IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON EMERGING TRENDS, ISSUES, AND
CHALLENGES IN ENERGY-EFFICIENT CLOUD COMPUTING

Received June 4, 2017, accepted July 1, 2017, date of publication July 12, 2017, date of current version August 8, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2725318

Storage-Tag-Aware Scheduler for Hadoop Cluster

NAWAB MUHAMMAD FASEEH QURESHI', DONG RYEOL SHIN', (Member, IEEE),
ISMA FARAH SIDDIQUI?, AND BHAWANI SHANKAR CHOWDHRY?, (Senior Member, IEEE)

! Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 440-746, South Korea
2Department of Software Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan
3Faculty of Electrical Electronics and Computer Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan

Corresponding author: Dong Ryeol Shin (drshin@skku.edu)

This work was supported by Basic Science Research Program through the National Research Foundation of Korea through the Ministry of

Education under Grant NRF-2017R1D1A1B03032855.

ABSTRACT Big data analytics has simplified the processing complexity of extremely large data sets
through ecosystems, such as Hadoop, MapR, and Cloudera. Apache Hadoop is an open-source ecosystem
that manages large data sets in a distributed environment. MapReduce is a programming model that processes
massive amount of unstructured data sets over Hadoop cluster. Recently, Hadoop enhances its homogeneous
storage function to heterogeneous storage and stores data sets into multiple storage media, i.e., SSD, RAM,
and DISK. This development increases the performance of data block placement strategy and allows a
client to store large data sets into multiple storage media efficiently than homogeneous storage. However,
this evolution increases the consumption of computing capacity and memory usage over MapReduce job
scheduling. The scheduler processes MapReduce job into homogeneous container having configuration
of CPU, memory, DISK volume, and network I/O, and accesses, processes, and stores data sets over
heterogeneous storage media. This produces a processing latency of locating and pairing source data set
to MapReduce tasks and results an abnormal high consumption of computing capacity and memory usage in
a Datanode. Similarly, when scheduler assigns MapReduce jobs to multiple Datanodes, the same processing
latency can severely affect the performance of whole cluster. In this paper, we present Storage-Tag-Aware
Scheduler (STAS) that reduces processing latency by scheduling MapReduce jobs into heterogeneous
storage containers, i.e., SSD, DISK, and RAM container. STAS endorses job with a tag of storage media,
such as Jobssp, Jobpisk, and Jobray and parses them into heterogeneous shared-queues, which assign
processing configuration to enlist jobs. STAS manager then schedules shared-queue jobs into heterogeneous
MapReduce containers and generates an output into storage media of the cluster. The experimental evaluation
shows that STAS optimizes the consumption of computing capacity and memory usage efficiently than

available schedulers in a Hadoop cluster.

INDEX TERMS Hadoop, HDFS, scheduler, MapReduce, storage-tier.

I. INTRODUCTION

Big data analytics has opened a new gateway to think
beyond the limits set by traditional data management systems.
Nowadays, we find number of large dataset management sys-
tems such as Apache Hadoop [1], MapR [2] and Cloudera [3]
in market. Hadoop [4] is an open-source dataset manage-
ment system of Apache Software Foundation and supports
large datasets processing in a distributed parallel environ-
ment. It consists of four core components; Hadoop-common,
Yet Another Resource Negotiator (YARN) [5], Hadoop
Distribution File System (HDFS) [6], and MapReduce [7].
Hadoop-common is a library of utilities, which manages

I/O operations of the cluster. YARN is a resource manager
that allocates resources and schedules MapReduce jobs in the
cluster. HDFS is a file system that stores and processes large
datasets into storage media. MapReduce is a YARN-based
programming model that processes client’s jobs over large
datasets and generates output into storage media. In order to
understand the integrated working of Hadoop components,
let’s assume that a client submits a MapReduce job into
the ecosystem. YARN assigns job into default scheduler
and allocates resource parameters i.e. memory, CPU, DISK
volume and network I/O to container [8]. In the next step,
scheduler processes MapReduce job into homogeneous con-

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.

13742 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 5, 2017

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

N. M. F. Qureshi et al.: STAS for Hadoop Cluster

IEEE Access

tainers and generates an output over storage media of HDFS.
The file system then transforms output of MapReduce job
into data blocks and performs data block placement func-
tion to store them into storage media of HDFS. The default
size of a data block is 64 MB and can be re-configured to
128 and 256 MB [9].

MapReduce is a distributed programming model and con-
sists of two main functions i.e. Map and Reduce. The map
function executes map tasks such as filtering a value n from
a file m over a dataset and generates a result r. The reduce
function collects map output through combiner task ¢ (r) and
merges them together to produce an output R into storage
media of HDFS. In the distributed environment, map function
executes map tasks into i number of nodes and generates a
result (n + i). The reduce function collects distributed map
results through combiner task c(n 4 i) and merges them
together to produce an output j (R) into storage media of
HDFS [10].

Recently, Hadoop upgrades its homogeneous storage
paradigm to heterogeneous storage and stores datasets into
multiple storage media i.e. SSD, RAM and DISK [11]. This
enhancement increases the performance of data block place-
ment function and allows a client to store large datasets with
an increased speed of 4x times using SSD and 12x times
through RAM than DISK media [12] [13]. However, this
development raises consumption of computing capacity and
memory usage at job scheduling. The scheduler processes
MapReduce job into a homogeneous container i.e. DISK
media having resource parameters of CPU, memory, DISK
volume and network I/O [14] and accesses, processes and
stores dataset into heterogeneous storage media i.e. DISK,
SSD and RAM. This generates asynchronous communica-
tion of accessing, processing and storing map and reduce
tasks into mapper and reducer containers from heterogeneous
storage media and produces a processing latency of locating
and pairing path of datasets into homogeneous containers.
As a result, MapReduce consumes an abnormally high con-
sumption of computing capacity and memory usage in a
Datanode [15]. Secondly, the scheduler processes jobs in
a single shared-queue environment that assigns equal com-
puting capacity to enlist jobs. It is now clearly observed
that, computing capacity of homogeneous container differs
from accessing, processing and storing capacity of heteroge-
neous storage media [16], therefore, MapReduce job observes
random values of read/write blocks per second with same
processing time of MapReduce job.

In order to elaborate the discussed problems, we process
a single MapReduce job of ‘Wordcount’ through default
scheduler having heterogeneous storage media i.e. RAM,
SSD and DISK over a dataset of 128 MB. We observe that
the job finishes processing in 109 seconds and writes an
output file in 15, 32 and 61 second over RAM, SSD and
DISK storage media. HDFS performs data block placement
function in 13, 19 and 35 seconds and allows a client to read
blocks in 2, 6 and 16 seconds over RAM, SSD and DISK

VOLUME 5, 2017

FIGURE 1. Wordcount job execution into storage media of Hadoop.

storage media. This huge difference of time in writing an
output among multiple storage media reflects the impact of
processing latency. Moreover, it affects data block placement
strategy with storing latency as shown in Fig.1.

In order to resolve the above discussed issues, we present
Storage-Tag-Aware Scheduler (STAS) that reduces process-
ing latency by scheduling MapReduce jobs into heteroge-
neous storage container. STAS declares job with a tag of
storage media such as Jobssp, Jobpisk and Jobgay and
parses them into shared-queues i.e. Queuessp, Queuepisx
and Queueray of heterogeneous queue container. STAS
manager schedules tag jobs from shared-queues and pro-
cesses into heterogeneous MapReduce containers i.e. mapper
and reducer container of DISK, SSD and RAM and generates
an output into storage media of HDFS. The significant con-
tributions of STAS are to be noted as:

« A novel endorsement of MapReduce job with storage
media tag.

« A simple parser to filter out tag jobs from a shared-
queue.

o A functional enhancement of recognizing tag jobs at
scheduler layer.

« Assignment of heterogeneous storage media volumes as
a container for MapReduce processing

o Scheduling tag jobs through heterogeneous storage
media container.

The remaining paper includes six sections, which describes
the proposed approach in following manner. Section II pro-
vides a brief overview about Hadoop ecosystem and presents
a motivation of processing latency problem. Section III
includes related work of all such researchers, which con-
tributed their schemes and proposed ideas to strengthen
the functionality of Hadoop scheduler. Section IV discusses
STAS in detail. Section V presents experimental evaluation of
STAS individually and comparatively with other schedulers
of Hadoop cluster. Section VI concludes STAS and highlights
future work contribution.

13743

IEEE Access

N. M. F. Qureshi et al.: STAS for Hadoop Cluster

Il. OVERVIEW AND MOTIVATION

MapReduce (MRV2) is an open-source programming model
that processes client’s job over a dataset of Hadoop cluster.
It is an integral part of YARN and works in collaboration with
two components i.e. (i) Resource Manager and (ii) Appli-
cation Master. Resource manager is a master component
that arbitrates cluster resources and processes MapReduce
jobs through scheduler and application manager. Application
master negotiates job’s resources with resource manager and
informs Node managers about container configuration of
MapReduce job. The node manager is a framework agent
that manages and monitors resource usage i.e. CPU, mem-
ory, DISK volume and network I/O into a Datanode. It is
also responsible to handle a container, which consists over
a summary of memory, CPU, secondary storage volume and
network I/O configuration set for MapReduce job processing.
The map and reduce functions are two individual procedures
and processes large datasets into two containers i.e. Map-
per and Reducer container. The scheduler is responsible for
allocating resources to running applications and scheduling
tasks into containers. Thus, at first, it allocates resources to a
MapReduce job and then schedules map tasks into mapper
container and reduce tasks in reducer container as shown
in Fig.2.

FIGURE 2. MapReduce job processing into Hadoop Cluster.

Hadoop ecosystem uses three default schedulers, (i) First-
In First-Out (FIFO), (ii) Fair, and (iii) Capacity scheduler.
FIFO [17] is a simple scheduling algorithm that processes
single job at a time having an order of First-In First-Out.
FIFO is not equipped with queue configuration and man-
agement. Therefore, it processes jobs with full allocation of
resources in the cluster. Fair Scheduler (FS) [18] allocates
resources to all jobs in such a way that each job gets an
equal share of resources over time. This finishes short jobs
in reasonable time and shares unallocated resources among
multiple users of cluster. FS is not programmed to understand
shared-queue management among multiple users. Therefore,
it assigns equal resources to MapReduce containers and

13744

generates job starvation problem. Capacity Scheduler (CS) [19]
processes jobs in shared-queues and allows multiple orga-
nizations to share resources in distributed and parallel envi-
ronment. It executes MapReduce jobs in an operator-friendly
environment and maximizes the throughput and utilization
by guaranteeing an organization with minimum capacity
allocation of resources into a cluster. The scheduler allo-
cates homogeneous resource parameters i.e. CPU, memory,
DISK volume and network I/O configuration to shared-queue
organizations and performs accessing, processing and storing
dataset into heterogeneous storage media i.e. SSD, DISK
and RAM. This produces job processing latency of locat-
ing and pairing source dataset to MapReduce job and con-
sumes an abnormally high CPU time and memory usage in
a Datanode.

STAS resolves this problem through four adequate mea-
sures i.e. (i) enhances a container with features of heteroge-
neous storage media volume, (ii) assigns media compatible
processor core percentile to MapReduce jobs, (iii) sched-
ules jobs through heterogeneity-aware STAS manager, and
(iv) re-programs Map and Reduce functions to process tag
jobs.

IIl. RELATED WORK

Many researchers have presented their contributions for
enhancing the performance of Fair and Capacity schedulers
and optimized the consumption of resources and job execu-
tion time over Hadoop. We have observed a good number of
research contributions explaining the scheduling techniques
into heterogeneous network and node environment [20].
To simplify the discussion, we divide these schedulers into
two categories i.e. (i) Network heterogeneity and (ii) Node
heterogeneity. The network heterogeneity involves schedul-
ing of MapReduce jobs with multiple operating systems and
network protocols. Therefore, schedulers access, process and
store datasets in an inter-operable environment and retains
mobility and Quality of Service (QoS) among nodes of the
cluster [21]. The node heterogeneity includes inter-node pro-
cessing of MapReduce job with the help of multiple core pro-
cessors and memory types [22]. The recent development of
adopting heterogeneous storage media strengthens network
and node heterogeneity performance [11]. Let’s elaborate
such related schedulers that supports the concept of hetero-
geneity in processing a MapReduce job.

Delay scheduler [23] is a functional enhancement into
Fair scheduling algorithm and re-configures a job with cus-
tom waiting time. As a result, short job finishes earlier
than long job and optimizes the consumption of resources
in the cluster. The Energy-efficient scheduler [24] presents
a compression scheme that encodes map task’s result and
decodes it back at reduce function. This strategy minimizes
consumption of resources over generation of input split
programs and decreases data transfer time of MapReduce
job in a network. However, it produces processing latency
in decoding large number of input split results at reduce

VOLUME 5, 2017

N. M. F. Qureshi et al.: STAS for Hadoop Cluster

IEEE Access

function and degrades the performance of cluster at heteroge-
neous storage media. Matchmaking scheduler [25] addresses
a method of locating nearby nodes and grabbing their tasks
for job processing. In this way, a cluster executes nearby
MapReduce jobs at first priority and compute distant jobs
in second schedule. This reduces network congestion and
decreases consumption of resources over job search in the
heterogeneous network. However, node heterogeneity envi-
ronment performs media lookup functions and increases net-
work congestion and resource consumption in searching and
executing MapReduce job in distant nodes. Thus, it is use-
ful for locality-aware scheduling in heterogeneous network.
Late scheduler [26] presents an approach of examining map
tasks and their processing priorities. After the assessment
takes place, jobs get into their respective shared-queues of
high, medium and low priority processing. The cluster pro-
cesses MapReduce jobs in high-medium-low order over het-
erogeneous network environment. This approach delivers an
effective MapReduce job processing with the accessibility of
datasets through DISK storage media. However, it requires
an additional configuration of accessing, processing and stor-
ing dataset over heterogeneous storage media. Therefore,
late scheduler is not much beneficial in heterogeneous stor-
age environment. DyScale scheduler [27] divides processor’s
core into virtual resource pool of fast and slow cores. The
capacity strength of fast core is 70% higher than slow core
and therefore, scheduler processes MapReduce jobs quickly
over fast core. However, when the same configuration of
virtual pool is assigned to access, process and store dataset
into heterogeneous storage media, MapReduce job consumes
an equal computing time into RAM, SSD and DISK storage
media but differs into read/write and block placement time
as shown in Fig.1. Tarazu scheduling technique [28] con-
sists of a prediction model that collects reasons of delay in
scheduling a MapReduce job. The prediction model works in
two steps i.e. (i) training phase and (ii) evaluation phase. The
training phase collects statistics for combiner task of reduce
function over homogeneous storage media i.e. DISK volume.
The evaluation phase simulates combiner task processing and
removes delay reasons i.e. inactive node delay and empty
result of input split programs. This approach is simulated
into homogeneous storage environment and requires an addi-
tional modeling to address delay reasons in heterogeneous
storage media. Adaptive scheduler [29] reduces resource con-
sumption through sharing map container with other MapRe-
duce and non-MapReduce applications. By default, scheduler
constructs new container for MapReduce job and do not
recommend to re-use a container having old dump of
tasks. Therefore, the adaptive scheduling algorithm reduces
resource consumption but increases security and malfunc-
tioning issues of MapReduce job. BAR [30] scheduling
algorithm processes MapReduce job in two steps. At first,
it searches near by nodes through calculating node distance
and assigns input split programs of map function over them.
In the next step, it performs reduce function through a ran-
dom node and reduces resource consumption and workload

VOLUME 5, 2017

problems. This scheduling technique is designed for process-
ing MapReduce job into homogeneous storage devices i.e.
DISK.

There are few researchers who presented heterogeneous
storage frameworks of Hadoop cluster. Their contributions
are discussed in following paragraph.

K. R. Krish et al., present heterogeneous storage frame-
work named hatS [31], which enhances functional layer of
HDFS with heterogeneous storage media. HATS provides
brief functional policies to store and retrieve datasets into
multiple storage media i.e. SSD and DISK. The proposed
framework was published prior to official release of Hadoop’s
heterogeneous storage frame, therefore, it is not applicable to
be used at the moment. N. S. Islam et al., propose a hybrid
framework named Triple-H [32] that uses multiple storage
media i.e. RAM, SSD and DISK for storing and exchanging
block replicas in Hadoop. Triple-H provides a dynamic data
block placement and replica management strategy in node
heterogeneity environment. This framework is also published
prior to official release and hence, it is not used in current
Hadoop built. There are several other data placement strate-
gies available but our approach is focused over scheduling
MapReduce job over heterogeneous cluster.

The discussed schedulers use homogeneous container i.e.
DISK volume for processing map and reduce functions.
In order to observe comparison with our proposed approach,
we equipped above schedulers with functionality of hetero-
geneous containers i.e. RAM and SSD volume. We find that
schedulers do not recognize SSD and RAM volumes and
consider them as DISK volume. The reason of not identifying
strength of heterogeneous container is associated with old
programming of core percentile allocation and homogeneous
job processing into heterogeneous storage media.

IV. STORAGE-TAG-AWARE SCHEDULER (STAS)

The proposed approach STAS is an add-on to existing capac-
ity scheduler and presents a functional enhancement of het-
erogeneous containers in MapReduce job processing. Lets
understand the role of STAS in processing a MapReduce job
as follows:

When a client submits MapReduce job Job; =
(Code, Tagssp,rAM, DISK)) to Namenode, resource manager
schedules job Job; with resources Jobg = MRcontginer and
execution parameters Jobp = (Mapper;, Reducer;), where
Code represents client task, Tag ssp,ram,pisk) depicts stor-
age media tag in a MapReduce job, MRcontainer includes

a configuration of CPU, memory, (SSD,RAM,DISK)
volume and network I/O, Mapper; represents num-
ber of map tasks and Reducer; shows number of

reduce tasks. By default, YARN allocates equal quota
of computing capacity to the enlist jobs of shared-
queue [33]. Since, STAS introduces three containers
of storage media, therefore, it re-configures shared-
queue in three forms i.e. Queuessp, Queuepisx and
Queueray and allocates a core percentile Coreq, =

13745

IEEE Access

N. M. F. Qureshi et al.: STAS for Hadoop Cluster

FIGURE 3. STAS job work-flow over Hadoop cluster.

{(30% Core, SSD), (50% Core, DISK), (20% Core, RAM)}
to queues respectively. Heterogeneous queue container (HQC)
manages I/O of shared-queues and parses job Job; into them.
STAS manager schedules shared-queue jobs into heteroge-
neous media containers and generates an output over storage
media of HDFS as shown in Fig.3.

The functional work-flow of STAS can be understood by
observing a complete MapReduce job cycle in Flow Chart
environment. The tag job Job; arrives at rate A and consumes
a parsing time QCj to get into shared-queues i.e. Queuessp,
Queuepsx and Queuersy of HQC. STAS manager sched-
ules a job Job; from queue container and generates paral-
lel map tasks to process map operation over heterogeneous
map container in time Tyz,,. The scheduler then fetches
map result-set from map container and generates parallel
reduce tasks to process reduce operation over heterogeneous
reduce container in time 7Reqy,c.. The output of MapReduce
job Job; is stored into storage media of HDFS as shown
in Fig.4.

In order to understand STAS briefly, let’s assume that a
client submits job Job; at a submission rate of . The number
of jobs can be obtained as,

Job;
Jobge = —201 (1)

ASubmission

Where Asupmission 18 service rate to submit a job
and Jobpc is the number of jobs submitted at arrival
rate A.

After receiving tag jobs, STAS processes Job; through four
components written as:

1) Heterogeneous Queue Container (HQC),

2) STAS Manager,

3) Map processing, and

4) Reduce processing.

13746

A. HETEROGENEOUS QUEUE CONTAINER (HQC)
A shared-queue is a type of local queue and consists
of MapReduce jobs having configuration parameters i.e.
queue capacity, memory allocation and core percentile
allotment [34]. STAS re-programs a homogeneous shared-
queue into three types of heterogeneous shared-queues i.e.
Queuessp, Queuepisk and Queueray having respective
memory and core percentile Coreg, allotment. The memory
allocation depends upon the capability limit of node and core
percentile Coreq, is distributed in such a way that each shared-
queue uses a balanced CPU time for MapReduce job pro-
cessing. Therefore, when a job Job; gets into Heterogeneous
Queue Container (HQC), it is identified by a storage media
tag i.e. Jobssp, Jobpisx and Jobgap and parsed into respec-
tive heterogeneous shared-queues as shown in Algorithm-1.
The job Job; in shared-queue Queuessp can be represented
as,
Queuessp
Jobssp 0Crmsy @)
Similarly, the job Job; in shared-queue Queuepjsg can be
represented as,
Queuepisg
Job =—— 3
DISK 0Crpee (3)
In the same way, the job Job; in shared-queue Queuegap can
be represented as,
Queueram

RAM

Algorithm 1 Heterogeneous Shared-Queue Parser of HQC
1: procedure Redirect

2: Job; < type of MapReduce job
3: Q1.3 < HeterogeneousQueue
4: top:

5: if Job; ==' SSD’ then

6: Queuessp < Job;

7: else if Job; ==" DISK' then

8: Queuepisg < Job;

9: else if Job; ==' RAM’ then

10: Queuegay < Job;

11: Queue:

12: if job; = Empty then

13: close;

14: if Queue = Queue - 1 then insert Job;
15: Queue < Job;-1.

16: goto Queue.

17: close;

18: goto top.

Algorithm-1 explains the procedure of identifying a tag in
job Job; and submitting it to respective share-queue. The pur-
pose of using a tag in MapReduce job depends on the require-
ment of client, where organization specifically demands to

VOLUME 5, 2017

N. M. F. Qureshi et al.: STAS for Hadoop Cluster

IEEE Access

FIGURE 4. STAS Heterogeneous Job Processing Flow Chart.

process a MapReduce job over multiple heterogeneous stor-
age media. By default, a MapReduce job executes into DISK
container and this feature enhances client to process their jobs
into heterogeneous storage container i.e. SSD and RAM.
The collection of tag jobs into HQC can be represented as,

HQCjops = (Queuessp, Queuepysg , Queueray) (5)

Where, HQCj,p is the heterogeneous queue container for
storing shared-queues MapReduce jobs.

B. STAS MANAGER (SM)

STAS Manager is an add-on function to existing Capacity
scheduler and schedules shared-queue jobs into heteroge-
neous container MR container- It adopts the same scheduling
technique with a change in sub-scheduling methods, which
adds tags into a MapReduce job and processes into het-
erogeneous storage containers. A tag job scheduling can be
represented as,

. schedule
Containerpisg <——— Jobpisk

R schedule
Containerssp ~—— Jobssp ((0)

schedule
Job RAM

SchedulerSTAS =
Containergaym

By default, the scheduler is programmed to schedule
map and reduce tasks into two containers i.e. mapper and
reducer [35]. STAS adopts the same configuration and uses
heterogeneous containers for map and reduce task processing
as observed in Fig.4. Therefore, when a tag job schedules
at mapper and reducer containers, STAS observes perfor-
mance metrics and calculates (i) time to pick a job Ty,
(ii) time to service map function into mapper container Tpsqp,

VOLUME 5, 2017

(iii) time to collect results from mapper container and drops at
reducer container 7syiscnJob;) and (iv) time to service reduce
function into reducer container 7Tgeqyc.- The total MapReduce
job execution time can be obtained as,

Tni = TJob,- + TMap + TReduce + TSwitch(Jobi) (7)

The time T4, of mapper container depends upon the usage
of memory and core percentile. Therefore, it can be obtained
as:

TMap = Mapmemory(used) + Mapcore%(used) (8)

Similarly, the time Tgegyce Of reducer container depends upon
the usage of memory and core percentile. Therefore, it can be
obtained as:

TReduce = Reducememory(used) + Reducecore%(used) ©)]

STAS manager uses two local shared-queues i.e. Queueyyp
and Queuepgegyce for scheduling map and reduce functions
into heterogeneous containers. The local shared-queues sub-
mits tasks to mapper and reducer container in FIFO order.

The computing capacity of job Job; into mapper container
can be obtained as,

QueueMap[i]) (10)

Capacitypmapper = Job; -
aper ! Containercore%

Similarly, the memory consumption of job Job; into mapper
container can be obtained as,

QueueMap[,-]

Memo =Jobi| o — !
TYMapper ! (Containermemory> a

13747

IEEE Access

N. M. F. Qureshi et al.: STAS for Hadoop Cluster

In the same way, the computing capacity of job Job; into
reducer container can be obtained as,

UeueReduceli

CapacityReducer = Jobi (M) (12)
Containercore%

Similarly, the memory consumption of job Job; into reducer

container can be obtained as,

QueueReducer[i]) (13)

Memorygeducer = Job; :
Containermemory

where, Queuepapper(i) and Quenuegedyceryi) represents an index
of map and reduce tasks of MapReduce JOb.

Thus, a single map and reduce task processing can be
observed as,

Capacityy , Memoryyy,
Maprskii) = { : T e |
ap

(Capacityreducer , Memorygeducer) } (15)
TReduce
The Algorithm-2 shows that STAS manager schedules map

and reduce tasks into mapper and reducer containers and
produces an output into storage media of HDFS.

Reducerysii) = {

Algorithm 2 STAS Manager

1: procedure Schedule HQC jobs

2: Job; < type of MapReducejob

3 Tjob; < Time to pick a Job;

4 MR conainer < Processing Ratio of Job;
5: Tyap < Time to complete Map processing
6
7
8
9

TReduce <— Time to complete Reduce processing
TsyirchJob;) <— Time to switch Map result to Reducer
Mapperc < Mapper container of MR consainer
: Reducerc < Reducer container of MR container
10 Pick Job; from HQC:

11 get JOb(TugSSD,TagRAM,TugmsK) < HQCcontainer
12: Assign (Mapperc, Reducerc) <— MR conainer
13: Process Mapperc < Job; (QueueMapm)

14: Collect (Mapperc) pesuir

15: Process Reducerc <

16: {(MapperC)Rgsu[z > QueueReduce[i] }

17: Store HDFSsorage—tier <— Reducerc

18: Map Function:

19: if Job; (Map i) .all = "success" then

20: Serialize Mapperc(pataser)

21: Return

22: Reduce Function:

23: if (Reducep,sr) = "success" then

24: Generate Job;)Resulsset

25: Return

26: Return Tyop(iys TMap> TReduce> TSwitchJob;)

C. MAP PROCESSING

Map processing is a procedure to produce input split pro-
grams of job Job; in a scheduling algorithm [36]. STAS re-
programs this subroutine to understand heterogeneous input

13748

splits of job Job; and enhances its functionality to fetch source
datasets from heterogeneous storage media of HDFS.

Map processing works in two phases i.e. (i) Data File
Locality and (ii) Input split formation.

1) DATA FILE LOCALITY (DFL)

Data file locality preserves original location of source dataset
and shares block address to job Job;. Therefore, a map pro-
cessing instance when requests for the location of a dataset,
Namenode responds with a metadata file having location of
original dataset and replicas in Hadoop cluster. The number
of Data file locations per Job; can be obtained as:

o Dataset . Dataset
DFL, = Joriginal | —— |, replica | ——
Location Location / ;
(16)

After receiving a data file location DFL,, map processing
generates split function of accessing dataset from heteroge-
neous storage media. The number of splits can be obtained
as:

Splitsy, = DFL, (17)

2) INPUT SPLIT TASKS

Map function produces input splits to computes client’s job
into heterogeneous mapper container. The function requires
an input of three parameters i.e. job code, splits Splits,, and
number of mappers Mapper; and produces input split tasks
of job Job;. The number of input split tasks for heterogeneous
mapper container can be obtained as,

InputSplit, = (Code, Splits,,, Mapper;) (18)

D. REDUCE PROCESSING

Reduce processing is a procedure to execute combiner task
and reduce function of job Job; in a scheduling algo-
rithm [37]. STAS re-programs combiner method to accept
result of heterogeneous input splits and collects them using
multiple threads Thread;. The enhanced reduce function
understands combiner result and processes them into hetero-
geneous reducer container.

The output of combiner method can be obtained as,

Combiner sy = node; (MaplnputSplitnv Thread,-) (19)

Reduce processing compiles combiner method result
Combiner.gz,; and generates an output into storage media
of HDFS.

V. EXPERIMENTAL WORK

In order to evaluate STAS, we performed experimental exe-
cutions over a Hadoop cluster configuration as mentioned
in Table-1.

A. ENVIRONMENT
The hardware configuration includes Intel Xeon processor
with 8 CPU units, 32GB processing memory and storage

VOLUME 5, 2017

N. M. F. Qureshi et al.: STAS for Hadoop Cluster

IEEE Access

TABLE 1. Hadoop cluster configuration.

Machine Specifications No. of VM
§ CPUs, 32GB memory, 1T 1 Master Node,
20 2 ’ : +
TRl xR Disk and 128 GB SSD . 2 Datanodes
: 4 Core, 16GB memory, 1T 5 5
Intel core 15 N I 2 2 Datanodes

Hadoop Hadoop-2.7.2 (stable)
Virtual Machine Vi 5006
Management

mediai.e. 128GB Samsung SSD, 1TB Seagate hard disk drive
and tmpfs [38] utility for RAM_DISK storage processing.
Additionally, we have used Intel Core i5 processor with
4 cores, 16GB processing memory and storage media i.e.
128GB Samsung SSD, 500GB hard disk drive and tmpfs
utility as RAM_DISK storage processing. The virtual envi-
ronment includes Virtualbox 5.0.16 over 5 virtual machine
configurations as elaborated in Table-2.

TABLE 2. Virtual machines configuration over Hadoop cluster.

Node CPU Memory Disk Configuration
Master Node 6 16 GB HDD,SSD,RAM Intel Xeon
Slavel 2 4GB HDD,SSD.RAM Intel Xeon
Slave2 2 4GB HDD,SSD . RAM Intel Core 15
Slave3 2 4GB HDD,SSD . RAM Intel Core 15
Slave4 2 4GB HDD,SSD,RAM Intel Core i5

B. EXPERIMENTAL DATASET
The dataset used to process experimental work includes:

1) 300 SSD tag Wordcount Jobs
2) 300 DISK tag Wordcount Jobs
3) 300 RAM tag Wordcount Jobs
4) 300 SSD tag Grep Jobs
5) 300 DISK tag Grep Jobs
6) 300 RAM tag Grep Jobs
7) 300 SSD tag Terasort Jobs
8) 300 DISK tag Terasort Jobs
9) 300 RAM tag Terasort Jobs
10) 100 GB SSD Container (50GB Mapper, 50GB
Reducer)
11) 100 GB Disk Container (50GB Mapper, 50GB
Reducer)
12) 50 GB Disk associated tmpfs utility RAM Con-
tainer (25GB Mapper, 25GB Reducer)
13) 1 text file of size 1GB (source dataset)

C. EXPERIMENTAL RESULTS
The experiments conducted to evaluate STAS are as follows:
1) Heterogeneous Queue Container management,
2) STAS Manager,
3) HDFS file management,
4) Map processing evaluation,
5) Reduce processing evaluation and
6) Comparative analysis.

VOLUME 5, 2017

TABLE 3. Heterogeneous tag job parsing into shared-queues.

Heterogeneous Tag Jobs Heterogeneous Queue Container (HQC)
MapReduce (2700 jobs) | Queue SSD | Queue RAM | Queue DISK
Wordcount 300 300 300
Grep 300 300 300
Terasort 300 300 300

FIGURE 5. Tag Job Parsing into shared-queues of HQC.

1) HETEROGENEOUS QUEUE CONTAINER MANAGEMENT
Heterogeneous queue container is a shell that manages
I/O operations of three buffer shared-queues for DISK, SSD
and RAM. It contains environment variables and config-
uration methods to read, write and append shared-queue
elements. The buffer shared-queues are formulated through
queue management parameters i.e. queue capacity, maximum
capacity, job limit, memory allocation and virtual core allo-
cation. The shared-queue Queuerays contains 20% of queue
capacity with job limit set to 1000 and virtual core percentile
of 20%. Similarly, shared-queue Queuessp consists of 30%
of queue capacity with job limit set to 1000 and virtual core
percentile of 30%. In the same way, shared-queue Queuep;sk
contains 50% of queue capacity with job limit set to 1000 and
virtual core percentile of 50%. Heterogeneous queue con-
tainer receives a job Job; and parses it to respective shared-
queues buffers with a processing time in seconds. STAS
submits 2700 MapReduce tag jobs into the container and
evaluates number of Wordcount, Grep and Terasort tag jobs
into heterogeneous shared-queue buffers as shown in Table-3.
The tag jobs consume a parsing time of 7.6, 8.1 and 8 sec-
onds into shared-queue Queuessp, 7.7, 8 and 8 seconds into
shared-queue Queuepisx and 7.5, 8.2 and 7.9 seconds into
shared-queue Queuegsp averagely as shown in Fig.5.

2) STAS MANAGER
STAS manager schedules MapReduce job Job; in three steps
as follows:

1) STAS configuration file,
2) HQC shared-queues parameters,

13749

IEEE Access

N. M. F. Qureshi et al.: STAS for Hadoop Cluster

TABLE 4. STAS manager scheduling tag jobs into heterogeneous containers.

STAS Scheduler SSD Container RAM Container DISK Container
2700 Tag Jobs Mapper | Reducer | Mapper | Reducer | Mapper | Reducer
Wordcount (900 Jobs) 112 29 96 26 147 34
Grep (900 Jobs) 118 25 93 31 151 32
Terasort (900 Jobs) 108 34 92 29 145 37

3) Messaging event handler,

Initially, STAS configuration file collects scheduling
parameters i.e. resource percentile, number of tag jobs, node
locality delay and shared-queue administrative configuration-
set such as job submission, task processing and user
limits. In the next step, STAS invokes initScheduler
method to parse configuration file and adopts heteroge-
neous container shared-queues parameters i.e. capacity
(Queuessp, Queuepisx, Queuerap), maxCapacity(shared-
queues), userLimit, maxTagJobs, ResourcePerShared-queue,
minimumAllocationFactor, numContainers, state, ACL-
Administrator-shared-queues and nodeLocalityDelay. The
third step invokes a method Dispatcher, which handles event
messaging in hierarchical order i.e. (i) add a node, (ii) activate
containers, (iii) update resource manager, (iv) add a tag job
from HQC, (v) assign job processing id, (vi) remove a job,
(vii) refresh containers and (viii) report result.

The performance metrics of scheduling tag job Job; are:

1) Optimal usage of memory and core percentile for
scheduling of map tasks into heterogeneous mapper
container,

2) Optimal usage of memory and core percentile for
scheduling of reduce tasks into heterogeneous reducer
container.

STAS schedules MapReduce tag job into two phases i.e.
(i) map task scheduling and (ii)reduce task scheduling. The
map task receives an input of tag job Job; from shared-queues
and schedules into matching tag container i.e. SSD, RAM and
DISK. We observe that, STAS manager schedules 2700 tag
jobs and effectively reduces 53.1% and 31.25% execution
time through mapper containers of RAM and SSD media.
Moreover, STAS manager schedules resultant map tasks and
reduces 30.76% and 17.24% execution time through reducer
containers of RAM and SSD media compared to default
approach [39], as shown in Table-4.

3) HDFS TAG JOB MANAGEMENT

For this experiment, HDFS stores Amazon products dataset
file into root directory [40]. The file system invokes initBlock
method to transform source file with a size parameter of block
equals to 256 MB. Thus, HDFS generates 4 blocks of the
file into DISK volume and invokes replica method initReplica
with storage media parameters i.e. (1, SSD), (1, RAM). This
replicates original blocks of the source file into storage media
of SSD and RAM. Therefore, when STAS processes a tag
job Job;, the file system receives input split tasks of tag job
and executes map function over data block addresses into

13750

FIGURE 6. Generation of Input split tasks.

heterogeneous storage media. The input split tasks of map
function consume page memory of heterogeneous storage
media. Therefore, we observe that Wordcount tag job pro-
duces input split tasks in 141, 181, 122 seconds over SSD,
DISK and RAM. Similarly, we evaluate that Grep tag job
produces input split tasks in 143, 183, 124 seconds over SSD,
DISK and RAM. In the same way, we find that Terasort tag
job produces input split tasks in 142, 184, 121 seconds over
SSD, DISK and RAM as shown in Fig.6. This reduces a pro-
cessing capacity and memory usage of 48.36% and 28.41%
at generating input split map tasks compared to homogeneous
input split tasks of map function.

4) MAP PROCESSING EVALUATION
Map processing performs execution of input splits pro-
grams through a method mapDaemon. Namenode processes
an equal number of mapDaemon methods to the count
of source data blocks [41]. Therefore, we observe a set
of four mapDaemon methods i.e. Map-1, Map-2, Map-3
and Map-4 for handling the execution of map processing.
The mapDaemon method contains functional subroutines
that require execution parameters i.e. fetchBlockAddress,
fetchStorageMedia, container(n, mediaType), maximum
capacity and memory to process map function. Thus,
mapDaemon method processes input split programs over
heterogeneous mapper containers and generates an output of
map tasks into heterogeneous storage-tier of HDFS.

STAS processes single Wordcount, Grep and Terasort
input splits through mapDaemon methods and observes that

VOLUME 5, 2017

N. M. F. Qureshi et al.: STAS for Hadoop Cluster

IEEE Access

TABLE 5. Map processing result.

FIGURE 7. Memory usage into heterogeneous mapper container.

Map-1 consumes 9.2, 9.6 and 9.8 GB of memory, Map-2 uses
9.1, 9.5 and 9.7 GB of memory, Map-3 utilizes 9.2, 9.2 and
9.8 GB of memory and Map-4 consumes 9.4, 9.4 and 9.6 GB
of memory over heterogeneous mapper container as shown
in Fig.7. Furthermore, Map-1 consumes 51.4%, 72% and
31.1% of core capacity, Map-2 uses 53%, 71.7% and 32.7%
of core capacity, Map-3 utilizes 52.6%, 72% and 33.8% of
core capacity and Map-4 consumes 51.2%, 71.2% and 35.2%
of core capacity over heterogeneous mapper containers as
shown in Fig.8. This shows that input splits of single tag job
Job; consumes 54.23% and 37.52% less computing capacity
and memory in RAM and SSD containers than DISK con-
tainer at core percentile configuration of Coreg,.

In order to observe rigorous performance, STAS pro-
cesses 2700 Wordcount, Grep and Terasort input splits
through mapDaemon methods and records average perfor-
mance of 10800 input split programs consuming computing
capacity and memory usage over heterogeneous mapper con-
tainers as shown in Table-5. This depicts that 10800 input
splits of 2700 tag jobs Job; consumes 52.19% and 36.27%
less computing capacity and memory in RAM and SSD con-
tainers than DISK container through core percentile configu-
ration of Coreq,.

5) REDUCE PROCESSING EVALUATION

Reduce processing collects output of map input split pro-
grams through combiner function and summarizes the

VOLUME 5, 2017

Wordcount Grep Terasort
Core % Memory Core % Memory Core % Memory
Map Processing | SSD | RAM | DISK | SSD | RAM | DISK | SSD | RAM | DISK | SSD | RAM | DISK | SSD | RAM | DISK | SSD | RAM | DISK
Map-1 52.61 | 71.83 | 32.87 | 9.2 8.7 9.1 53.62 | 71.09 | 31.41 9.6 8.4 9.7 52.84 | 7242 | 3272 | 9.8 8.8 9.9
Map-2 54.92 | 72.19 | 33.19 | 9.1 8.5 9.4 54.08 | 72.48 | 32.95 9.5 8.7 9.6 53.28 | 72.34 | 33.69 | 9.7 8.9 9.8
Map-3 5354 | 71.14 | 3226 | 9.2 8.8 9.4 52.89 | 71.27 | 31.79 | 9.2 8.9 9.4 53.77 | 71.59 | 3149 | 9.8 8.7 9.9
Map-4 54.93 | 73.04 | 34.81 9.4 8.7 9.3 53.67 | 73.38 | 33.68 9.4 8.6 9.8 5434 | 7348 | 3382 | 9.6 8.9 9.7

FIGURE 8. Computing capacity consumption into heterogeneous mapper
container.

FIGURE 9. Memory usage into heterogeneous reducer container.

collection using reduceDaemon method [42]. Namenode
assigns single instance of reduceDaemon method that
generates n number of threads equivalent to count of
input split programs. Thus, we observe single method
reduceDaemon for executing multiple threads of combiner
method and reduce processing. The reduceDaemon method
consists of subroutines that requires a set of execution
parameters i.e. accumulatorLocator, threadPerAccumulator,
combiner (thread, accumulator), container(n, mediaType),

13751

IEEE Access

N. M. F. Qureshi et al.: STAS for Hadoop Cluster

TABLE 6. Reduce processing result.

‘Wordcount Grep Terasort
Core % Memory Core % Memory Core % Memory
Reduce Processing SSD ‘ RAM ‘ DISK | SSD ‘ RAM ‘ DISK SSD ‘ RAM ‘ DISK | SSD ‘ RAM ‘ DISK SSD ‘ RAM ‘ DISK | SSD ‘ RAM ‘ DISK
Reduce 59.61 ‘ 80.95 ‘ 35.37 10.1 ‘ 10.3 ‘ 10.2 59.73 ‘ 81.38 ‘ 35.18 10.3 ‘ 10.4 ‘ 10.2 59.95 ‘ 80.47 ‘ 35.16 10.4 ‘ 10.5 ‘ 10.3
TABLE 7. MapReduce tag job Job; processing into Hadoop cluster.

Jobs, Job; Bandwidthyae Mapperyase Mapperconainer | Reducercontainer | Memoryroar | Maprase | Reduceras | HDFSwyire | Coreg
300 SSD (Wordcount) 40.94 Mbps 75.3MB/Each Job 8.7 GB 9 GB 9.7 GB 1200 300 114 GB 58.27%
300 SSD (Grep) 41.31 Mbps 75.9MB/Each Job 8.1 GB 8.4 GB 9.8 GB 1200 300 10.8 GB 59.41%
300 SSD (Terasort) 41.94 Mbps 76.4MB/Each Job 9.2 GB 9.5 GB 9.9 GB 1200 300 11.9 GB 58.93%
300 RAM (Wordcount) 43.82 Mbps 75.85MB/Each Job 8.1 GB 8.4 GB 9.8 GB 1200 300 10.8 GB 78.38%
300 RAM (Grep) 42.64 Mbps 76.25MB/Each Job 8.3 GB 8.7 GB 10.1 GB 1200 300 11.1 GB 78.29%
300 RAM (Terasort) 44.73 Mbps 76.AMB/Each Job 8.6 GB 8.9 GB 10.05 GB 1200 300 11.3 GB 78.42%
300 DISK (Wordcount) 45.29 Mbps 76.38MB/Each Job 8.9 GB 9.3 GB 9.9 GB 1200 300 11.7 GB 35.5%
300 DISK (Grep) 46.39 Mbps 78.96MB/Each Job 9.1 GB 9.4 GB 10.05 GB 1200 300 11.8 GB 35.82%
300 DISK (Terasort) 48.63 Mbps 79.5MB/Each Job 9.2 GB 9.6 GB 10.1 GB 1200 300 12.05 GB | 35.95%

FIGURE 10. Computing capacity consumption into heterogeneous reducer
container.

maximum capacity and memory to process reduce func-
tion. Thus, reduceDaemon method processes output of
mapDaemon over heterogeneous reducer containers and gen-
erates an output of tag job Job; into heterogeneous storage
media of HDFS.

STAS schedules mapDaemon output of Wordcount, Grep
and Terasort jobs and observes that reduceDaemon method
consumes 10.2, 10.1 and 10.3 GB of memory over het-
erogeneous reducer container as shown in Fig.9. Moreover,
reduceDaemon method consumes 59.2%, 80.5% and 34.7%
of core capacity over heterogeneous reducer containers as
shown in Fig.10. This shows that multiple threads of instance
reduceDaemon consumes 54.23% and 37.52% less comput-
ing capacity and memory in RAM and SSD containers than
DISK container at core percentile configuration of Coreg,.

In order to evaluate precise performance, STAS schedules
mapDaemon output of 2700 Wordcount, Grep and Terasort
jobs through reduceDaemon method and records an aver-
age performance of 10800 threads consuming computing

13752

FIGURE 11. Memory usage into heterogeneous mapper container of
Schedulers.

capacity and memory usage over heterogeneous reducer con-
tainers as shown in Table-6. This shows that 10800 threads
of reduce processing consumes 42.71% and 55.73% less
computing capacity and memory in SSD and RAM containers
than DISK container through core percentile configuration of
Coreq,.

The map and reduce processing are parts of MapReduce
paradigm. Therefore, we summarize evaluation reports and
observe individual performance of MapReduce tag jobs Job;
as shown in Table-7.

6) COMPARATIVE ANALYSIS

We equip enlist schedulers i.e. Capacity, Fair, Delay, Late,
BAR, Tarazu, Matchmaking, Adaptive, and DyScale with
a configuration of executing jobs Job; over heterogeneous
MapReduce containers. The comparison metrics of schedul-
ing tag job Job; through schedulers are:

1) Optimal usage of memory and core percentile for
scheduling input splits into heterogeneous mapper
container,

VOLUME 5, 2017

N. M. F. Qureshi et al.: STAS for Hadoop Cluster

IEEE Access

TABLE 8. Resources consumption into heterogeneous mapper container of Schedulers.

Wordcount Grep Terasort
Core % Memory Core % Memory Core % Memory

Scheduler SSD | RAM | DISK | SSD | RAM | DISK | SSD | RAM | DISK | SSD | RAM | DISK | SSD | RAM | DISK | SSD | RAM | DISK
STAS S51.7 72.8 32.5 9.1 9.2 9.05 52.4 72.4 329 9.4 9.2 9.1 51.9 72.6 32.6 9.4 9.1 9.5

Capacity 757 | 863 61.5 104 10.5 10.3 | 76.1 86.6 61.2 10.6 104 10.8 | 75.8 | 86.1 61.6 10.3 10.7 10.25
Fair 827 | 89.1 74.6 12.5 12.7 124 | 824 | 894 74.9 12.9 12.6 128 | 829 | 89.7 74.1 12.8 12.3 12.7
Delay 84.9 88.3 76.3 12.4 12.3 12.6 84.7 88.2 76.1 12.5 12.8 12.9 84.2 88.6 76.8 12.9 12.4 12.6
Late 84.8 89.5 774 12.3 12.1 12.7 84.4 89.4 77.8 12.5 12.9 12.7 84.2 89.2 71.3 12.1 12.8 12.3
BAR 86.3 91.4 81.5 13.8 13.9 13.4 86.6 91.2 81.9 13.6 13.3 13.1 86.2 91.8 81.8 13.9 13.4 13.6

Tarazu 77.4 86.9 65.2 11.4 11.2 11.5 71.5 86.7 66.5 11.9 11.3 11.2 77.8 86.6 65.9 11.4 11.8 11.28
Matchmaking | 85.8 | 89.3 78.7 12.7 12.9 126 | 856 | 89.8 77.9 129 | 13.05 128 | 853 | 895 79.3 12.8 | 12.94 12.5
Adaptive 83.5 90.4 772 11.6 11.8 11.9 83.9 90.2 77.8 11.9 11.6 11.92 | 83.6 90.7 77.3 12.1 11.8 11.9
DyScale 87.2 91.3 84.8 13.8 13.6 13.9 87.6 91.7 85.3 14.1 13.7 14.02 | 87.5 91.6 80.04 14.3 14.1 13.9

TABLE 9. Resources consumption into heterogeneous reducer container of Schedulers.
Wordcount Grep Terasort
Core % Memory Core % Memory Core % Memory

Scheduler SSD | RAM | DISK | SSD | RAM | DISK | SSD | RAM | DISK | SSD | RAM | DISK | SSD | RAM | DISK | SSD | RAM | DISK
STAS 542 | 743 342 10.5 10.7 103 | 547 | 742 34.7 10.8 10.6 11.1 543 | 747 344 10.9 10.7 10.5
Capacity 717.8 88.6 63.6 11.6 11.3 11.2 78.3 88.3 63.7 11.9 11.5 12.2 78.1 88.1 63.1 11.6 11.9 11.8
Fair 84.5 91.8 75.7 11.9 11.8 11.4 84.8 91.5 75.3 12.3 12.9 12.6 84.6 91.2 75.2 12.8 12.5 12.8
Delay 86.7 90.7 77.8 13.4 13.7 13.6 86.2 90.1 71.5 13.6 13.5 13.3 86.4 90.4 77.6 13.7 13.9 13.4
Late 862 | 914 78.5 13.7 134 136 | 869 | 924 78.2 13.9 133 13.5 864 | 919 78.6 13.6 13.2 13.5
BAR 884 | 935 82.7 14.6 14.8 143 | 88.1 93.7 82.6 14.4 14.8 146 | 885 | 9338 82.3 14.5 14.7 14.2
Tarazu 79.2 88.3 67.1 11.6 11.7 11.4 79.3 88.4 67.4 11.8 11.6 11.2 79.5 88.7 67.8 11.9 11.7 11.4
Matchmaking | 87.5 91.8 79.6 13.5 13.8 132 87.1 91.7 79.8 13.7 13.8 13.5 87.4 91.5 79.4 13.3 13.6 13.7
Adaptive 85.9 92.6 78.4 12.4 12.6 12.7 85.5 92.5 78.8 12.3 12.6 12.1 85.4 92.7 78.2 12.9 12.7 12.6
DyScale 89.3 | 935 85.8 13.9 132 13.6 | 89.4 [9338 85.3 13.8 142 139 | 895 [936 85.5 14.9 144 14.2

2) Optimal usage of memory and core percentile for
scheduling of reduce tasks into heterogeneous reducer
container.

We schedule single Wordcount and Grep job through
enlist schedulers and evaluate that mapDaemon method con-
sumes 11.89%, 34.59%, 33.51%, 29.72%, 47.02%, 23.24%,
37.83%, 24.86%, and 47% less memory of STAS than Capac-
ity, Fair, Delay, Late, BAR, Tarazu, Matchmaking, Adaptive
and DyScale schedulers respectively, as shown in Fig.11.
Furthermore, we found that the same Wordcount and Grep
jobs consume 46.65%, 56.16%, 57.03%, 57.95%, 59.72%,
50%,58.29%, 57.8%, and 61.2% less core percentile of STAS
than Capacity, Fair, Delay, Late, BAR, Tarazu, Matchmaking,
Adaptive, and DyScale schedulers respectively, as shown
in Fig.12.

In order to observe accuracy in performance, schedulers
process 2700 Wordcount, Grep and Terasort input splits
through mapDaemon methods and records average perfor-
mance of 10800 input split programs consuming computing
capacity and memory usage over heterogeneous mapper con-
tainers as shown in Table-8. This shows that 10800 input
splits of 2700 tag jobs Job; consume 29.48% and 38.62% less
computing capacity and memory through STAS than enlist
schedulers having core percentile configuration of Coreg,.

We schedule mapDaemon output of Wordcount and
Grep jobs through enlist schedulers and evaluate that
reduceDaemon method consumes 13.79%, 16.74%, 30.04%,
29.06%, 39.9%, 16.25%, 31.52%, 26.1%, and 36.45% less
memory of STAS than Capacity, Fair, Delay, Late, BAR,
Tarazu, Matchmaking, Adaptive and DyScale schedulers

VOLUME 5, 2017

FIGURE 12. Computing capacity consumption into heterogeneous
mapper container of Schedulers.

respectively, as shown in Fig.13. Moreover, we observe that
the same reduceDaemon method over mapDaemon output
of Wordcount and Grep jobs consume 21.76%, 29.19%,
30.09%, 30.68%, 32.58%, 24.14%, 31.12%, 30.59%, and
33.71% less core percentile of STAS than Capacity, Fair,
Delay, Late, BAR, Tarazu, Matchmaking, Adaptive and
DyScale schedulers respectively, as shown in Fig.14.

In order to evaluate accuracy in performance, schedulers
process mapDaemon output of 2700 Wordcount, Grep and
Terasort jobs through reduceDaemon method and record an
average performance of 10800 threads consuming computing

13753

IEEE Access

N. M. F. Qureshi et al.: STAS for Hadoop Cluster

FIGURE 13. Memory usage into heterogeneous reducer container of
Schedulers.

FIGURE 14. Computing capacity consumption into heterogeneous reducer
container of Schedulers.

capacity and memory usage over heterogeneous reducer con-
tainers as shown in Table-9. This shows that 10800 threads
of reduce processing consumes 31.41% and 43.79% less
computing capacity and memory through STAS than enlist
schedulers through core percentile configuration of Coreq,.

VI. CONCLUSION

This paper proposes a resource efficient scheduler that
processes MapReduce jobs into heterogeneous storage
containers. STAS introduces the use of tag jobs, heteroge-
neous shared-queues, heterogeneity-aware STAS manager
and use of heterogeneous storage media as container vol-
ume. STAS reduces processing latency of locating and pair-
ing dataset into heterogeneous storage media and optimizes
the consumption of resources in Hadoop cluster. In future,
we focus to work over scheduling issues of multi-homing
nodes connected through mesh topology in Hadoop cluster.

13754

REFERENCES

[1]
[2]

3

[4]

[5

—

[6

—

7

—

[8

[9]

[10]

(11]

[12]

(13]

(14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(2014). Welcome to Apache Hadoop!, accessed on Dec. 8, 2016. [Online].
Available: http://hadoop.apache.org/

M. Technologies. (2016). Featured Customers, accessed on Dec. 8, 2016.
[Online]. Available: https://www.mapr.com/

Cloudera. (2016). The Modern Platform for Data Management
and Analytics, accessed on Dec. 8, 2016. [Online]. Available:
http://www.cloudera.com/

F. Bajaber, R. Elshawi, O. Batarfi, A. Altalhi, A. Barnawi, and S. Sakr,
“Big data 2.0 processing systems: Taxonomy and open challenges,”
J. Grid Comput., vol. 14, no. 3, pp. 379-405, Jun. 2016.

(2015). Apache Hadoop 2.7.1 Apache Hadoop NextGen
MapReduce (YARN), accessed on Dec. 8, 2016. [Online]. Available:
https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-yarn-
site/YARN.html

(2016). Apache Hadoop 2.7.3 HDEFS Architecture, accessed on
Dec. 8, 2016. [Online]. Available: http://hadoop.apache.org/docs/r2.7.3/
hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

M. Senthilkumar and P. Ilango, ‘A survey on job scheduling in big data,”
J. Inst. Inf. Commun. Technol. Bulgarian Acad. Sci., vol. 16, no. 3,
pp. 35-51, Jan. 2016.

B.J. Mathiya and V. L. Desai, ‘“Apache Hadoop yarn parameter configura-
tion challenges and optimization,” in Proc. Int. Conf. Soft-Comput. Netw.
Secur. (ICSNS), Feb. 2015, pp. 1-6.

1. A. Hashem, N. B. Anuar, A. Gani, I. Yaqoob, F. Xia, and S. U. Khan,
“MapReduce: Review and open challenges,” Scientometrics, vol. 109,
no. 1, pp. 389-422, 2016.

S. Singh, G. Rakhi, and P. K. Mishra. (2017). “Review of Apri-
ori based algorithms on MapReduce framework.” [Online]. Available:
https://arxiv.org/abs/1702.06284

Heterogeneous Storage, accessed on Dec. 8, 2016. [Online]. Available:
https://issues.apache.org/jira/browse/HDFS-2832

N. M. F. Qureshi and D. R. Shin, “RDP : A storage-tier-aware robust
data placement strategy for Hadoop in a Cloud-based heterogeneous envi-
ronment,” KSII Trans. Internet Inf. Syst., vol. 10, no. 9, pp. 4063—4086,
Sep. 2016.

D. Park, K. Kang, J. Hong, and Y. Cho, “An efficient Hadoop data
replication method design for heterogeneous clusters,” in Proc. 31st Annu.
ACM Symp. Appl. Comput.-(SAC), 2016, pp. 2182-2184.

J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi, “Retro: Targeted
resource management in multi-tenant distributed systems,” in Proc. NSDI,
2015, pp. 589-603.

S. Shaikh and D. Vora, “YARN versus MapReduce—A comparative
study,” in Proc. 3rd Int. Conf. Comput. Sustain. Global Develop. (INDIA-
Com), 2016, pp. 1294-1297.

R. Gu et al., “SHadoop: Improving MapReduce performance by opti-
mizing job execution mechanism in Hadoop clusters,” J. Parallel Distrib.
Comput., vol. 74, no. 3, pp. 2166-2179, Mar. 2014.

R. S. Pakize, “A comprehensive view of Hadoop MapReduce schedul-
ing algorithms,” Int. J. Comput. Netw. Commun. Secur., vol. 2, no. 9,
pp. 308-317, 2014.

(2016). Apache Hadoop 2.7.2 Hadoop: Fair Scheduler, accessed on
Dec. 8, 2016. [Online]. Available: http://hadoop.apache.org/docs/r2.7.2/
hadoop-yarn/hadoop-yarn-site/FairScheduler.html

(2016). Apache Hadoop 2.7.2 Hadoop: Capacity Scheduler, accessed on
Dec. 8, 2016. [Online]. Available: http://hadoop.apache.org/docs/r2.7.2/
hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html

Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mobile
cloud computing: Taxonomy and open challenges,” IEEE Commun.
Surveys Tuts., vol. 16, no. 1, pp. 369-392, Feb. 2014.

D. Cheng, J. Rao, Y. Guo, C. Jiang, and X. Zhou, “Improving performance
of heterogeneous MapReduce clusters with adaptive task tuning,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 3, pp. 774-786, Mar. 2017.

N. S. Islam, M. Wasi-ur-Rahman, X. Lu, and D. K. Panda, “Efficient data
access strategies for Hadoop and spark on HPC cluster with heterogeneous
storage,” in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2016,
pp. 223-232.

M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling,” in Proc. 5th Eur. Conf. Comput. Syst.,
2010, pp. 265-278.

X. Wang, Y. Wang, and H. Zhu, “Energy-efficient multi-job schedul-
ing model for cloud computing and its genetic algorithm,” Math. Prob-
lems Eng., vol. 2012, Oct. 2012, Art. no. 589243.

VOLUME 5, 2017

N. M.

F. Qureshi et al.: STAS for Hadoop Cluster

IEEE Access

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

C. He, Y. Lu, and D. Swanson, ‘“Matchmaking: A new MapReduce
scheduling technique,” in Proc. IEEE 3rd Int. Conf. Cloud Comput.
Technol. Sci., Nov. 2011, pp. 40-47.

M. Zaharia et al., “Improving MapReduce performance in heterogeneous
environments,” in Proc. OSDI, vol. 8. 2008, p. 4.

F. Yan, L. Cherkasova, Z. Zhang, and E. Smirni, “DyScale: A MapReduce
job scheduler for heterogeneous multicore processors,” IEEE Trans. Cloud
Comput., vol. 5, no. 2, pp. 317-330, Apr. 2017.

F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar,
“Tarazu,” ACM SIGARCH Comput. Archit. News, vol. 40, no. 1, p. 61,
Apr. 2012.

J. Polo, Y. Becerra, D. Carrera, J. Torres, E. Ayguade, and M. Steinder,
“Adaptive MapReduce scheduling in shared environments,” in Proc. 14th
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., May 2014, pp. 61-70.
J. Jin, J. Luo, A. Song, F. Dong, and R. Xiong, “BAR: An efficient
data locality driven task scheduling algorithm for cloud computing,” in
Proc. 11th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., May 2011,
pp. 295-304.

K.R. Krish, A. Anwar, and A. R. Butt, “hatS: A heterogeneity-aware tiered
storage for Hadoop,” in Proc. 14th IEEE/ACM Int. Symp. Cluster, Cloud
Grid Comput., Chicago, IL, USA, May 2014, pp. 502-511.

N. S. Islam, X. Lu, M. Wasi-ur-Rahman, D. Shankar, and D. K. Panda,
“Triple-H: A hybrid approach to accelerate HDFS on HPC clusters with
heterogeneous storage architecture,” in Proc. 15th IEEE/ACM Int. Symp.
Cluster, Cloud Grid Comput., May 2015, pp. 101-110.

M. Wasi-ur-Rahman, X. Lu, N. S. Islam, R. Rajachandrasekar, and
D. K. Panda, “High-performance design of YARN MapReduce on modern
HPC clusters with Lustre and RDMA,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp. (IPDPS), May 2015, pp. 291-300.

W. Hu et al., “Multiple-job optimization in MapReduce for heterogeneous
workloads,” in Proc. 6th Int. Conf. Semantics, Knowl. Grids, Nov. 2010,
pp. 135-140.

D. Cheng, X. Zhou, P. Lama, J. Wu, and C. Jiang, “Cross-platform resource
scheduling for spark and MapReduce on YARN,” IEEE Trans. Comput.,
vol. 66, no. 8, pp. 1341-1353, 2017.

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.

R. Chaiken et al., “SCOPE: Easy and efficient parallel processing
of massive data sets,” VLDB Endowment, vol. 1, no. 2,
pp. 1265-1276, Aug. 2008.

(2011). An in-Place Memory RAM Mirror Tool, accessed on Dec. 8, 2016.
[Online]. Available: https://www.krenger.ch/blog/linux-ramdisk-with-
tmpfs/

K. R. Krish, M. S. Igbal, and A. R. Butt, “VENU: Orchestrating SSDs in
hadoop storage,” in Proc. IEEE Int. Conf. Big Data (Big Data), Oct. 2014,
pp. 207-212.

Amazon Product Dataset, accessed on Dec. 8, 2016. [Online]. Available:
https://snap.stanford.edu/data/bigdata/amazon/amazon-meta.txt.gz

Y. V. Lokeswari and S. G. Jacob, “A comparative study on parallel data
mining Algorithms using Hadoop map reduce,” in Proc. 2nd Int. Conf. Inf.
Commun. Technol. Competitive Strategies-(ICTCS), 2016, p. 143.

A. B. Patel, M. Birla, and U. Nair, “Addressing big data problem
using Hadoop and map reduce,” in Proc. Nirma Univ. Int. Conf.
Eng. (NUICONE), Dec. 2012, pp. 1-5.

NAWAB MUHAMMAD FASEEH QURESHI
received the B.E. degree in software engineer-
ing and the M.E. degree in information technol-
ogy from the Mehran University of Engineering
and Technology, Pakistan, in 2006 and 2013,
respectively. He is currently pursuing the Ph.D.
degree with the Department of Computer Sci-
ence and Engineering, Sungkyunkwan University,
South Korea. His research interests include Big
Data platform and cloud computing.

VOLUME 5, 2017

DONG RYEOL SHIN received the B.S. degree
in electrical engineering from the Sungkyunkwan
University in 1980, the M.S. degree in electri-
cal engineering from the Korea Advanced Insti-
tute of Science and Technology in 1982, and the
Ph.D. degree in electrical engineering from the
Georgia Institute of Technology, USA, in 1992.
From 1992 to 1994, he was with Samsung Data
Systems, South Korea, where he was involved in
the research of intelligent transportation systems.
Since 1994, he has been with the Department of Computer Science and
Engineering, Sungkyunkwan University, where he is currently a Full Pro-
fessor with the Network Research Group. His current research interests lie
in the areas of mobile network, ubiquitous computing, cloud computing,
and bioinformatics. He is actively involved in the security of vehicular
area networks, and the implementation and analysis of Big Data platform,
applicable to 3-D image processing of robotic arms.

ISMA FARAH SIDDIQUI received the B.E. degree
in software engineering and the M.E degree in
information technology from the Mehran Uni-
versity of Engineering and Technology, Pakistan,
in 2006 and 2008, respectively. She is currently
pursuing the Ph.D. degree with the Department of
Computer Science and Engineering, Hanyang Uni-
versity ERICA, South Korea, funded by Higher
Education Commission, Pakistan. Since 2006, she
has been with the Department of Software Engi-
neering, Mehran University of Engineering and Technology, where she is
currently designated as an Assistant Professor. Her research interests include
software engineering, smart environment, semantic Web, IoT, and Big Data.

BHAWANI SHANKAR CHOWDHRY received
the Ph.D. degree from the School of Electronics
and Computer Science, University of Southamp-
ton, U.K., in 1990. He is currently a Full Profes-
sor and the Dean Faculty of Electrical Electronics
and Computer Engineering, Mehran University of
Engineering and Technology, Jamshoro, Pakistan.
He is having teaching and research experience of
more than 30 years. He has the honor of being one
of the editors of several books Wireless Networks,
Information Processing and Systems (CCIS 20), Emerging Trends and Appli-
cations in Information Communication Technologies (CCIS 281), Wireless
Sensor Networks for Developing Countries (CCIS 366), and Communication
Technologies, Information Security and Sustainable Development (CCIS
414), published by Springer Verlag, Germany. He has also been serving as
a Guest Editor of Wireless Personal Communications, which is a Springer
International Journal. He has produced more than 13 Ph.D. degrees and
supervised more than 50 M.Phil./master’s Theses in the area of ICT. His list
of research publication crosses to over 60 in national and international jour-
nals, IEEE and ACM proceedings. Also, he has Chaired Technical Sessions
in USA, U.K,, China, UAE, Italy, Sweden, Finland, Switzerland, Pakistan,
Denmark, and Belgium. He is a member of various professional bodies
including: the Chairman IEEE Karachi Section, Regionl0 Asia/Pacific,
Fellow IEP, Fellow IEEEP, Senior Member, IEEE Inc., USA, SM ACM
Inc., USA. He is a Lead Person at MUET of several EU funded Erasmus
Mundus Program, including Mobility for Life, StrongTies, INTACT, and
LEADERS. He has organized several International Conferences, including
IMTICOS8, IMTIC12, IMTIC13, IMTIC15, WSN4DC13, IEEE SCONEST,
IEEE PSGWC13, and the Track Chair in Global Wireless Summit (GWS
2014), and the Chief Organizer of GCWOC’16 in Mélaga, Spain.

13755

