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ABSTRACT Simultaneous localization and mapping (SLAM) has a wide range of applications, such as
mobile robots, intelligent vehicle localization, and intelligent transportation system. However, loop closure
detection is a challenge task for SLAM. This task concerns the difficulty of recognizing already mapped
areas. To this end, this paper proposes a novel loop closure detection method called image sequence
matching (ISM), which only uses a low-cost monocular camera. Thismethod first divides the alreadymapped
areas into some ‘‘feature-zones.’’ One feature-zone is selected by a novel topological detection model. Then,
we adopt two different feature spaces to make sequence matching between query image and feature-zone.
Last but not least, we propose a novel clustering method called voting K-nearest neighbor to fuse candidates.
As a result, the ISMmethod has been validated by using collection data sets and public data sets, which were
collected along different routes, covering different times and weather conditions. The total lengths of these
routes are more than 10 km. Experimental results show that the ISMmethod can adapt to different times with
good detection stability in varying scenarios. The mean of detection errors is all less than 1 frame and the
detection accuracies are all more than 90% in these scenarios. Compared with other methods, the proposed
method has high accuracy and great robustness.

INDEX TERMS SLAM, loop closure detection, image sequence matching, feature-zone, topological
detection, V-KNN.

I. INTRODUCTION
For the past decades, with the rapid development of sci-
ence and technology, mobile robots are gradually realizing
automation. An exact estimation of the robot position is the
basis for achieving this goal [1]. In this context, simultane-
ous localization and mapping (SLAM) is becoming a hot
topic all over the world [2], [3]. Traditionally, this approach
has depended on range and bearing sensors such as laser
scanners, radars, etc. Besides, with the rapid development
of computing power, cameras with low cost are extensively
used in SLAM nowadays. For instance, in previous work,
Whelan et al. [4] present a SLAM system with a low-
cost RGB-D camera. This system has a capable of produc-
ing high-quality consistent surface reconstructions. Similarly,
Chen et al. [5] set upmulti-robot ceiling vision SLAM system
for addressing global localization problems.

However, there are still some difficulties to overcome in
vision SLAM applications, such as loop closure detection.
This issue concerns the difficulty of recognizing already
mapped areas. It is an image retrieval task which determines
whether query image has been taken from a known loca-
tion. This task is similar with image classification methods.
Generally speaking, the overall goal of the detection
presented in this paper is to find the data collection
node of already mapped areas which is closest to the
query image.

A. LITERATURE REVIEW
From the literature, various methods have been proposed
for visual loop closure detection. Local features matching
is the basic method for detection. In this method, the scene
in the image is described by multi-dimensional vectors.
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Compared with images, these vectors have ability to reduce
data storage. Among the mass of descriptors, Scale-invariant
Feature Transform (SIFT) is perhaps one of the most popular
methods which was proposed in 2004 [6]. This descriptor
provides the first approach to the problem of extraction sta-
bility. Various methods of SLAM have used SIFT to achieve
local features matching. For example, Kosecka and Yang [7]
use SIFT to describe the scene in indoor environment. Then,
a probabilistic environment model is set up to make location
recognition. Similarly, Zhang [8] also use SIFT to set up
a bag-of-raw-features model, which is then used to realize
visual loop-closure detection in autonomous robot naviga-
tion. However, SIFT descriptor suffers from low detection
efficiency and complex computational processes. To solve
this problem, Speeded-Up Robust Features (SURF) is pro-
posed to simplify the computation complexity [9]. It has a
similar extraction result to SIFT. Tongprasit et al. [10] adopt
SURF descriptor to modify the Position-Invariant Robust
Features (PIRF) method. The modified method is 12 times
faster than the original method. However, the matching speed
of SURF still cannot meet the request of loop closure detec-
tion in some situations, such as outdoor environment. Hence,
another descriptor with fast matching speed is considered in
our approach.

One of the disadvantages of local features matching is
that local features still have huge data storage require-
ments due to their descriptors. To address this problem, the
Bag-of-Words (BoW) algorithm is used for loop clo-
sure detection, which is also based on local features
extraction [11], [12]. The algorithm used here treats the local
features as visual words. Then, all the local features from
a mapped area compose a visual dictionary. Furthermore,
each image is represented by a histogram which is based
on local features clustering. Since the histogram is more
discriminative than the farther ones, the BoW algorithm has
the ability to make location recognition. Compared to local
features matching, this method can reduce the total sets
of feature descriptors. There are also many studies using
BoW method to achieve loop closure detection. For instance,
Ho and Newman [13] set up a multi-robot map-joining sys-
tem to address the loop closure detection problem. The sys-
tem uses BoW method to draw up an image classification
scheme. Firstly, images from mapped areas are represented
as visual words. The visual words from the dataset com-
pose the visual dictionary. In the step of features matching,
the authors use a Nearest Neighbor (NN) search to separate
the corresponding histogram. The search results are used to
represent the detection events. Similarly, in [14], the authors
draw up a place recognition scheme which relies on the
BoW method. A multiple-view algorithm is proposed to
compute the ultimate results based on the matching results.
In these two approaches, the use of BoW method improves
the accuracy of matching, which is able to robustly deal
with noisy images. The approaches discussed above mainly
use multi-dimensional features. Cummins et al. also propose
an appearance-based method for loop closure detection by

using BoW method. Each visual word represents a high-
dimensional feature descriptor. They use public datasets from
Fast Appearance-Based Mapping (FAB-MAP) to evaluate
their method and the method has good results [15]. Moreover,
Galvez-Lopez and Tardos [16] attempt to create visual words
from binary features. To enhance the robustness of matching,
the hierarchical BoW model is used with key points which
are detected by FAST method and described by BRIEF algo-
rithm. They use sequences of about 19,000 images to detect
the loop closures. However, in some scenes, the matching
accuracy by using BoW method is not robust enough to meet
the request of loop closure detection.

Another way to reduce data storage is holistic feature
matching. When a whole image is considered as a feature,
this feature is called holistic feature [17]. Holistic feature
can describe the scene, which is used instead of image. The
speed of holistic feature extraction is very fast. Hence, there
are various detection methods using holistic feature match-
ing. For example, Lategahn et al. [18] propose a holistic
feature called an illumination robust descriptor (DIRD) to
generate robust descriptors. In this descriptor, the authors
use building blocks as describing objects. Hence, millions
of descriptors can be used to construct this feature. Further-
more, a function is proposed to estimate DIRD descriptor,
and loop closure detection is also presented in experiments.
Similarly, Nourani-Vatani et al. [19] adopt the Optical Flow
Moment (OFM) and the Optical Flow Shape Context (OFSC)
as holistic feature descriptors. These descriptors are based on
optical flow data to distinguish changes in scenes. To define
each node of the dataset, the holistic features are extracted by
statistical attributes from the optical flow. In the step of holis-
tic feature matching, the Mahalanobis and χ2 distance are
computed between the query image and the dataset. The node
with the least distance is obtained. In experiments, the pro-
posed feature is evaluated in both indoor and outdoor envi-
ronments, to prove that their feature can adapt different kinds
of environment scenes. Moreover, Singh and Kosecka [20]
use GIST as holistic feature and extract these features from
omni-directional images. To match the holistic features,
the authors propose a new matching measure for the four
views which the omni-directional image consists of. As a
result, the loop closure detection is taken in an urban envi-
ronment. Generally, to ensure the robustness of the holistic
feature matching, some new descriptors are usually proposed
in the studies. Thus, some new similarity measurements are
also presented at the same time.

However, due to the massive data in the dataset, simply
using feature matching can result in low detection accu-
racy and large computation cost. More advanced meth-
ods must be proposed in order to enhance the accuracy.
Actually, the method for loop closure detection is strongly
related to robot visual localization [21], [22], as both of
them include feature matching and place recognition. Hence,
the methods for loop closure detection can be inspired by
visual localization, as there are various advanced methods in
visual localization. Ziegler et al. [23] set up an autonomous
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driving system which consists of global position detection
based on visual features. They fuse features matching and
3D data registering. A 6D rigid-body transformation is com-
puted and then the vehicle pose is found. They pick a
103-km route for real vehicle driving. The localization accu-
racy achieves centimeter-level by fusing the data of wheel
encoders and yaw rate sensors. Besides, Wang et al. [24]
present a coarse-to-fine localization method to divide the
localization into two steps. Coarse localization is fast but
not accurate enough, which can provide a set of possible
locations. Then the accurate result is found in the candidate
set. Besides, Son et al. [25] propose a key frame selec-
tion method to make coarse localization. Nodes from the
dataset are divided into key frames and non-key frames
by checking the matching number of feature points. In the
step of feature matching, query image is first matched
with key frames of the dataset. The closest key frame and
their corresponding non-key frames are selected as coarse
localization results. Topological model is another method
to reduce the computation complexity and enhance the
matching accuracy. For example, Lategahn and Stiller [26]
take 30 positions as information to set up a topological
model and a dynamic programming procedure is used to
compute the node closest to the query image. They pick a
7-km route to present and estimate their method in urban
environment. In addition, there are also some methods used
in loop closure detection. For example, in [27] and [28],
the authors use pose cells and local view codes to detect
loop closure. The pose cells are composed of 3 degree of
freedom (DoF) pose of the robot. The poses are collected by
using a 3D version of continuous attractor networks. The 3D
data have an ability to enhance the accuracy of loop closure.
Moreover, in [14], before feature matching, the authors first
set up a Bayesian filtering model to compute the probability
of the query image and its previous images belonging to
the same scene. Then, a scene with a sequence of nodes is
picked for coarse detection. Furthermore, they adopt feature
matching with the selected scene by using BoW method.
As discussed above, coarse detection is crucial for feature
matching and place recognition. Hence, in our approach,
we also propose a coarse detection method before accurate
feature matching.

To enhance the detection accuracy, another method is
storing three-dimensional (3D) data. 3D data can compute
the ego-camera pose and the computed pose has an ability
to check the detection results. Hence, various methods in
the literature use 3D data, such as [4], [23], and [26]–[28].
3D data in these methods are usually obtained by laser scan-
ner, binocular camera and RGB-D camera. However, both
laser scanner and binocular camera are expensive. Such high
cost will prevent the development of SLAM and vehicle
localization. Although RGB-D camera has a low cost, its
3D data usually have a short range which is not suitable
for outdoor environment. As mentioned above, this paper
proposes a method for loop closure detection with low-cost
sensors.

B. CONTRIBUTIONS
In this paper, we propose an image sequence matching (ISM)
method for loop closure detection. This method follows a
three-step approach. At first, we set up a topological model
which aims at making coarse detection to select a set of
possible nodes from the already mapped areas. Furthermore,
we take sequence matching by using both holistic feature
and local features. Several candidates are selected in the
two feature spaces. Last but not least, we fuse these can-
didates to find the closest node by using voting K-nearest
neighbor (V-KNN) method. As a result, the closest node is
found and the query image is updated to mapped areas. The
contributions of this paper are summarized as follows:

1) A novel detection model called topological feature-
zone is set up. In this model, we first propose feature-
zone to distinguish different zones in mapped areas
by using feature matching. In the step of loop closure
detection, the query image is detected topologically
with one previous result. One feature-zone is selected
to predict the detection range by using this model. This
model simplifies the detection procedure and increases
the accuracy.

2) A novel image sequence matching method is pro-
posed to improve the detection accuracy. This method
matches the query image with several consecutive
nodes. We select the middle one from the closest con-
secutive nodes as candidate. In the proposed method,
the advantage is that image sequence matching can
ensure detection stability and outliers can be eliminated
in this step.

3) A novel clustering method for fusing candidates from
different feature spaces, called voting-KNN (V-KNN)
method, is proposed. The candidates are selected from
different feature spaces such as holistic feature match-
ing and local features with BoW. V-KNN votes all
the candidates from different feature spaces and then
selects one as result. The advantage is that if other
candidates are introduced from other feature spaces,
the V-KNNmethod can still provide the fusion of them.

The structure of this paper is organized as follows. Section I
introduces the background and surveys the literature.
Section II presents the ISMmethod for loop closure detection.
Section III presents the experimental results with real data.
Conclusions of this paper are drawn in Section IV.

II. THE IMAGE SEQUENCE MATCHING METHOD
The work presented in this paper is called image sequence
matching (ISM) method. The illustration of the ISM method
is shown in Fig. 1.

A. HOLISTIC FEATURE EXTRACTION
Before delving into the details of loop closure detection,
we first extract holistic feature from each query image and
each node. To enhance the extraction speed, we use ORB
(oFAST and rBRIEF) descriptor for feature extraction in
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FIGURE 1. The proposed methodology for ISM loop closure detection.

our method. ORB is a popular feature descriptor proposed
in 2011 [29]. This descriptor is very fast and has similar
matching results compared with SIFT and SURF. The main
idea is the combination of oFAST (FAST with orientation)
and rBRIEF (rotated BRIEF).

More specifically, each holistic feature is described by
BRIEF. The BRIEF descriptor is a bit string description of
an image patch which is constructed by a sequence of binary
intensity tests. To compute this descriptor, we denote s as a
smoothed image patch. In patch s, two pixels t1 and t2 are
performed a binary test by comparing their intensities. The
formula is shown as follows:

τ (s; t1, t2) :=

{
1, s (t1) < s (t2)
0, s (t1) ≥ s (t2)

(1)

where τ is a binary test; s (ti) is the intensity of image s at
point ti. The BRIEF descriptor is thus defined as a vector of n
binary tests:

fn (s) =
∑
i∈[1,n]

2i−1τ (s; t1i, t2i) (2)

Many methods are shown in the literature, which are about
how to choose n in the binary tests. In this paper, we select
n = 256 for vector length by using a Gaussian distribution
around the patch center. Hence, we should resize each image
into a standard ORB patch image before holistic feature
extraction. The typical resolution of an ORB patch image
is 63 × 63 pixels. As a result, the holistic feature descriptor
for each image is represented with a 256-bit string, which is
shown as Fig. 2.

B. TOPOLOGICAL FEATURE-ZONE MODEL
The goal of loop closure detection is to find the node in
mapped area which is closest to the query image. However,

FIGURE 2. Extraction of ORB holistic feature. Image center as ORB feature
point position and compute the corresponding ORB descriptor as holistic
feature with each digit as a 8-bit char (totally 32× 8bytes = 256bits).

simply taking feature matching from the huge data source is
error prone and susceptible to visual aliasing and ambiguities.
In this step, we set up a topological feature-zone model for
coarse detection.

In the alreadymapped area, we first compute the Hamming
distance between two adjacent nodes. Hamming distance is
computed by applying the XOR bit operation to two 256-bit
strings of ORB holistic features as follows:

Hamm
(
X (1),X (2)

)
=

256∑
i

XOR
(
X (1)
i ,X (2)

i

)
(3)

where X (1) and X (2) are two arbitrary adjacent holistic fea-
tures. If the distance is below a threshold σ , they are con-
sidered as belonging to the same feature-zone. Otherwise,
they belong to different feature-zones. In this way, the already
mapped areas are divided into some feature-zones. Then,
we need to select a feature-zone for the query image in the
coarse detection stage.

FIGURE 3. Illustration of topological feature-zone model. Squares denote
query images, circles denote nodes in already mapped areas.

To find the feature-zone, we set up a topological model.
Similar to feature-zone classification, we compute the
Hamming distance between the query image and its previous
image. If the distance is below the threshold σ , we select the
feature-zonewhich the previous image belongs to. Otherwise,
we select the adjacent feature-zone. The topological feature-
zone model is shown in Fig. 3. From this figure, the current
query image is i, while its previous image is i − 1. There
are two feature-zones in this figure. Obviously, the previous
image belongs to feature-zone I. If the distance between i
and i − 1 is below σ , we select feature-zone I as coarse
detection result. On the contrary, if the distance exceeds
this threshold, feature-zone II is selected as the detection
result.
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C. IMAGE SEQUENCE MATCHING
In this sub-section, the image sequence matching is used in
both holistic feature space and local feature space to ensure
the detection accuracy.

1) HOLISTIC FEATURE SEQUENCE MATCHING
We have extracted the holistic feature of the query image
and matched it with its previous image. In this step, we use
sequence matching to match the query image with the
selected feature-zone. The basic idea behind this approach
is the following: if we want to select one node from the
feature-zone as candidate, this node is not only similar to the
query image, but also its adjacent nodes must exhibit a close
distance. The advantage of sequence matching is that it can
eliminate outliers and improve the matching stability.

More specifically, we consider that n (n = 3, 5, 7 . . .)
arbitrary consecutive nodes from the feature-zone are orga-
nized into a site. Then the query image is compared with each
site, i.e., Hamming distances are computed between the query
image and each node of the site. As a result, the computed
distances are accumulated in the following equation:

CHmatch
(
Xq, S

)
=

5∑
i=1

Hamm
(
Xq,Xnodei

)
, Xnodei ∈ S

(4)

where Xq is the holistic feature of the query image; S is the
matching site, while Xnodei is the holistic feature of i-th node
in site S. In this step, we compute 5 closest sites and select
the middle node of each site as candidates. Hence, there are
5 candidates which compose candidate set 1. The illustration
of features sequence matching is shown in Fig. 4.

FIGURE 4. Illustration of features sequence matching: rectangles denote
sites in feature-zone, square denotes query image and circles denote
nodes.

2) LOCAL FEATURE SEQUENCE MATCHING WITH BoW
Besides holistic features matching, we also extract local fea-
tures by ORB descriptor to enhance loop closure detection.
In this feature space, we use BoW method to realize local
feature matching. Unlike holistic feature extraction, local fea-
tures require to be detected at first. The features are detected
by FAST, which measures the gray difference between the
pixel of each point and its neighborhood. For each image,
we first select an arbitrary point and compare its pixel with
16 pixels of its neighborhoods. If there are more than n

consecutive neighborhoods, whose gray differences exceed a
threshold, this point is treated as a local feature. In this study,
we denote n = 9. In this way, local features can be extracted
in an automatic manner. The local features extracted from one
image are shown in Fig. 5. Each feature is also represented
with a 256-bit string.

FIGURE 5. Extraction of ORB local features.

FIGURE 6. Result of BoW: (a) histogram with BoW and (b) image for BoW.

Furthermore, the implementation of the BoWmethod used
here is to reduce the data storage. The method is followed
by a two-step approach. First of all, each feature-zone is
selected as a visual dictionary. All the local features in this
zone are clustered by using K-means clustering method [30].
In this method, Hamming distance is computed to measure
the distance between two local features. Then, each center
of cluster can be computed by this distance and these centers
compose visual words of the dictionary. As a result, we obtain
a set of visual words for each feature-zone, which is denoted
by {v1w, v

2
w, v

3
w, . . . , v

n
w, . . .}. In the second step, each local

feature of the query image is compared to the visual wordwith
the least Hamming distance. Then we can derive a histogram
over visual words for each query image. The histogram is
shown in Fig. 6. Each histogram is represented as follows:

H = [p1, p2, . . . pn] (5)

where pi is the frequency of the i-th visual word and there
is a total of n visual words. Hence, in the step of local
features sequence matching, we compute Euclidean distance
between the query image and each node. As the histogram
denotes the frequency of visual word, Euclidean distance is
suitable for similarity computation of frequency. Then we
sum the distance of n (n = 3, 5, 7 . . .) consecutive nodes.
The distances of sequence matching is computed as follows:

CLmatch
(
Hq,L

)
=

5∑
i=1

Euc
(
Hq,Hnode

i

)
, Hnode

i ∈ L (6)
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where Hq is the histogram of the query image; L is the local
features of matching site, whileHnode

i is the histogram of i-th
node in site L. The formula of Euc () is computed as follows:

Euc
(
H1,H2

)
=

√√√√ M∑
i=1

(p1i − p
2
i )

2, pji ∈ H
j (7)

In this step, we also compute 5 closest sites and select the
middle node of each site as candidates. Therefore, the 5 can-
didates compose the candidate set 2. As a result, we obtain
two candidate sets from different data spaces. In the next step,
we will select one candidate as the detection result.

D. LOOP CLOSURE DETECTION WITH V-KNN
We have got 2 candidate sets from holistic feature space
and local feature space, respectively. The detection result is
included in these two sets. Hence, we propose a new cluster
method called voting-KNN to fuse the sets and compute the
detection result.

First of all, we define each different candidate from one
candidate set as a ‘‘type.’’ Therefore, the 10 candidates from
two sets may have less than 10 types. Furthermore, these
types from different feature spaces are fused in a box, which
is shown in Fig. 7. From the figure, there are 8 types from
‘‘A’’ to ‘‘H.’’ In these types, A and B are both selected twice
while the others are selected only once. At this stage, we do
not knowwhich type is the detection result since two types are
selected twice. Hence, we propose a voting system to solve
this problem.

FIGURE 7. Illustration of V-KNN for loop closure detection. Square
denotes query image. Circles denote candidates. Letters from ‘‘A’’ to ‘‘H’’
denote types.

In each feature space, the candidates are ranked by comput-
ing Hamming distance and Euclidean distance, respectively.
The candidate with least distance is ranked 1 while the one
with largest distance is ranked 5. Then, we vote for each type
based on their rank. The votes of the type are the sum of
its ranks in two feature spaces. If the type is not selected

in one feature space, we define that its rank is 10 in this
feature space. For instance, the rank of type A is 1 in holistic
feature space and 2 in local feature space in Fig. 7. As a result,
the votes of A is 3. However, type C is only selected in holistic
feature space and its rank in this feature space is 3. The votes
of C is 13. All the types are voted and derive a histogram
which is shown in the sub-figure of Fig. 7. We select the type
with the least votes as detection result. If there are more than
two types with the same votes, we select the type with less
Euclidean distance.

E. OUTLINE OF THE ISM ALGORITHMS
The algorithms for ISM can be summarized as follows:

1) We extract holistic features for query image and nodes.
In the already mapped area, each pair of two adja-
cent nodes is computed for Hamming distance. Then,
the mapped area is divided into several feature-zones.

2) In the step of loop closure detection, we detect the
first query image as prediction information. Next, for
each query image, we compute the Hamming distance
between the query image and its previous image. Then
we select a feature-zone for coarse detection.

3) The query image is matched with the consecutive
nodes from the feature-zone in different feature spaces.
In each space, 5 candidates are selected to compose a
candidate set.

4) V-KNN method is used to fuse the two candidate sets.
The type with the least votes is selected as the detection
result.

5) We utilize local feature matching to check each result.
If the number of matching points are lower than a
threshold σ = 45, we treat it as an outlier. As a result,
the inliers are updated to the corresponding feature-
zone. The outliers are reconstructed the feature zones
again in the offline training phase.

III. EXPERIMENTAL RESULTS
Next, we present experiments with collection datasets and
public datasets to evaluate and assess our method. On the
collection datasets, we picked 3 different routes in Wuhan
City, China. These routes were traveled at different times and
covered different weather conditions. On the public datasets,
we use FAB-MAP datasets which include 2 datasets collected
from City Centre and New College.

A. LOOP CLOSURE DETECTION IN DIFFERENT
SCENES ON COLLECTION DATASETS
To collect the datasets, two vehicles with monocular cameras
were provided. One of them was a standard vehicle with
a forward camera. The camera was an rs-2300-gc camera
produced from Beijing Microview Company and each image
taken by this camera had a size of 1600 × 1200 (in pixel).
Another one was a trolley with a forward smartphone. This
smartphone had an IMAX 333 camera produced from Sony
Company and each image taken by this camera had a size of
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FIGURE 8. Setup of data collection system.

800×600 (in pixel). Fig. 8 shows the setup of data collection
system, the white circle show the cameras in the vehicles.
Then, we used these data collection vehicles to make loop
closure detection in different scenes, at different times and in
different weather conditions.

The 3 different routes covered various scenarios such as
industrial park, urban roadway and campus. To collect data
in the first two routes, we used the standard vehicle. The
trolley was used to accomplish data collection in campus.
These test sites are shown in Fig. 9. The total length of these
routes was over 10 km. We collected data twice for each test
route. Dataset was set up in the first time collection. The data
collection frequency was no less than 2 meters/frame. There-
after, the images for loop closure detection were collected in
the second time.

FIGURE 9. Test routes: (a) urban roadway; (b) industrial park; and
(c) campus.

For each collection image, we first made pre-processing
such as image gray processing and histogram equalization.
Thereafter, we resized these images into standard images with
the resolution of 63×63 (pixel) for holistic feature extraction.
The ORB descriptor for each holistic feature was represented
with 256-bit string. Furthermore, the dataset was divided
into a sequence of feature-zones by computing Hamming
distance. Last but not least, we used the ISM method to make
loop closure detection. For each detection result, we utilized
local feature matching to match the result with its query
image. We selected a threshold σ = 45. If the number of

matching points were lower than the threshold, the result
was treated as an outlier. The advantage was that some bad
detection results could be removed in this way.

FIGURE 10. Detection results with different parameters.

To select a parameter n for sequence matching, we select
10 query images in each route. Then, we select different
parameters such as n = 3, 5, 7, 9 to compute detection
accuracy. The test results are shown in Fig. 10. From this
figure, we use frame as unit to evaluate our method. This
unit means the frame difference between the test result and
the ground truth data. The ground truth data are computed
manually. We can see that the results perform best when we
set n = 3. Therefore, we select n = 3 in the next tests.

FIGURE 11. Detection results in different scenes.

Fig. 11 shows the detection results of the 3 routes.
To demonstrate the detection result, we divided the 3 routes
into different scenes in this figure, such as crossroad, curve
pavement, straight pavement and viaduct. Fig. 12 gives exam-
ples of images from different scenes. From Fig. 11, as the
view angle has a great change in the scenes of crossroads and
curve pavement, the results in these 2 scenes are worse than
the results that in another 2 scenes, both in terms of mean
error and max error. Fortunately, even though max errors in
crossroads and curve pavement reach 3 frames and 4 frames,
respectively, the means and standard deviations of 4 scenes
are all less than 1 frame. These results show that the proposed
method has high accuracy and stability. Furthermore, what
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FIGURE 12. Various situations of dataset: (a) viaduct; (b) crossroads;
(c) straight pavement; and (d) curve pavement.

happens when the proposed method is compared to other
methods?

TABLE 1. Comparison of results from the ISM method, the method
in [18] and [25] in different scenes.

To evaluate our method, we adopt two previous meth-
ods for comparison, which are the method in [18] and the
method in [25]. The comparison results are shown in Table 1.
In each test of the scene, we select 100 images for viaduct,
50 images for crossroads, 150 images for straight pavement
and 80 images for curve pavement, respectively. As the fre-
quency of each scene is different in the real road environment,
we select different image numbers for each scene. From the
table, we define that if the error frame is nomore than 1 frame,
it is a correct detection. It is because the image collection fre-
quency is no less than 2 m/frame in the first round collection.
The distance between 2 adjacent nodes are very close.

From the results we find that the ISM method performs
better in each scene than the method in [18] and [25]. The
accuracies by ISM in all scenes are more than 85%. In viaduct
and straight pavement, ISM performs high accuracies which
are more than 90%. All the statistics show that ISM method
has high accuracy and great robustness. However, we can also
find that the accuracies in crossroads and curve pavement are
also lower than the accuracies that in the other two scenes.
Herein, we give an example for error detection in the scene
of crossroads, which is shown in Fig. 13.

Fig. 13(a) is the node closest to the query image (shown
in Fig. 13(b)). However, the direction of vehicle changes
greatly. The signal light has disappeared in the next position.

FIGURE 13. An example for error detection: (a) ground truth data;
(b) query image; and (c) test result.

Therefore, the similarity between the query image and
Fig. 13(c) is greater than that of the ground truth. As a result,
Fig. 13(c) is selected as the test result.

B. LOOP CLOSURE DETECTION AT DIFFERENT
TIMES ON COLLECTION DATASETS
Wehave shown the detection results in different scenes. Then,
what would happen if the tests were conducted at different
times? Hence, in this sub-section, we introduce the perfor-
mance of the ISM method at different times.

FIGURE 14. Test routes at different times: (a) 10:00 a. m. and
(b) 5:00 p. m.

We also carried the tests at two different times, 10:00 a. m.
and 5:00 p. m. The reason why we selected these 2 times was
that the sunlight was strong at 10 o’ clock, while it would
be sunset at 5:00 p. m. As shown in Fig. 14, the illumi-
nations were quite different in these 2 times even though
they were both collected in a sunny day. To evaluate our
method, we selected 150 images at each time. These images
also included several scenes such as straight pavement, cross-
roads and curve pavement. The detection results are shown
in Fig. 15.

FIGURE 15. Detection results at different times.
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From Fig. 15, the detection results have a bit change
whether in mean or in standard deviation and they have the
same max error at different times. Specifically, the mean
errors at different times are both less than 1 frame. It means
that our method has a great robustness in illumination
changes. Moreover, we also compare the ISM method with
the method in [18] and [25], which is shown in Table 2. From
this table, we can find that the proposed method performs
better than another two methods do. In addition, the accuracy
change is from 92.3% to 91.1%. The data of accuracy change
is also less than that in another two methods.

TABLE 2. Comparison of results from the ISM method, the method in [18]
and [25] at different times.

FIGURE 16. Test routes in different weather conditions: (a) rainy day
and (b) sunny day.

C. LOOP CLOSURE DETECTION IN DIFFERENT WEATHER
CONDITIONS ON COLLECTION DATASETS
Next, we carry out detection tests during a rainy day and a
sunny day to evaluate our method in different weather condi-
tions. The test routes are shown in Fig. 16. From Fig. 16 we
can find that the pavement was wet. Thus there were not
only illumination changes in the scene, but also scene of
background changes. Hence, it is a challenging task for our
method to make loop closure detection.

TABLE 3. Comparison of results from the ISM method, the method in [18]
and [25] in different weather conditions.

Herein, we also provide a figure to show the detection
results and set up a table for results comparison. They can
be shown in Fig. 17 and Table 3. In this test, 150 images
were selected in different weather conditions. From Fig. 17,
compared with the results in sunny day, we can find that
the results have a moderate decrease in rainy day test. The

FIGURE 17. Detection results in different weather conditions.

mean error is more than 1 frame and the max error reaches
5 frames. Besides, the rainy day test also has lower detection
accuracy than the sunny day test. Moreover, compared with
other methods, the ISM method also exhibits better perfor-
mance and a higher detection results. Fortunately, the rain
was not heavy on that day and this rainy day did not cause a
huge effect for detection. Although the accuracy has dropped,
the detection accuracy in that day is still 78.9%. This accuracy
of our method is higher than that in [25] on a sunny day.

D. RESULT WITH FAB-MAP DATA SETS
The proposed method was also tested by the public data sets
from FAB-MAP [15], [28]. This datasets are sequence images
containing two datasets which are City Centre and New
College collected in the UK. Each dataset includes sequence
images, image collection coordinates (GPS), ground truth,
aerial photo, etc. The scenarios in different datasets are shown
in Fig. 18.

FIGURE 18. Scenarios on different datasets: (a) dataset on City Centre
and (b) dataset on New College.

On each dataset, we selected 200 images for query
images, respectively. The others were used as training data.
Fig. 19 shows the detection results on the 2 datasets. From this
figure, the results on the New College dataset perform better
than that of on the City Centre dataset. The mean errors on
the two different datasets are all lower than 1 frame. Overall,
the detection results on FAB-MAP datasets are similar with
the results on the collection datasets. They mean that our
method has a great robustness on different datasets. More-
over, we also compare the proposed method with the method
in [18] and [25], which is shown in Table 4. From this table,
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FIGURE 19. Detection results on the FAB-MAP datasets.

TABLE 4. Comparison of results from the ISM method, the method in [18]
and [25] in FAB-MAP dataset.

we can find that the ISM method performs better than that
another two methods do whether on City Centre or on New
College.

E. FURTHER EVALUATION
As we have used the number of local features matching as
threshold, some detection results are removed in the above
experiments. However, although adjusting the threshold can
obtain high detection accuracy, the detection rate would
decrease at the same time. Hence, we use precision recall
curves to evaluate the ISM method.

FIGURE 20. Precision-recall curves for different datasets.

The precision recall curves are shown in Fig. 20. The
curves were generated by varying the threshold. We took
5 routes from the collection datasets and the FAB-MAP
datasets, which were industrial park, campus, urban roadway,
New College and City Centre. ‘‘Recall’’ here is the propor-
tion of the number of inliers to total number of detections.
From this figure, when the precision rates achieve 100%,
the method has the recalls at 57%, 53%, 38%, 48% and 41%
for each dataset. The vehicles in urban roadway and City
Centre affect the recalls at 100% precision.

FIGURE 21. Processing time for query images.

Moreover, we also evaluated the ISM method in the terms
of efficiency. First of all, we detected the processing time
to generate all the feature-zones. As the feature-zones were
divided by holistic feature matching, the processing time
was millisecond-level for one training image. We selected
1500 images as training data to generate feature-zones. The
processing time was about 20 s and all the processing of
generation was offline. The number of generated feature-
zones was 17. Furthermore, we evaluated the running time
for each query image. The running time for query images is
shown in Fig. 21. From this figure, we selected 100 query
images. In the step of feature-zone selection, query images
were only matched with their previous images and then they
selected the feature-zone topologically. In the step of detec-
tion, the processing included both holistic feature matching
and local feature matching with BoW. As a result, the running
time for each query image was about 0.3 s. The total of
running time was about 30 s.

IV. CONCLUSIONS
The solution proposed in this paper is realized by image
sequence matching method. In this method, feature-zone is
proposed to set up a topological model and the model used
here provides a simple way to reduce the feature matching
range. Then, 2 kinds of feature matching are used to enhance
the detection accuracy, such as holistic feature matching
and local features with BoW. Meanwhile, the use of these
2 kinds of features can reduce the data storage on the dataset.
In addition, the proposed feature sequence matching method
also has an ability to improve the accuracy. Last but not
least, a novel clustering method called V-KNN is proposed
to fuse candidates in different feature spaces. This method
does not require any additional sensors and only needs a
low-cost monocular camera even though a smartphone. As a
result, the experimental results presented here show that the
proposed method has a great robustness on different datasets
and illumination changes. In these situations, the mean of
detection errors are all less than 1 frame and the accuracies are
more than 90%.Although there is amoderate drop in the rainy
day test, the proposed method also exhibits higher accuracy
compared with other methods. In the future work, we will
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focus on the detection in rainy condition and the detection
accuracy will be improved in different weather conditions.
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