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ABSTRACT This paper presents a compression algorithm for color filter array (CFA) images in a wireless
capsule endoscopy system. The proposed algorithm consists of a new color space transformation (known as
YLMN), a raster-order prediction model, and a single context adaptive Golomb–Rice encoder to encode the
residual signal with variable length coding. An optimum reversible color transformation derivation model
is presented first, which incorporates a prediction model to find the optimum color transformation. After
the color transformation, each color component has been independently encoded with a low complexity
raster-order prediction model and Golomb–Rice encoder. The algorithm is implemented using a TSMC
65-nm CMOS process, which shows a reduction in gate count by 38.9% and memory requirement by 71.2%
compared with existing methods. Performance assessment using CFA database shows the proposed design
can outperform existing lossless and near-lossless compression algorithms by a large margin, which makes
it suitable for capsule endoscopy application.

INDEX TERMS Wireless capsule endoscopy, color filter array, lossless image compression, reversible color
transformation.

I. INTRODUCTION
Wireless capsule endoscopy (WCE) is a pill-size cam-
era swallowed by the patient for gastrointestinal diagnosis.
The camera travels the gastrointestinal tract in a similar
fashion to ingested food, captures images along the entire
journey and sends these images wirelessly to the recorder
outside [1]. WCE has been playing an important role
in gastrointestinal disease management by allowing non-
invasive and patient-friendly monitoring of digestive tract.
Particularly, WCE serves as the first line modality in the
diagnosis of obscure gastrointestinal bleeding (OGIB), unex-
plained iron deficiency anemia (IDA), small bowel mucosal
lesions, Chron’s disease and Celiac disease [2]. Current
researches are going on the development of next-generation
wireless capsule with tools to perform biopsies, drug-
delivery, and active locomotion. With these tools, WCE has
the potential to replace standard diagnostic endoscopy within
the next 15 years [3]. However, the bottleneck of WCE
is the image quality, image transmission power and battery
life [4]. Preserving the image quality by the use of lossless

image compression could yield better performance from both
manual and computer assisted reviewing process [5].
However, self-powered battery and long transit time limit the
image resolution and the frame rate ofWCE. Therefore, keep-
ing the image quality high while reducing the transmission
power and bandwidth is a challenge.

The image sensors in WCE mostly utilize Bayer color
filter array (CFA) to capture the color information with only
single sensor plane [6]. Later, a full-color image is produced
by a pre-processing method called demosaicing stage, which
interpolates the missing colors. However, demosaicing stage
increases the redundancy in the image without adding any
information. Furthermore, application of a suboptimal low
complexity demosaicing stage severely degrades the image
quality by introducing artificial color artifacts [7]. In WCE,
this leads to degradation of critical findings in the mucosa
layer, villous pattern, and underlying blood veins [8], [9].
A lossless transmission of the raw CFA data allows the use
of a high complexity edge preserving demosaicing algorithm
in the workstation. Additionally, as these images contain
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FIGURE 1. A typical CFA image in capsule endoscopy, (a) Bayer Pattern, (b) Mosaic Image, (c) Sub-images generated by separating the color
components, (d) Line plot showing the color channel along row 100 in each sub-image to show the redundancy between the color
components.

medical diagnostics, archiving them according to Picture
Archiving and Communication system requires the lossless
distortion [10]. Standard lossless compression engine such
as JPEG-LS, JPEG-2000, JPEG-XR or HEVC Intra coding
are not feasible for this task due to their computationally
expensive design and inferior performance in coding CFA
image. Therefore, a dedicated lossless compression scheme
for capsule endoscopic image is sought in many of the works.

Several lossless compression methods for wireless cap-
sule endoscopy are proposed in the recent years [10], [11].
However, these methods operate on the full-color image
and ignore the error generated and complexity added in the
demosaicing stage. There are few near-lossless compression
methods proposed for CFA endoscopic images that utilize
JPEG-LS lossless algorithm along with a deinterlacing fil-
ter to independently code the different color components in
CFA image [12]–[14]. However, these algorithms require a
buffer memory for storing the context model. As well as
the correlation between color components is not sufficiently
exploited in these algorithms.

Recently, Malvar et. al. has proposed an optimum color
transformation termed as YDgCoCg [15]. By exploiting the
inter-color correlation in the CFA image through color trans-
formation, they have demonstrated an improved lossless com-
pression rate for transform based code such JPEG-2000 and
JPEG-XR. Similarly, an optimum color transformation that
can capture the unique characteristics in endoscopic CFA
image can lead to a better image compression with a simple
coder.

In this paper, we have proposed a low complexity image
compression system for CFA endoscopic image. Our main
contribution is the color space derivation model based on
the prediction model and entropy coder. This derivation
model gives a separable color space transformation termed as
YLMN, which can completely exploit the inter-color corre-
lation in CFA image. Furthermore, as YLMN is separable, it
can work directly on the raster order data, leading to very effi-
cient implementation. Based on YLMN, we have proposed a
low complexity lossless image compression system for wire-
less capsule endoscopy system. The proposed encoder uses
a simple delta pulse coded modulation (DPCM) based pre-

diction model with a low complexity adaptive Golomb-Rice
encoder to entropy code the residual signal. The exclusion
of high complexity prediction models such as median edge
prediction, context modeling, and Huffman encoder lowers
the hardware implementation cost in terms of computational
resource and memory.

In the experiments, the proposed method is compared
with different lossless compression algorithms for both
RGB and CFA endoscopic image. The results show that
our proposed method yields the best performance among
the existing method and standard lossless engine for the
endoscopic image. We have compared the results for some
simulated CFA image of a high-quality endoscopic image
with various conditions such as ulcer, celiac disease. These
comparisons show that the proposed method outputs the low-
est lossless bit rate on all the images.

II. MATHEMATICAL DERIVATION OF ORCT DERIVATION
A typical CFA image generated by Bayer pattern (Fig. 1(a)) is
presented in Fig. 1(b). The Bayer pattern consists of repeating
2× 2 macroblock with two green components, one red com-
ponent, and one blue component. Therefore, a natural way to
compress the CFA image is to separate the image into several
sub-images consisting of the different color components. For
example, by taking a pixel from each 2 × 2 macroblock, we
can get four sub-images comprising two green images, one
red image, and one blue image. These sub-images exhibit a
high degree of correlation between them similar to the corre-
lation between color channels in RGB image. For example,
row 100 for each sub-image has been plotted in Fig. 1(d),
showing that the similarity in the color components. Our goal
is to design a color space transformation that can reduce
the redundancy between these sub-images and improve the
coding performance.

There are two ways we can transform the components in
2 × 2 macroblock in CFA image as illustrated in Fig. 2.
We can use a non-separable filter by ordering the compo-
nents in the 2 × 2 macroblock lexicographically and apply
a 4 × 4 transform matrix (Fig-2(a)). In the second method
shown in Fig. 2(b), we can apply a separable filter, where
each column and each row is considered as a 1-D signal and
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FIGURE 2. Workflow of (a) Non-separable color transformation and
(b) Separable color transformation.

1-D transformation are used to map the components into a
new color space as shown in eqn(1):-[

P1 P2
P3 P4

]
= TC

[
Gr R
B Gb

]
TR (1)

where Tc and TR are the column and row transformation
matrix respectively. The advantage of the latter approach is
lower implementation cost. It also allows subdividing the
color derivation by deriving 2× 2 row transformation matrix
and 2 × 2 column transformation matrix. We can formally
define the color space derivation as determining a matrix A
of dimension 2× 2 with four coefficients.

A =
[
a11 a12
a21 a22

]
(2)

To ensure integer-reversible color transformation matrix,
we employ the Generalized S-transform framework [38].
According to this framework, A must be unimodular and
one row of A should contains only integer coefficients [38].
If the determinant of A is lower than one, there is an essential
reduction of data, which leads to distortion in the recon-
struction. One of the transformation will be the luminance
signal or the approximate signal that contain the major por-
tion of the signal variance. The second output signal will
be a chrominance signal, where the coefficients will have
equal but opposite magnitude [16]. Combining these condi-
tions leads to the derivation of the following matrix for each
2× 2 matrix that has only one unknown parameter α :-

A =
[
α 1− α
1 −1

]
(3)

For example, say the two components that need to be
transformed are X and Y. The outputs of the transform are
W and D. If now the residual signal of these components are
respectively dX , dY , dW , dD, then we can express dW and
dQ in terms of α :-

dW = αdX + (1− α) dY and dD = dX − dY (4)

The goal of the color transformation is to reduce the intra-
spectral redundancy between the residual signal dW and dD.
We have represented the intra-spectral redundancy with the
correlation value expressed as:-

Jcorr =
cov(dW , dD)
√
var(dW )var(dD)

(5)

On the other hand, the coding performance of a prediction-
based system depends on the accuracy of the prediction
model, which can be represented by the variance of the
residual signals. For example, the rate-distortion performance
of a scalar quantizer based coder for a stochastic signal X can
be written as [17]:-

D(R) = ξ2σ 2
x 2
−2R (6)

where D is the distortion, R is the rate, ξ is a distribu-
tion dependent constant and σ 2

x is the variance of the sig-
nal X . Therefore, to represent the cost of prediction error, we
have used the variance of the residual signal, which can be
expressed as:-

Jpred

=

(
(α2 + 1)Sx+2(α(1− α)− 1)Sxy+

(
1+ (1− α)2

)
Sy
)
(7)

where Sx = 1
N

N∑
i=1

dX2
i , Sy =

1
N

N∑
i=1

dY 2
i and Sxy =

1
N

N∑
i=1

dXidYi

To combine these two cost functions, we have used the
Lagrange multiplier as shown in eqn (8):-

J = Jcorr + λ× Jpred (8)

The model in (8) is qualitatively supported by the experi-
mental results as shown in Fig. 3. We plot the cost functions
as a function of the parameter α for the Lena image. All
the residual signals are estimated using the DPCM prediction
model. If we denote the sub-image as X, then DPCM residual
signal is defined by eqn (9):-

dX (i, j) = X (i, j)− X (i, j− 2) (9)

We apply this predictionmodel for the R-line in CFA image
which contains R components and Gr components. We also
plot the entropy of the residual signal using a color transfor-
mation defined with the parameter α. The observed curves all
has a minima close to 0.5, which indicates the minima of the
model (8) corresponds to the minima of lossless compression
rate represented by the entropy.

A. ORCT FOR WCE
Deriving image-wise ORCT will introduce a substantial
increase in computational overhead in the capsule compres-
sion system. Instead, we derive the optimum color transfor-
mation in offline, by using an extensive endoscopic image
dataset. The dataset contains 200 images taken for different
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FIGURE 3. Variation of cost functions and entropy with respect to α for
Lena image (a) Normalized error variance; (b) Cross-correlation; (c) Total
cost (d) Entropy of error signal in all cases minima occurs at 0.5.

condition and location in capsule endoscopy. To derive the
color transformation, we apply exhaustive search method to
minimize the cost function defined by eqn. (8). First, we
derive the row transformation matrix for R-line and B-line
in the CFA image. The residual error signal was determined
using the DPCM predictor as defined in eqn (9). The resultant
transformation matrices are shown in eqn (10) and (11):-[

Wr
Dr

]
=

 1
2

1
2

−1 1

[Gr
R

]
(10)

[
Wb
Db

]
=

 1
2

1
2

1 −1

[Gb
B

]
(11)

To calculate the column transformation matrix, the outputs
of the row transformation matrix are fed again to the deriva-
tion model as inputs. The results showed that for differ-
ence signal, the original signal contains the lowest entropy.
This indicates that R-G and G-B have a lower correlation.
However, the weighted signal contains a high amount of
correlation, which can be reduced by using the column trans-
formationmatrix. The resultant column transformationmatri-
ces are shown in eqn (12) and (13).[

Y
L

]
=

 1
2

1
2

1 −1

[Wr
Wb

]
(12)[

M
N

]
=

[
1 0
0 1

] [
Dr
Db

]
(13)

We denote the color transformation as YLMN. Fig. 4
shows the signal flow graph of YLMN color transformation,

while Fig. 5 shows the four resultant sub-images. We also
plot the line 100 for each sub-image to demonstrate the
reduction in correlation between the signals. Observed plots
indicate that the YLMN color transformation has condensed
a major portion of the variance into the Y channel. We plot
the surface of each sub-image in Fig. 6. It shows that three
channels L, M, and N are very smooth and contain mostly
low variance chrominance information. Since intra-spectral
redundancy is reduced, lower lossless bit rate is expected.

III. YLMN BASED LOSSLESS IMAGE
COMPRESSION FOR WCE
Fig. 7 illustrates the block diagram of the proposed lossless
encoder based on the proposed YLMN color transforma-
tion. The encoder consists of YLMN color transformation,
structure separation, a simple delta pulse coded modulation
prediction model and a single context adaptive Golomb-Rice
encoder. For the input Bayer CFA image shown in
Fig. 1(b), first each R-line and B-line is transformed using
the row transformation matrices defined in eqn (10) and (11)
respectively. The difference signal generated in this step are
sent directly to the prediction model. On the other hand,
the weighted average signals are stored in buffer mem-
ory for further processing using the column transformation
matrix defined in eqn (12). This transformation reduces the
inter-color redundancy between the color components. After
the color transformation, a structure separation stage divides
the images into four sub-images, where each sub-image con-
tains pixels from one color plane. This step removes the artifi-
cial discontinuities between the pixels. Then each sub-images
pass through a DPCM prediction model, which produces the
prediction error signal dY , dL, dM and dN . Note that, the
prediction model works in raster order fashion and does not
require any line buffer. Therefore dM and dN , which are gen-
erated in raster order fashion, can be processed in raster order
fashion. The details of the color transformation, structure sep-
aration, and predictionmodel will be discussed in this section.
Finally, a low complexity but efficient Golomb-Rice Encoder
code the error signal generated by the prediction model to
produce the bit stream. The bit stream is then sent wirelessly
using the RF transmitter to the data recorder located outside
of the body.

A. STRUCTURE SEPARATION
After the YLMN color transformation, the proposed scheme
deinterleaves the color components into four sub-images.
As previously mentioned in Section-II, direct compression
of CFA image is not efficient as the mosaic arrangement of
the color pixel produces artificial high frequencies. By dein-
terleaving the CFA image, four downsampled sub-images
can be extracted. This deinterleaved procedure removes the
artificial high frequencies and therefore improves the com-
pression performance. In previous CE image compression
systems [12], structure separation was achieved by shifting
the G components to the left of the frame and shifting the
R and B components to the right of the frame as shown in
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FIGURE 4. Flowgraph of the proposed reversible color transformation ORCT-1 and ORCT-2.

FIGURE 5. Color decomposition in the proposed YLMN colorspace.
(a) The color components, (b) The line plots showing the row 100 in
each sub-images to demonstrate the reduction in correlation between the
transformed color space.

Fig. 8(a). However, due to the high buffer memory require-
ment, this arrangement is not suitable for hardware imple-
mentation. Therefore, instead of rearranging the components
in original CFA image, we have changed the predictionmodel
to generate prediction from same color components as shown
in Fig 8(b). This reduces the frame memory requirement and
leads to a low-memory implementation in VLSI.

B. DPCM
The compression efficiency of predictive coding depends on
how accurate the prediction model can predict. Simple linear
predictor often generates significant error around the edge
areas. To achieve high prediction performance in the
edge area, high complexity techniques such as template
matching [18], hierarchical prediction [19] and context
matching [20] have been employed in lossless CFA compres-
sion. However, these techniques require a high amount of
frame memory and computational complexity. On the other
hand, CE images have a larger smooth area than natural
images [21]. Therefore, in comparison to simple prediction
model, the improvement of coding performance by high-
complexity prediction technique is not significant enough to
justify the increase in compression overhead. Simple predic-
tion models such as delta pulse coded modulation (DPCM)
prediction model have shown impressive performance in
terms of computational complexity and lossless compression

ratio in capsule endoscopic image [10], [11]. The proposed
prediction model achieves a high prediction performance by
exploiting the smoothness of the endoscopic CFA image
after the YLMN color transformation. It utilizes the hori-
zontal prediction to handle the pixel in a conventional raster
scan order without any buffer memory. To address the dis-
continuity between the neighboring pixels in CFA images,
the prediction template is changed as shown in Fig 8(b).
In our model, prediction value is generated from nearest pixel
from the same color plane in the horizontal direction using
eqn. (9). As the application of YLMN transformation takes
into account the inter-color correlation, independent encod-
ing of the deinterleaved sub-images using eqn. (13) yields
near optimal compression performance for CE images.

C. GOLOMB-RICE ENCODER
This section presents the single context Golomb-Rice encoder
for our compression system. In designing a prediction
encoder, it is important to reduce the energy of the resid-
ual signal as much as possible. The YLMN transforma-
tion and the DPCM prediction model accomplish this goal
by reducing the intra-spectral and inter-spectral redundancy.
In addition, if the probability distribution function (pdf) of
the residual signal can be correctly estimated, we can further
reduce the entropy and thus enhance the compression per-
formance. Therefore, we have used a single context for each
sub-images, to estimate the pdf of a residual signal contin-
uously while coding the residual signal. The principal of the
AdaptiveGolomb-Rice coder used here is similar to JPEG-LS
encoding [22]. However, instead of using 365 contexts for
each color plane, our encoder only utilizes one context for
each color plane. This modification results in a drastic reduc-
tion of computational complexity and memory. The algorith-
mic description is given in Fig 9.

As the different color components in the YLMN color
space have different characteristics and statistical properties,
they are encoded separately with separate context. First, the
residual signal is converted to a non-negative number using a
mapping function. Then the Golomb-Rice coding [23] trans-
forms the number into two strings. The first strings is an unary
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FIGURE 6. Surface plot of the original color components and transformed color components, showing the smoothness in the
transformed chrominance components.

FIGURE 7. Block diagram of the proposed lossless compression algorithm.

FIGURE 8. (a) Structure separation using rearrangement of the pixels,
(b) Structure separation achieved by modifying the prediction template.

representation of the quotient
⌊
M
2k

⌋
as the prefix, while the

second string is the fixed length code of the remainder. The
codelength for residual error dX is

⌊
2|dX |
2k

⌋
+ k + 1.

The parameter k is continuously updated based on the
statistics of the signal using two registers to count the number
of occurrences (Nc) and accumulate the error (Ac). To reduce
the implementation cost, a threshold value NThreshold = 8 was
used. If Nc becomes greater than this threshold value, both
Nc and Ac were halved.

D. CORNER CLIPPING
We have utilized the corner clipping mechanism presented
in [24] to discard the dark corner regions in the CE images.
This allows us to code the corner regions without any bits.
As the size of the image and the shape of the corner region is
known, the decoder can reconstruct the image using the bit-
stream. Therefore, this is an essentially a lossless mechanism.

IV. PERFORMANCE ANALYSIS
In this section, the performance of the proposed image
compression algorithm is assessed and compared with
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FIGURE 9. Pseudo-code for the proposed algorithm for residual signal
encoding. It shows the encoding of the Y components. The encoding of L,
M, and N also follows a similar procedure with different Nc and Ac values
to store their context. Here, Golomb_Rice function returns the bitstream
to code the value M with parameter k using a Golomb-Rice, entropy coder.

other lossless compression method developed for capsule
endoscopy compression as well as lossless compression
method such as JPEG-LS and JPEG-2000. Experiments are
carried out using 100 images taken from KID Database [25].
20 example images are shown in Fig. 10. This database is
chosen because it is a publicly available database that con-
tains capsule endoscopic images taken from a wide variety
of location from gastrointestinal tract. All the images in the
database are captured by Mirocam and stored in full reso-
lution of 360 × 360 [5]. The full-color RGB images in the
database are sampled by the Bayer CFA pattern to produce the
simulated CFA grayscale image. Performances of different
lossless methods are evaluated by comparing compression
rate (CR). The CR is reported in bits per pixel (bpp), which
is defined as the ratio of the output bitstream in bits and the
total number of pixels in the image.

A. COMPARISON OF THE GRBG AND YLMN COLOR SPACE
This section compares the compression performance of the
original GRBG channels and the proposed YLMN color
space. For the first 5 test images in our database, Fig. 11
shows bar chart of the standard deviation of each sub-images
in GRBG color space and the YLMN color space. The height

TABLE 1. Lossless bitrate of the proposed compression scheme with
original GRBG color space and YLMN color space.

of each bar represents the standard deviation of the corre-
sponding sub-image. Fig. 11 shows that YLMN color trans-
formation significantly reduces the standard deviation of the
sub-images, particularly for L, M, and N channels. As lower
standard deviation indicates smooth image, it is expected
that L, M, and N-channel will result in a lower compression
bitrate. As shown in Table 1, the lossless compression rate is
reduced particularly for L and N channels.

B. COMPARISON OF VARIOUS PREDICTION MODEL
In our model, we have chosen the prediction model based
on the trade-off between computational complexity and pre-
diction accuracy. In order to investigate the influence of the
prediction model on coding performance, we examine two
median edge prediction (MEP) model. First median edge
predictor, which we denote MEP1, is widely used as a part
of the JPEG-LS compression engine [22]. MEP1 consists
of a flat region detector along with a causal template based
median edge detection circuit to predict the current pixel
from the neighboring pixels. In addition, we also assess the
median edge prediction model presented in [26], which we
denote as MEP2. MEP2 discards the flat region detection to
reduce the computational complexity. Both these two model
is applied on the original CFA image where the context
model is modified according to Fig. 8. We have applied
our prediction model on the original CFA image and the
YLMN image. Fig. 12 shows the performance in terms of
prediction gain and entropy of the residual signal.

The prediction gain is defined as the ratio between the
variance of the original signal to the residual signal measured
as shown in eqn 14:-

Gp = 10 log
σori

σpred
(14)

where, σori and σpred are the variance of original signal and
residual signal respectively. On the other hand, the entropy of
the image can be determined by eqn (15):-

H = −
n∑
i=1

Pi log2 Pi (15)

where Pi is the probability of occurrence of intensity value i.
Since the entropy of image date dictates the theoretical lower
bound of lossless compression rate achievable, we can assess
the efficiency of different prediction model. The proposed
method with the YLMN color transformation demonstrates
the highest prediction gain and the lowest entropy, indicat-
ing a potential high compression efficiency. MEP2 can give
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FIGURE 10. 20 (out of 100) test images taken from [25].

FIGURE 11. Comparison of standard deviation between the color
components in original color space and YLMN color space.

a comparable result to our proposed method. However, as
shown in Fig. 8, the prediction model in MEP2 requires
storing two line of data for the prediction, while DPCM does
not need any buffer memory. Therefore, the prediction model
is expected to have lower memory requirement.

We have also analyzed the computational complexity in
terms of normalized operations, such as addition (ADD),
shift (SHF), comparison (CMP). We have also consid-
ered the buffer memory (MEM) requirements for the color
space transformation and prediction computation. Table 2
shows the comparison. As expected, DPCM with horizon-
tal prediction provides the lowest complexity and mem-
ory requirement. However, Fig. 12 shows the entropy is
highest for DPCM model as the simple model can not
exploit the inter-color correlation sufficiently. Both MEP1
and MEP2 offers better compression performance with an
increase in computational complexity and buffer memory.
However, by employing the YLMN color transformation,
the proposed method smoothens the L, M and N chan-
nels. Thereby, it can give the best entropy and prediction
gain. The increase in the computational complexity and
buffer memory due to YLMN color transformation can be
considered tolerable given that the proposed method yields
reduction in average lossless bitrate of 0.2bpp as shown
in Fig 12.
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FIGURE 12. Comparison of (a) Prediction gain and (b) Entropy of sample
images from the KID database with various prediction model.

TABLE 2. Number of operation per pixel required for various prediction
model.

C. COMPRESSION PERFORMANCE
This section compares the coding performance of our
proposed algorithm with standard lossless engine such as
JPEG-2000 (J2K) and JPEG-LS (JLS), and also with recently
proposed lossless compression algorithms for CE: cost-
efficient lossless compression (CELC) [26], computationally
efficient image compressor (CEIC) [11], and lossless image
compression system (LICS) [10]. As JPEG-2000, JPEG-LS,
LICS, and CEIC work on the full-color image, we have
applied bilinear interpolation to interpolate the full-color
image from the original CFA image. Then the full-color
image was fed to these compression schemes, and the com-
pression rate is measured by considering the size of original
CFA image. Both CELC and our proposed method works
directly on raw CFA image, therefore demosaicking is not
used in these cases.

Except for J2K, all the other methods employ a predictive
coding technique for lossless encoding. In LICS, an RGB
demosaiced image is first mapped to YEF color space, which
can capture the unique characteristics of endoscopic image
compression. YEF color transformation reduces the complex-
ity of color transformation as well as significantly improves
the coding performance of the chrominance channel. Note
should be taken that YEF color transformation is not inte-
ger reversible and requires up to 3 additional fraction bits
for lossless color transformation. The lossless compression
scheme in CEIC consists of a reversible color transformation
YrUrVr, DPCM, and corner clipping. In CELC, the frame-
work of JPEG-LS is modified for designing a cost-efficient
image compressor for raw CFA image based on MEP2.
The context template in the prediction model was modified
to take account of the interleaved pixels in the raw CFA
image. A hybrid encoder consists of Huffman and Golomb-
Rice coder is used for efficient encoding of the residual
error.

The output compression bitrates for CE images from KID
Database achieved by various methods are listed in Table 3.
Note should be taken that we have only implemented the
prediction module MEP2 for CELC [26]. Due to unavailabil-
ity of the complete Huffman tree for the encoder, we could
not implement the encoder module. We have applied our
encoder module on the residual signal to generate the result
and compare with our method.

The results clearly illustrate that the algorithms based on
a full-color image are not efficient for lossless encoding of
raw CFA image. This indicates the compression stage cannot
completely remove the redundancy added by the demosaicing
stage. Among thesemethods, JPEG-LS gives the best result in
terms of compression efficiency, outperforming second best
LICS by 0.7 bpp.

On average, our proposed method with YLMN color trans-
formation, Golomb-Rice coding and clipping can outperform
all the other methods by achieving the lowest lossless com-
pression of 3.53 bpp. Even without clipping, our proposed
method has comparable results with CELC, which has a
higher computational complexity as shown in Table 2.

Table 4 shows the comparison of the proposed method
with other existing works on image compression for CE. For
comparison, we have separated the algorithms in terms of
‘demosaicking-first method’ or ‘compression-first method’.
For the demosaicking-first method, we have listed here the
reported results. Note should be taken that these reported
results neglect the demosaicking error incurred, as well
as hardware required to implement it on the image sen-
sor end. However, for low compression ratios (compression
ratio <10), demosaicking error dominates the reconstruction
error [7]. For the sake of fair comparison, demosaicking-first
methods should include the demosaicking error.

To distinguish between the color transformation for full-
color image and CFA image, three components are used for
full-color image and four components are used for CFA color
transformation. For example, the original color space in the
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TABLE 3. Lossless bitrate of various lossless compression scheme for CE (Two best results are marked in bold).

TABLE 4. Comparison with other compression schemes.

27

28

29

30

32

33

26

full-color image is denoted as RGB, while the companion
color transformation in CFA is denoted as GRBG.

From the observed results, it is evident our proposed
algorithm can give the lowest bitrate among all the other

lossless compression algorithm. The lossless bitrate of
proposed algorithm is greater than or comparable to the near-
lossless (PSNR>46dB) bitrate achieved by compression-
first algorithms such as [12] and [14]. Demosaicking-first
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TABLE 5. Comparison with other compression-first lossless
encoders for CE.

methods such as [11] reported a better compression rate.
However, this method neglects the demosaicking error, which
has a significant effect in near-lossless compression [7].

Apart from the lossless bitrate, we also assess the com-
putational complexity of the proposed compression method.
To this end, this work is realized by using a hardware descrip-
tion language (HDL) Verilog and an EDA tool Design Com-
piler is used to synthesize the proposed design by TSMC
65 nm CMOS process. The gate counts of this work are
only 3.78 k, and the core area is 29,627.28 (um × um).
The power consumption of this work is 0.9 mW simulated
by using SYNOPSYS Design Compiler when it operated at
250 MHz. The ASIC implementation of the design is built to
check the utilization of resources and compare with the other
compression-first algorithms. The resolution of the image
used in this implementation is 640× 640.
The reported implementation of demosaicking methods

such as [10], [11], and [24] neglected the implementa-
tion cost of demosaicking process. However, high-quality
hardware-oriented implementation of demosaicking process
can take significant amount of gate counts, memory area and
power [37]. Therefore for fair comparison, only compression-
first methods are considered here.

Table 5 shows the comparison with other compression
first encoder for CE. Our implementation reduces the gate
counts by 38.9% and memory requirement by 71.2% than the
previous design. The underlying reasons can be summarized
as: (i) application of low complexity DPCM prediction model
with a low complexity YLMN color transformation to exploit
both spectral and spatial redundancy, (ii) usage of a memory
efficient Golomb-Rice coder instead of a Huffman Coder,
(iii) application of a low complexity corner clipping mech-
anism to cut the uninformative regions in the corner.

V. CONCLUSION
In this paper, we proposed a novel lossless image compres-
sion scheme for wireless capsule endoscopy system. The
proposed system utilizes an optimum reversible color trans-
formation to reduce the spectral redundancy in the image and
adopts a low memory DPCM prediction model to reduce the
spatial redundancy in the image. An adaptive Golomb-Rice

encoder then compresses generated residual signal with sin-
gle context with low computational complexity and memory
requirement. A corner clipper scheme further reduces the
lossless bitrate by removing the uninformative corner regions
in the image. Experimental result shows that the proposed
algorithm outperforms other lossless compression algorithms
in terms of lossless compression rate, gate counts, and mem-
ory requirement.
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