ∈ <

n, t ∈ <+, and
f (0, 0, t) = 0.

It is clear that system (16) has a trivial state y = 0.
Certainly, system (17) also has a trivial state x = 0. Without
loss of generality, we assume that system (16) has an unique
state y(t; t0, y0) for any given initial data t0 and y0.

The exponential stability of system (17) is defined in
Definition 1 and the exponential stability of system (16) is
defined as shown below.
Definition 2: The state y(t; t0, y0) of system (16) is said

to be almost surely exponentially stable if for any t0 ∈ <+,
y0 ∈ <n, there exist 1 > 0 and 3 > 0 such that

‖y(t; t0, y0)‖ ≤ 1‖y0‖ exp {−3(t − t0)} , t ≥ t0 ≥ 0,

holds almost surely.
Definition 3: The state y(t; t0, y0) of system (16) is said

to be mean square exponentially stable if for any t0 ∈ <+,
y0 ∈ <n, there exist 1 > 0 and 3 > 0 such that

E‖y(t; t0, y0)‖2 ≤ 1‖y0‖2 exp {−3(t − t0)} , t ≥ t0 ≥ 0.

Remark 7: From Definitions 2 and 3, obviously, almost
sure exponential stability implies mean square exponential
stability, but not vice versa. However, under

‖f (X1,Y1, t)−f (X2,Y2, t)‖ ≤ l1‖X1−X2‖ + l2‖Y1−Y2‖,

for all X1 ∈ <
n, X2 ∈ <

n, Y1 ∈ <
n, Y2 ∈ <

n, t ∈ <+,
we have the following claim: The mean square exponential
stability of system (16) implies the almost sure exponential
stability of system (16), see [27].
Next, we give a presumption:

(A3)6α2 l22 + 9α(2αl21 + σ
2)(1+ 2α2 l22 )

exp
{
3α(2αl21 + σ

2)
}
< 1.

The lemma developed below unmasks the relationship
of state of system (16) in current time t and deviating
function β(t).
Lemma 2: Let (A1) and (A3) hold, and y(t) be a solution

of system (16). Then the following inequality

E‖y(β(t))‖2 ≤ $E‖y(t)‖2 (18)

holds for all t ∈ <+, where

$ = 3(1− ô)−1,

ô = 6α2 l22+9α(2αl
2
1+σ

2)(1+2α2 l22 )exp
{
3α(2αl21+σ

2)
}
.
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Proof: Fix t ∈ <+, there exists k ∈ N , such that t ∈
[αk , αk+1), β(t) = ηk . Then it follows that

E‖y(t)‖2

= E‖y(ηk )+
∫ t

ηk

f (y(s), y(ηk ), s)ds

+

∫ t

ηk

σy(s)dB(s)‖2

≤ 3
[
E‖y(ηk )‖2 + E‖

∫ t

ηk

f (y(s), y(ηk ), s)ds‖2

+E‖
∫ t

ηk

σy(s)dB(s)‖2
]

≤ 3
[
E‖y(ηk )‖2 + 2αE‖

∫ t

ηk

(
l21‖y(s)‖

2
+ l22‖y(ηk )‖

2
)
ds

+E
∫ t

ηk

σ 2
‖y(s)‖2ds

]
≤ 3(1+ 2α2 l22 )E‖y(ηk )‖

2

+3(2αl21 + σ
2)
∫ t

ηk

E‖y(s)‖2ds. (19)

Applied Gronwall-Bellman lemma to (19), we obtain

E‖y(t)‖2 ≤ 3(1+ 2α2l22 )E‖y(ηk )‖
2 exp

{
3α(2αl21 + σ

2)
}
.

(20)

Similarly, for t ∈ [αk , αk+1), from (20), we have

E‖y(ηk )‖2

≤ 3E‖y(t)‖2 + 6α2 l22E‖y(ηk )‖
2

+3(2αl21 + σ
2)
∫ t

ηk

E‖y(s)‖2ds

≤ 3E‖y(t)‖2 + 6α2l22E‖y(ηk )‖
2

+9α(2αl21 + σ
2)(1+ 2α2l22 )

× exp
{
3α(2αl21 + σ

2)
}
E‖y(ηk )‖2

= 3E‖y(t)‖2 + ôE‖y(ηk )‖2, (21)

where

ô = 6α2 l22 + 9α(2αl21 + σ
2)(1+ 2α2 l22 )

× exp
{
3α(2αl21 + σ

2)
}
.

Combined with (A3),

E‖y(ηk )‖2 ≤ 3(1− ô)−1E‖y(t)‖2

= $E‖y(t)‖2,

where $ = 3(1 − ô)−1. Therefore, (18) holds for t ∈
[αk , αk+1). By the randomicities of t and k , (18) holds for
all t ∈ <+.
In the following, we investigate the effects of deviating

argument and stochastic disturbance on the robustness of
global exponential stability of system (16).
Theorem 2: Let (A1) and (A3) hold, and system (17) to

be globally exponentially stable. System (16) is mean square

exponentially stable and also almost surely exponentially

stable if |σ | <
σ̄
√
2
and α < min(

ρ

2
, ᾱ), where σ̄ is the unique

positive solution ŵ of the following equation (22)

2l exp {−κρ}+8[128l22ρ+2ŵ
2]
ρl
κ

× exp
{
2ρ
(
8ρ[l21 + 2l22 ]+2[128l

2
2ρ+ŵ

2]
)}
= 1, (22)

and ᾱ is the unique positive solution w̌ of the following
equation (23)

2l exp
{
−κ(ρ−w̌)

}
+8[32l22ρ(1+ϑ)+σ̄

2]
ρl
κ

× exp
{
2ρ
(
8ρ(l21 + 2l22 )+2[32l

2
2ρ(1+ϑ)+σ̄

2]
)}
= 1,

(23)

with ϑ = 3(1 − ǒ)−1, ǒ = 6w̌2l22 + 9w̌(2w̌l21 + σ̄
2)(1 +

2w̌2 l22 ) exp
{
3w̌(2w̌l21 + σ̄

2)
}
, ρ >

ln (l)
κ

> 0.
Proof: For convenience, we write x(t; t0, x0) ≡ x(t)

and y(t; t0, y0) ≡ y(t). From (16) and (17), together with
Lemma 2, for any t ≥ t0 ≥ 0, we have

E‖y(t)− x(t)‖2

= E

∥∥∥∥ ∫ t

t0
[f (y(s), y(β(s)), s)− f (x(s), x(s), s)]ds

+

∫ t

t0
σy(s)dB(s)

∥∥∥∥2
≤ 2E

∥∥∥∥ ∫ t

t0
[f (y(s), y(β(s)), s)− f (x(s), x(s), s)]ds

∥∥∥∥2
+2E

∥∥∥∥ ∫ t

t0
σy(s)dB(s)

∥∥∥∥2
≤ 4(t−t0)

∫ t

t0
[l21E‖y(s)−x(s)‖

2
+l22E‖y(β(s))−x(s)‖

2]ds‖2

+2σ 2
∫ t

t0
E‖y(s)‖2ds

≤ 4(t − t0)
∫ t

t0
(l21 + 2l22 )E‖y(s)− x(s)‖

2ds

+16 l22 (t − t0)
∫ t

t0
E‖y(β(s))‖2ds

+16 l22 (t − t0)
∫ t

t0
E‖y(s)‖2ds

+2σ 2
∫ t

t0
E‖y(s)‖2ds

≤ 4(t − t0)
∫ t

t0
(l21 + 2l22 )E‖y(s)− x(s)‖

2ds

+

[
16l22 (t − t0)(1+$ )+ 2σ 2

] ∫ t

t0
E‖y(s)‖2ds

≤

{
4(t − t0)(l21 + 2l22 )+ 2

[
16l22 (t − t0)(1+$ )+ 2σ 2

]}
×

∫ t

t0
E‖y(s)− x(s)‖2ds

+2
[
16l22 (t − t0)(1+$ )+ 2σ 2

]
l
κ
‖y0‖2(t − t0). (24)
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Applied Gronwall-Bellman lemma to (24), we obtain for
t0 + α ≤ t ≤ t0 + 2ρ,

E‖y(t)− x(t)‖2

≤ 2[32l22ρ(1+$ )+ 2σ 2]
2ρl
κ
‖y0‖2

× exp
{
2ρ
(
8ρ[l21 + 2l22 ]+ 2[32l22ρ(1+$ )+ 2σ 2]

)}
.

Therefore, for t0 + α ≤ t ≤ t0 + 2ρ,

E‖y(t)‖2

≤ 2E‖x(t)‖2 + 2E‖y(t)− x(t)‖2

≤ 2l‖y0‖2 exp {−κ(t − t0)}

+4[32l22ρ(1+$ )+ 2σ 2]
2ρl
κ
‖y0‖2

× exp
{
2ρ
(
8ρ(l21 + 2l22 )+ 2[32l22ρ(1+$ )+ 2σ 2]

)}
.

(25)

Thus, for t0 − α + ρ ≤ t ≤ t0 − α + 2ρ,

E‖y(t)‖2

≤ 2l‖y0‖2 exp {−κ(ρ − α)}

+4[32l22ρ(1+$ )+ 2σ 2]
2ρl
κ
‖y0‖2

× exp
{
2ρ
(
8ρ(l21+2l

2
2 )+2[32l

2
2ρ(1+$ )+2σ 2]

)}
= õ‖y0‖2,

where

õ = 2l exp {−κ(ρ − α)} + 4[32l22ρ(1+$ )+ 2σ 2]
2ρl
κ

× exp
{
2ρ
(
8ρ(l21+2l

2
2 )+2[32l

2
2ρ(1+$ )+2σ 2]

)}
.

From (22) and (23), we see õ < 1 when α < min(
ρ

2
, ᾱ),

|σ | <
σ̄
√
2
. Setting υ = −

ln(õ)
ρ

, we obtain

E‖y(t)‖2 ≤ exp {−ρυ} ‖y0‖2. (26)

From the uniqueness of solution of system (16),

y(t; t0, y0) = y
(
t; t0 + (m− 1)ρ, y(t0 + (m− 1)ρ; t0, y0)

)
,

(27)

wherem is positive integer. Therefore, from (26) and (27), for
t ≥ t0 − α + mρ,

E‖y(t; t0, y0)‖2

=E‖y
(
t; t0 + (m− 1)ρ, y(t0 + (m− 1)ρ; t0, y0)

)
‖
2

≤ exp {−ρυ} ‖y(t0 + (m− 1)ρ; t0, y0)‖2

= exp {−ρυ} ‖y
(
t; t0+(m− 2)ρ, y(t0+(m− 2)ρ; t0, y0)

)
‖
2

≤ exp {−mρυ} ‖y0‖2.

Thus, for any t > t0 − α + ρ, there is a positive integer m
such that t0 − α + (m− 1)ρ ≤ t ≤ t0 − α + mρ,

E‖y(t; t0, y0)‖2 ≤ exp {−υ(t − t0)} exp {υ(ρ − α)} ‖y0‖2.

(28)

Clearly, (28) also holds for t0 ≤ t ≤ t0−α+η. So system (16)
is mean square exponentially stable. According to Remark 7,
system (16) is also almost surely exponentially stable.
Remark 8: If system (17) is globally exponentially stable,

then the corresponding perturbed system (16) can remain to
be mean square exponentially stable and also almost surely
exponentially stable when the length of interval of deviat-
ing function β(t) and the noise intensity σ are lower than

the given bounds min(
ρ

2
, ᾱ) and

σ̄
√
2
, respectively. That is,

Theorem 2 gives a calculation numerical result on the robust-
ness of global exponential stability of perturbed nonlinear
systems in the presence of deviating argument and stochastic
disturbance.
Remark 9: The bounds of the length of interval of deviating

function β(t) and the noise intensity σ in Theorem 2 can be
easily calculated. By using MATLAB, transcendental equa-
tions (22) and (23) can be solved numerically for σ̄ and ᾱ,
respectively, where any other parameters are known.
Remark 10: Huang et al. [24] have analyzed the robust

stability of uncertain neurodynamic systems with stochastic
disturbance by using the Ito formula, Lyapunov function,
and Halanay inequality. In this paper, the robustness results
of global exponential stability of nonlinear systems in the
presence of deviating argument and stochastic disturbance are
established by applying the idea of stochastic analysis theory
and inequality technique. The derived criteria possess less
conservatism. In fact, it is possible to generalize the main
results here to other complex systems, such as multi-agent
systems in the presence of deviating argument and stochastic
disturbance, sensor networks in the presence of deviating
argument and stochastic disturbance, etc. The relevant results
will be carried out in the near future.

IV. NUMERICAL EXAMPLES
In this section, two examples are given to verify the obtained
theoretical results.
Example 1: Consider a two-dimensional nonlinear system

with deviating argument{
ẏ1(t)=−y1(t)−0.01 sin2(y1(β(t)))+0.01 sin2(y2(β(t))),
ẏ2(t)=−y2(t)+0.01 sin2(y1(β(t)))+0.01 sin2(y2(β(t))),

(29)

where {αk} =
{ k
4

}
, {ηk} =

{
2k+1
8

}
, k ∈ N . The deviating

function β(t) = ηk , if t ∈ [αk , αk+1), k ∈ N .
Consider the undisturbed system of (29) as follows:{
ẋ1(t)=−x1(t)−0.01 sin2(x1(t))+0.01 sin2(x2(t)),
ẋ2(t)=−x2(t)+0.01 sin2(x1(t))+0.01 sin2(x2(t)).

(30)
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FIGURE 1. The convergent behavior of system (30).

By many of the existing criteria, we can easily obtain that
system (30) is globally exponentially stable with l = 1.2
and κ = 0.9. Figure 1 describes the convergent behavior of

system (30). Let η = 1 >
ln (1.2)
0.9

= 0.2026, l1 = 0.02,
l2 = 0.03, substituting them into (8) and (9), then

x̂
[
0.02(1+ 0.03x̂) exp

{
0.02x̂

}
+ 0.03

]
= 1,

1.2 exp
{
−0.9(1− x̌)

}
+0.03

[
1+

(
1− x̌[0.02(1+ 0.03x̌)

× exp
{
0.02x̌

}
+ 0.03]

)]
/0.9

× exp
{
2
[
0.08+ 0.03

(
1− x̌[0.02(1+ 0.03x̌)

× exp
{
0.02x̌

}
+ 0.03]

)]}
= 1.

By solving the transcendental equations above, we get
ᾱ = 14.5 and ¯̄α = 0.67. Therefore, according to Theorem 1,
when α < min( η2 , ᾱ, ¯̄α), that is, α < 0.5, so system (29)

FIGURE 2. The evolvement behavior of system (29).

still is globally exponentially stable. Figure 2 depicts the
evolvement behavior of system (29).
Example 2: Consider a one-dimensional neurodynamic

system

ẋ(t) = −3.1x(t)+ 0.1 tanh(x(t)). (31)

By many of the existing criteria, we can easily obtain that
system (31) is globally exponentially stable with l = 1.1
and κ = 3. Figure 3 describes the convergent behavior of
system (31).

When the deviating argument and stochastic disturbance
are exerted to (31), then we can get a class of disturbed
systems of (31) as follows:

dy(t) =
[
− 3.1y(t)+ 0.099 tanh(y(t))

+ 0.001 tanh
(
y(β(t))

)]
dt + σy(t)dB(t), (32)

where the deviating function β(t) = ηk , if t ∈ [αk , αk+1),
k ∈ N , t ∈ <+, σ is the noise intensity, B(t) is a one-
dimensional Brownian motion on the compete space.
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FIGURE 3. The convergent behavior of system (31).

FIGURE 4. The evolvement behavior of system (32) with σ = 0.01,{
αk
}

=

{
k

100

}
,
{
ηk
}

=

{
2k+1
200

}
, k ∈ N .

FIGURE 5. The instability behavior of system (32) with σ = 1,{
αk
}

=

{
k

100

}
,
{
ηk
}

=

{
2k+1
200

}
, k ∈ N .

Substituting the computing parameters into (22), it yields

(5.76× 0.00001+ 4ŵ2)× exp
{
3.3246+ 0.96ŵ2

}
/3

+2 exp {−0.72} = 1.

FIGURE 6. The instability behavior of system (32) with σ = 0.01,{
αk
}

=

{
k
2

}
,
{
ηk
}

=

{
2k+1

4

}
, k ∈ N .

FIGURE 7. The instability behavior of system (32) with σ = 1,{
αk
}

=

{
k
2

}
,
{
ηk
}

=

{
2k+1

4

}
, k ∈ N .

Thus, we have σ̄ = 0.0265. Note that |σ | <
σ̄
√
2
, it derives

|σ | < 0.0187.
Combined with σ̄ = 0.0265, substituting the other com-

puting parameters into (23), then

(4.701× 0.0001+ 3.84× 0.000001w̌)

× exp
{
3.3249+ 2.765× 0.000001w̌

}
+2 exp {−0.72} = 1.

Hence, it is relatively easy to obtain ᾱ = 125.7645.
Recalling that α < min(

ρ

2
, ᾱ), therefore, α < 0.0159.

In (32), select σ = 0.01, {αk} =
{ k
100

}
, {ηk} =

{
2k+1
200

}
,

k ∈ N . The deviating function β(t) = ηk , if t ∈ [αk , αk+1),
k ∈ N . Then the conditions in Theorem 2 are all satisfied.
Accordingly, in this case, system (32) is mean square expo-
nentially stable and also almost surely exponentially stable.
Figure 4 depicts the evolvement behavior of system (32) with
σ = 0.01, {αk} =

{ k
100

}
, {ηk} =

{
2k+1
200

}
, k ∈ N .

Figure 5 shows the instability behavior of system (32)
with σ = 1, {αk} =

{ k
100

}
, {ηk} =

{
2k+1
200

}
, k ∈ N .
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Actually, in this case, such parameters are again not suitable
for the conditions of Theorem 2.

Figure 6 shows the instability behavior of system (32) with
σ = 0.01, {αk} =

{ k
2

}
, {ηk} =

{
2k+1
4

}
, k ∈ N . Actually,

in this case, such parameters are again not suitable for the
conditions of Theorem 2.

Figure 7 shows the instability behavior of system (32) with
σ = 1, {αk} =

{ k
2

}
, {ηk} =

{
2k+1
4

}
, k ∈ N . Actually, in this

case, such parameters are again not suitable for the conditions
of Theorem 2.

V. CONCLUDING REMARKS
This paper aims to investigate the robustness of global expo-
nential stability of nonlinear systems evoked by deviating
argument and stochastic disturbance. The results derived here
show that an exponentially stable nonlinear system perturbed
by deviating argument, stochastic disturbance, or both is able
to sustain exponential stability provided that the length of
interval of deviating function and the noise intensity are lower
than the upper bounds derived herein. Analysis and design
method in this paper is available for ever more complex
control systems.
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