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ABSTRACT Cloud datacentres are acknowledged as being massive energy consumers, which may have
significant environment impacts. Service providers have an ethical responsibility to reduce the environmental
impact of server resources and a simultaneous and complementary commercial desire to reduce energy
costs. Zombie servers in the datacenters are one of the primary sources of undesirable energy expenditures
by incurring idle resources during task execution. This paper investigates the cause, impact and energy-
related implications of zombie servers. Important outcomes of this paper are the characterization of the
diversity among the workload behaviors in resource consumption and the quantification of the presence of
idle CPU and memory resources during task execution causing server zombieness. The undesirable power
consumption of zombie servers is determined based on the profiles of currently available servers and their
corresponding environmental implications are illustrated in this paper. Empirical analysis shows that cloud
workloads are highly heterogeneous in resource consumption pattern and CPU resources may display 75.6%
of idleness relative to their allocated level, while memory is 25.5% idle. The report concludes that significant
reductions in power consumption and CO2 emission can be achieved by provisioning a realistic level of
resources to servers, which are scaled to suit the anticipated workloads.

INDEX TERMS Energy-aware systems, data exploration, power management, ubiquitous computing.

I. INTRODUCTION
The emergence of Cloud Computing over the recent years has
achieved tremendous exposure in both academia and industry.
Cloud datacentre resources are witnessed to consume tremen-
dous amounts of energy and are generating large amounts
of carbon footprints. Cloud providers are contractually com-
mitted to provide services without violating the terms of
the initially negotiated SLA (Service Level Agreement) [1].
The SLA is paramount in quantifying the attributes used to
define, measure and maintain the Quality of Service (QoS)
at a desired level and for setting and managing the Qual-
ity of Expectations (QoE) of the end users. In the Cloud
Computing service model, client demand requirements are
satisfied by provisioning resources, this is typically at a level
which exceeds [2] the actual amounts of resource neces-
sary to process their prospective job. User requests arriving
at the datacentres in the form of job submissions are usu-
ally scheduled and allocated onto Virtual Machines (VMs)

deployed on physical servers. Providers allocate the resource
levels for task execution based on the intensity of the user
demands. Since the allocated resource levels within VMs
are not often completely utilised, this directly causes the
physical servers to operate below their actual capacities.
This results in an increased proportion of server resources
being idle and as a result of which, approximately 46%
of machines [3] are operating below maximum capability
for a significant amount of time with their resources being
reserved for the over-estimated resource requirements. These
resources remain idle and unutilised, consuming unnecessary
energy and without contributing to the execution of the work-
loads. Servers with increased proportions of idle resources
are termed as ‘comatose’ or ‘zombie’ [4] servers, which are
usually powered on and consuming electricity but delivering
no useful information services. Unfortunately zombie servers
can remain unnoticed in datacentres since they do not have
service affecting failures, their utilisation metrics do not
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generate exceedance alarms and they are therefore unlikely
to appear in any ‘‘top 10’’ reporting lists. It has been shown
that an idle server may consume approximately two-thirds
of the energy used by the same server operating at full
load [5]–[7]. It is worthy of note that the power overhead
incurred by resource idleness vary significantly for different
hypervisors on alternative physical servers.

While it is possible to simultaneously reduce energy
impacts by reducing the active resources at the datacentres,
however this may result in lower levels of resource avail-
ability which could in turn causes temporal loss of service,
jeopardising the agreed SLA, and damaging the commer-
cial credibility of the provider. Service unavailability is an
unacceptable event for the Cloud users as they have pur-
chased a contract based on the structure and service appeal
of Cloud Computing, namely an illusion of infinite resource
availability. Exposing the cause and impacts of zombie
resources in Cloud datacentres is an integral requirement of
the Cloud service model not only to achieve energy efficiency
but also to maintain optimised performance quality.

The imprecise knowledge and understanding of the charac-
teristics of both the datacentres and the Cloud workloads [8]
are primary causes for the less than perfect efficiency of
existing methodologies of energy efficiency [5], [9]–[12].
Improvements can be made if the workload and datacen-
tre behavioural characteristics and corresponding energy
implication is quantified for the entire system. To this end,
extensive analysis has been conducted in the recent past
with the motivation of exploring the undesirable energy
consumption within the Cloud server resources. Previous
analysis [13]–[19] has emphasised phenomenon such as long
tails, task failures, rollback and performance interference
as well as latency sensitiveness of the workloads, different
run-time tasks etc., as being primary causes for undesirable
energy consumption. The main focus of the majority of the
cited works is on the energy implications resulting from
failure related events in the Cloud datacentres. Despite the
existing works, an in-depth analytics of the workload char-
acteristics is important for two reasons. Firstly, analysing
the inner distribution of resource consumption trend and
task length helps exposing the job behaviour heterogene-
ity in resource consumption pattern. Secondly, studying the
requested-to-utilised resource ratio helps to quantify the pro-
portions of idle resource times for identifying the zombie
server resources.

The major contributions of this paper include:
1. An empirical analysis of the characteristics of the Cloud

jobs in consuming the provisioned server resources. This
analysis uncovers the diversity among the submitted jobs
in consuming the previsioned level of resources and
encompassed task duration and exposes the cause for
energy wastages among the job execution.

2. The first comprehensive analysis of the presence of pro-
portional idle resource time for CPU and memory during
every single task execution session in a large-scale data-
centre operation to spot server zombieness. This analysis

can be applied when allocating optimum level of resources
for task executions to reduce over-allocation of resources.
Also, this analysis can find applications in the prediction
models aiming to predict the resource utilisation levels
of the user requests. Minimising the allocated-to-utilised
resource ratio will reduce the resource idleness among
the server resources, thereby reducing undesirable energy
wastage.

3. Mensuration of the power consumption and carbon foot-
prints incurred by the proportional idle resource times
during tasks execution, with our comprehensive analysis
conducted based on in-trend server power profiles.
The rest of the paper is organised as follows: Section II

presents the related works and Section III gives an overview
of the Cloud workloads. Section IV presents the methodology
of our analysis and Section V is covered with our analysis on
resource consumption trend of the jobs. Section VI includes
the analysis of the presence of the idle resource time in terms
of CPU and memory resources during the task execution
sessions. The energy wastage incurred by the power
consumption of the zombie resources are illustrated in
Section VII and their corresponding environmental implica-
tions are detailed in Section VIII. Section IX presents the
application of our work and Section X concludes this paper
along with defining the future direction of our research work.

II. RELATED WORKS
Usually, undesirable energy consumption is observed at
various levels within the processes and components in a
large-scale datacentre environment. The impact of failure
related energy consumption are investigated in the works
of [14] and [19] where they quantified the various termina-
tion events and consequent energy implications based on the
Google trace logs. Furthermore, they investigated the task
terminations in relation to the priority levels of the tasks.
This analysis insists that large numbers of task kill and evict
events are prevalent in Cloud datacentres, thereby causing
undesirable energy expenditures. The cause for such termi-
nations has also been analysed by the same work and the
failure and repair times incurred energy expenditures have
been exhibited. Apart from this work, the undesirable energy
consumption incurred by task failures and terminations have
been extensively studied [16], [20]–[24] from various per-
spectives in similar environments such as grids, large-scale
MapReduce applications in Cloud environments etc.

A latency-aware analysis has been conducted in our ear-
lier work [17], where the various task terminations events
are quantified in accordance with the latency sensitivity
levels of the submitted tasks. This work leads us to infer
that tasks characterised by higher level of latency sensitivity
suffer increased terminations and thus account for excess
energy consumption. Apart from the network and dispatch
latency [25], the in-house computing latency of the tasks
has significant impact on the overall energy consumption.
Furthermore, the impacts of latency on the Cloud environ-
ments are presented in the works of [26]–[28] revealing that
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TABLE 1. Summary of related works.

latency sensitivity levels of the tasks have significant impact
onQoS, energy consumption, termination events and end user
tolerances.

The phenomenon of longs tail have been investigated in
the works of [13] and it has been demonstrated that the
presence of smaller proportions of long tails can significantly
impact the completion times of the tasks. Long tails are the
stragglers those significantly delay the completion of the
entire tasks, thereby incurring excess energy consumption.
The performance interference effects on energy consumption
have been studied [15], [29] and the impact of such non-
negligible performance interference overheads was negoti-
ated with a workload placement model for reducing energy
wastage. In general, aggressively consolidating workloads
having similar resource intensiveness (CPU or memory) will
lead to such performance interference effects. Energy con-
sumption of different run-time tasks has been investigated
by exploring the correlation of energy consumption with
computational tasks [18]. The energy-aware analysis of the
computational correlations among the tasks helps to achieve
energy-efficient task placement and optimal resource man-
agement. Energy consumption of the sending and receiving
network switches [30], and communication components [31]
in Cloud datacentres has been studied. These communication
components can consume considerable amounts of energy
whilst connecting the users to the Clouds. The energy con-
sumption of dormant server equipment [32] in Cloud data-
centres has been analysed to develop a model for optimising
energy consumption of the network components. This work
states that individual server resources can achieve the lowest
possible energy consumption state without affecting other
components working under normal conditions. The effect of
virtualisation [6] on overall datacentre energy consumption
has been investigated by analysing server energy usage under
various hypervisor configurations. All such works demon-
strated that there is an increased scope for reducing excess
energy consumption at the Cloud datacentres.

From state-of-the-art research works on energy analysis,
it is clear that there is no special emphasis given to energy

consumption incurred by the zombie resources resulting from
unutilised idle resources in the Cloud datacentres. Most
studies are completely focused on identifying the cause,
effect and implications of task failures on the overall energy
consumption. Given that server resources are being under-
utilised in a Cloud datacentre, idle resource times contribute a
significant proportion of the overall energy consumption. The
overall datacentre energy consumption is an accumulation
of the energy consumed by various components and their
corresponding events. Ignoring the energy consumption of
zombie servers leaves a large proportion of energy waste
unnoticed, and so a complete datacentre energy consumption
profile cannot be obtained.

This necessitates the need for an extensive analysis of the
presence, cause, and implications of the zombie servers in
large-scale datacentres. With this in mind, this paper dwells
into the presence, cause and implications of the idle CPU
and memory resource times whilst executing tasks in large-
scale datacentres for exposing the energy related implications
of zombie servers. The distinctive contribution of this paper
from the related works is illustrated in Table 1.

III. BACKGROUND
A. CLOUD WORKLOADS
A typical Cloud workload [17], [33], [34] arrives at the
Cloud datacentre in the form of jobs submitted by the users.
Every job includes certain self-defining attributes such as
the submission time, user identity and resource requirements
in terms of CPU, memory and disk space. A single job
may contain one or more tasks, which are scheduled for
processing at the Cloud servers. A single task may have
one or more process requirements. Tasks may have varied
service requirements and characteristics such as throughput,
latency, jitter, etc., even though they belong to the same job.
The provider generally records the resource utilisation levels
of every scheduled task and maintains the user profiles.

Cloud workloads behave distinctively with different server
architectures and this behaviour of workloads in the Cloud
processing environment is more strongly correlated with the
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FIGURE 1. User request submission (a) Jobs. (b) Tasks.

CPU cores than with RAM capacity of the machines at the
server level. While the capacity levels of CPU and memory
in a physical server usually remain static, the utilisation levels
are more dynamic and vary abruptly with different workloads
under different server architectures. The dynamic parame-
ters of the server architectures are usually calculated as the
measure of the number of cycles per instruction for CPU,
and memory access per instruction for memory utilisations
respectively. Thus the task resource utilisation profile (rt ) can
be expressed as a multi-dimensional composite as shown in
equation 1.

rt = {f (c) , f (m) , f (d) , f (t)} (1)

where c is the CPU usage in core counts, m is the memory
usage in bytes and d is the disk space utilisation and t is the
task execution duration.

TABLE 2. Trace log statistics.

B. DATA SAMPLE
This research work explores the Cloud trace logs [35]
released by Google, featuring more than 650000 job sub-
missions across 46093201 tasks over 28 days of datacentre
execution. The Google trace logs are investigated in order
to explore and observe patterns of workload heterogeneity,
and resource provision and resource consumption profiles of
tasks at the Cloud datacentre. The analysis is intended to
extract information pertinent to energy efficient operation of
the datacentres. The event analysis of the trace logs based on
our previous research [17] has been presented in Table 2 and
Fig. 1. In order to include the impact of unsuccessful events
on the overall energy consumption, the submission events

presented in this paper include resubmissions resulting from
the workload terminations.

IV. METHODOLOGY
This section outlines the methodology of our analysis in
quantifying the user requests, their resource utilisation levels
and the power consumption incurred by the proportional
idleness of the allocated resources during task execution ses-
sions causing server zombieness. A power model is described
to measure the proportional idle resource time during task
execution and their corresponding energy expenditures.

A. WORKLOAD SAMPLING
The trace log data has been sampled on a per day basis with
a single day spanning across 24 hours starting from 12.00 am
for a given day in order to accurately model the time-of-the-
day behaviour of the workloads.

The Cloud trace logs provide the explicit information [36]
of the task events including start and end time, job ID, user,
task priority levels, and resource requests in terms of CPU,
Memory and Disk space, and the corresponding amounts of
resources consumed during every execution session. The task
usage information of the trace logs required for our analy-
sis includes mean CPU usage rate, maximum CPU usage,
assigned memory and maximum memory usage for every
single task execution session. With the assigned and used
amounts of resources being explicitly provided, the unutilised
resources is computed using themaximum tomean utilisation
ratio for every task execution session.

The elapsed time period of a task execution is calcu-
lated from the start and end time of an execution session.
The elapsed time period are not necessarily the comple-
tion time of the tasks, since a task execution session may
be successful or might have faced a termination resulting
in resubmission of the terminated task. Thus the elapsed
time calculated is the time period when the status of the
corresponding tasks is updated with either completion or
termination. However, providers allocate resources for all
the task execution sessions, and resubmissions of the tasks
will cause the providers to allocate resources again for the
terminated tasks.
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B. HETEROGENEITY ANALYSIS
Both the Cloud workloads and the datacentre resources [37]
exhibit extreme dynamic characteristics. The workloads
being submitted show heterogeneities and dynamism in their
actual resource consumption pattern at the datacentres. For
instance, workloads with similar resource requests may not
be similar in their actual resource utilisation patterns at
the back end Cloud servers. In addition to quantifying the
resource provision and consumption trend for the entire
days, analysing the characteristics of individual jobs and
their impacts on the overall resource consumption trend is
important to understand the job heterogeneity within a sin-
gle datacentre. In spite of exposing the job heterogeneity,
jobs encompassing different number of tasks (50, 100, 200,
500 and 1050, named Job 0 through to Job 5) have been
analysed as representatives of different job behaviours and
encompassing number of tasks. The distribution of the data
trend of the provisioned and utilised resources have been eval-
uated against notable theoretical distribution such as Normal,
Lognormal, Exponential, Gumbel, Gamma, Weibull etc., and
further the best fit distribution is presented for the actual data
trend in terms of their CDFs within every studied jobs based
on Anderson-Darling test. Firstly, the amounts of CPU and
memory resources provisioned has been evaluated against
the trend of actual resource consumption for every individual
tasks within their respective jobs. Secondly, the task duration
within a single job has been analysed to observe the task
heterogeneity within jobs.

In spite of the extensive analysis conducted on server
resource heterogeneity [14], [38] in the previous works, quan-
tifying the datacentre heterogeneity to any further degree is
out of scope of this paper.

C. PROFILING RESOURCE UTILISATION
Resource utilisation levels has two measurement viewpoints.
First is the job level resource utilisation which is usually the
measure of CPU, memory resources consumed by the work-
loads whilst executed in the VMs. Secondly, machine level
utilisation is the measure of ratio of the actual usage level of
a machine to its maximum usage capacity. An accumulation
of the job level utilisation of all the VMs directly reflects the
machine level utilisation of the corresponding physical server.

The resource utilisation for task execution sessions are
characterised in terms of the CPU and memory resource
consumption at the task level. With the duration of the task
execution session being calculated for every task, the resource
utilisation profiles of the tasks are enumerated to exhibit
the proportional idle resource times over the actual level of
resource allocation for every task execution session. Before
quantifying the resource idleness, it is necessary to compute
the total amount of resource time actually allocated for a task
execution session, from which the idle resource times can be
measured. The unutilised memory resources in a given task
execution session is a direct measurement by subtracting the
maximum memory usage from the assigned memory. Due to

the data ambiguity of the CPU resource utilisation levels pro-
vided in the trace logs, it is necessary to make an assumption
whilst profiling the CPU resource utilisations. We assume
that the maximum CPU usage level in an execution session as
the maximum allocated CPU resources for that task execution
session. This maximum resource usage level is the highest
peak of resource usage level in a given session and the mean
resource usage is themean value of the remaining usage level.

As the maximum to mean resource usage ratio ri(ratio)
increases, the presence of idle resource time in an execu-
tion session shows a corresponding increase. Conversely,
lower values of ri(ratio) correspond to higher values of Power
Usage Effectiveness (PUE) of the servers. PUE [39], [40]
defines how effectively a server is using its electricity, which
is always desirable to be at an optimum level to achieve
energy-efficient computing. A PUE closer to 1.0 is very effec-
tive, implying that almost all the energy is transformed into
computing power. A PUE of 2.0 means that every compu-
tationally useful watt of input power will require an addi-
tional watt for cooling, lighting, power distribution, etc. Now
for profiling the CPU resource utilisation levels, the total
amount of resources time consumed and the presence of idle
resource time in a task execution session is calculated using
equations 2 to 4.

tr =
∫
ra · t (2)

ri = ra −
∫
rm (3)

ri(ratio) =
(ra − rm)

ra
∗ 100 (4)

FIGURE 2. Idle resource time proportion.

where, tr is the total amount of resource time allocated for
a task execution session, ri is the amounts of unutilised idle
resources in an execution session whilst executing tasks,
ra is the maximum level of allocated resources for an exe-
cution session, rm is the mean resource usage rate, ri(ratio)
is the proportional idle resource time and t is the duration
of the task execution session. The proportional presence of
the idle resource time in a task execution session is illustrated
in Fig. 2.
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FIGURE 3. Power profile comparison of servers: (a) server A, (b) server B, and (c) server C.

TABLE 3. Server capacity comparison.

D. POWER MODEL
The energy consumption of the zombie servers incurred by
the idle resource times is computed based on the unutilised
amounts of resources in every task execution session. Such
unutilised resource capacities might result from the early
completion of the tasks, in which case, we refer the unutilised
resources as over-allocated resources. Another factor causing
the end of the execution session is the termination events,
where all the allocated resources are referred to as undesir-
able resource wastage. All the unutilised resources consume
energy without contributing towards the actual task execution
and are the primary source of zombie servers.

Potentially unrelated to the demand for energy efficient
computing, Cloud service providers are also in the process
of enhancing the energy profiles of their operating servers.
The energy profiles of the servers developed by Oracle
Corporation and IBM are used in our analysis for the purpose
ofmeasuring the energy consumption of the zombie resources
in order to match the profiles of datacentres in practice today.
It is notable that the energy consumption of the selected
servers has reduced since 2012 despite their increasing

capacities of CPU and memory resources. The improving
energy efficiency of the server power profiles over the recent
years is depicted in Fig. 3, comparing the energy profiles of
the current server profiles (2016) with those used in 2012.
The server profiles for this comparative analysis have been
selected based on a close match with their CPU type and
capacity in order to compare their power consumption trend,
as shown in Table 3. The utilisation levels of the CPU is
measured in terms of Server Side Java operations (ssjops)
and the power consumption is depicted in Watts. Though the
trace logs are obtained from Google servers, we perform our
analysis based on three different in-practice server profiles
to match the current energy consumption trend of the server
resources according to the SpecPower 2008 benchmark [41].
The active idle power consumption of the servers is required
to maintain the server turned on and the power consumption
of the server increases with increasing percentage of the
server load. A task execution will consume energy equivalent
to the product of the respective proportional power of the
current server load and the duration of the task execution
session. When there is an increase in the server load, the
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FIGURE 4. CDF of Job 0: (a) Assigned CPU, (b) CPU consumed, (c) Assigned memory, and (d) Memory
consumed.

TABLE 4. Resource consumption heterogeneity.

power consumption of the servers will increase with a
decrease in the amounts of idle resources. Thus the total
power consumed in a task execution session is computed by
equation 5.

P (r) = P (rs) ∗ t (5)

where, P (r) is the total power consumption during the task
execution session and P (rs) is the server power propor-
tional to current load and t is the task execution duration.
Now, the presence of the proportional idle resource time
(zombieness) and its corresponding power consump-
tion P (ri), can be computed using equation 6 and 7.

tri = t ∗ ri(ratio) (6)

P (ri) = P(rai) ∗ tri (7)

where, tri is the proportional idle resource time resulting
from the unutilised server capacities and P(rai) is the server
power on active idle. The power consumption for every task
execution session is computed and we obtain the total amount
of idle resource proportion and the power consumed by the
presence of idle resource times on a per day basis over the
observed period of 28 days. Since the tasks are processed in
virtualised servers, the power consumption is computed based
on the allocated resources in the virtual cores running across
the physical server resources.

V. HETEROGENEITY ANALYSIS
This section presents the analysis of the diversity among
the user submitted requests across the sampled dataset in
terms of the provisioned to consumed amount of resources
for both CPU and memory resources. Table 4 presents the
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FIGURE 5. CDF of Job 5: (a) Assigned CPU, (b) CPU consumed, (c) Assigned memory, and (d) Memory
consumed.

distribution statistics for all the studied jobs in terms of the
proportions of resources provisioned and consumed within
every studied job execution. It can be postulated that the
distribution trend of the assigned and utilised resources can
determine the resources wasted accordingly.

From Table 4, it can be observed that the studied jobs are
heterogeneous in effectively utilising the assigned resources
without wastage of resources, predominantly following dif-
ferent distributions. For space constraints, only Job 0 and
Job 5 have been chosen to display their inner distribution
in Fig. 4 and Fig. 5 respectively, as they exhibit different
extremism of resource consumption trend. From Fig. 4 and
Table 4, the assigned CPU within Job 0 predominantly
follows normal distribution and the consumed CPU predom-
inantly follows 3P lognormal distribution and the curve is
right skewed. Whilst the CPU cores have been provisioned
and distributed equivalently across the encompassed tasks,
a majority (around 90%) of the encompassed tasks consumed
only a marginal proportion of the assigned resources and
only a minority (around 10%) of the tasks has consumed a
reasonable margin of the provisioned resources. An immedi-
ate implication is that the former 90% tasks are vulnerable
to leave most of the provisioned resources utilised, causing
90.5% of CPU idleness since the provisioned and consumed
curves are extremely heterogeneous. In addition, the mem-
ory assigned to the tasks follows 3P Weibull and memory
consumed follows 3P Lognormal distribution respectively,
with both the curves are slightly left skewed. Idleness in the
memory resources are witnessed at just around 23.5% since
both the curves follow a similar distribution trend.

From Fig. 5, both the CPU assigned and consumed for
Job 5 curves predominantly follow Lognormal distributions

and are left-skewed. Whilst more than 90% of the encom-
passed tasks within Job 5 are provisioned with less than
around 1.3 core counts, 90% of the tasks have consumed just
less than around 1 core counts each. Thus the CPU assigned
and consumed trend are nearly homogenous and the curves
share a close enough distribution, whereby reducing the CPU
idleness to 16.15%. Furthermore, a similar behavioural trend
is evident in the trend of memory resources, since both
the memory assigned and consumed curves follow normal
distribution. It can be arguably climbed that both the curves
of memory trend are nearly identical, which has reflected in
a significant reduction in the amounts of resources wasted
accounting only at 9.75% of the provisioned resources. Thus
it can be postulated that jobs with heterogeneous distribu-
tions between the resource provision and consumption trend
are vulnerable to leave most of the provisioned resources
unutilised, causing a significant proportions of resource
wastages. For achieving an energy efficient job execution,
a close-enough distribution should be achieved between the
trend of resources provisioned and the resources consumed.
Though, the distribution trend between the provisioned and
consumed trend of jobs can only be achieved post the job
execution.

Table 5 presents the observations of the task length for
tasks encompassed within the studied jobs and Fig. 6 displays
the CDF with the best fit distributions for tasks within Job 0,
Job 5 and Job 3. Both Job 0 and Job 5 predominantly follows
a 3P Weibull distribution and the curves are significantly
left-skewed, insisting the fact that both the jobs encompass
tasks with shorter, medium and long running tasks causing
an increased heterogeneity among the task length within a
single job. Within Job 0, 10% of the tasks characterise a task
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FIGURE 6. CDF of task duration: (a) Job 0, (b) Job 5, and (c) Job 3.

FIGURE 7. Idle resource time analysis (a) idle resource proportion and (b) day-wise resource time in hours.

TABLE 5. Task length heterogeneity.

length of around 3 minutes and another group of 10% of tasks
characterise a task length of more than 4 minutes, and the
remaining 80% of the tasks runs between 3 and 4 minutes
respectively. Within Job 5, 10% of the tasks characterise a
task length of around 26minutes and another group of 10% of
tasks characterise a task length of more than 28 minutes, and
the remaining 80% of the tasks runs between 26 and 28 min-
utes respectively. Here the task length is fairly homoge-
neous which reduces the presence of an increased proportions
of long tails which would delay the job completion time.
Conversely Job 3 predominantly follows a 3P Lognormal dis-
tribution and the curve is right-skewed. Here the task length
is heterogeneous across the encompassed tasks within Job 3,
with around 70% of tasks runs for less than a minute and the
remaining 30% runs for more than a minute up to a maximum

of 1.7 minutes. From these observations, it is clear that the
jobs are increasingly heterogeneous further the tasks encom-
passed within a single job may exhibit an increased diversity
in terms of their resource consumption. Task may or may
not exhibit homogeneity in terms of their running task length
within a single job. Both the jobs and every tasks within
jobs should be uniquely treated whilst attempting to optimise
their resource usage profiles for achieving energy efficiency.
CPU resource provision are increasingly vulnerable to leave
most of the provisioned resources unutilised and the provi-
sioned memory resources are fairly utilised.

VI. IDLE RESOURCE TIME ANALYSIS
This section analyses the presence of idle resource time
among the allocated CPU and memory resources during
the task execution causing server zombieness, which are in
essence, can accommodate more workloads. The idle CPU
and memory resource times compared with the actual allo-
cated resource time is illustrated in Fig. 7. Fig. 8 depicts the
presence of idle CPU and Memory resource percentages over
the observed period of 28 days.

The usage measurement sessions in the trace logs include
the usage measurements for periods when no process belong-
ing to the task execution was running in the task’s container.
For this reason, we normalise the values presented in Fig. 8,
by obtaining a mean value of the proportional resource time
for every measurement period and normalise it against the
overall duration in a given day in order to enhance the
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FIGURE 8. Day wise idle resource time percentage (a) CPU and (b) memory.

FIGURE 9. Idle resource time distribution analysis: (a) idle CPU percent, (b) idle memory percent, (c) idle CPU AD test,
and (d) idle memory AD test.

computation accuracy. It can be observed that an average
of 75.6% of the resource execution time being wasted caused
by the idle CPU cores. This suggests that the CPU resources
are commonly being over-allocated, leaving many of the
CPU cores active without any actual contribution towards
task execution. The immediate implication of the presence
of excessive idle CPU time is that the server capability is
always under-utilised because tasks with a specific processor
demand are being allocated to servers with capabilities that
far exceed theminimum requirement. Formaximum greening
in datacentres, server CPU resources should be allocated with
a task load corresponding to their peak processing capability.
This strategy will reduce the server zombiness and help the
providers to achieve a PUE factor closer to 1.

We can observe an average of 25.5% of idle memory
resource time amongst the allocated memory resources.
Though the wasted memory resources are considerably less
than those of CPU, memory resources are still over-assigned.
The actual CDF fitted with a normal standard distribution
of idle resource time percentage for both CPU and memory
resource is depicted in Fig. 9, along with the probability plot
of the Anderson Darling Goodness of Fit test. It is evident
that the CDF distribution of both the CPU and the mem-
ory idle resource times are showing measurable fluctuation
from that of the normal standard distribution. This supports
our observations of day-wise loose correlation and increased

fluctuations among both the CPU and memory idle resource
times. We repeated the Anderson Darling test for data nor-
mality on both the CPU and Memory idle resource time
distribution on a daily basis. The test shows that both CPU and
Memory idle presence follows a near to normal distribution,
with the CPU distribution negatively skewed at -0.108 and the
memory distribution positively skewed at 0.434.

A. RESOURCE TIME FLUCTUATION ANALYSIS
From Fig. 9, there is no correlation evident between the idle
memory and CPU resource times, suggesting that the CPU
and memory consumption levels of the tasks are independent
to each other, though this may be dependent on the nature of
the tasks. Since the CPU is often the largest power consumer
in the purely digital system, the increased presence of idle
CPU resources will incur a more significant energy consump-
tion. Further, the allocation and consumption of CPU cores
exhibits increased fluctuations. This increased fluctuation
in the usage of CPU cores over the memory resources is
illustrated using the standard deviation function of the idle
resource time, as shown in Fig. 10. This fluctuation is mea-
sured as the function of deviation evident among the presence
of idle resource time among the co-located execution session
within every day.

From Fig. 10, the average standard deviation of the
idle CPU and memory resource time are 22.9 and 35.2,
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FIGURE 10. Idle resource time fluctuation.

TABLE 6. CPU idleness statistics.

respectively, supporting the observation that CPU resource
time has a closer correlation than memory resource time
among the execution sessions within a single day. This would
infer that the idle CPU resource time has a better trend of
predictability than the memory counterpart. However, within
the idle resource time behaviours of the entire month, there
are abrupt spikes in the idle CPU resource time at uneven
intervals, while the idle memory resource time has an almost
saturated curve. Day 8, 14, 22 and 23 are examples of abrupt
spikes in idle CPU resource times, their memory counterparts
do not show any notable fluctuations. There is no temporal
correlation evident between the idle resource time duration
and task submissions. Furthermore, on a day-wise observa-
tion, the behaviour of CPU cores show unpredictable trend
of resource consumption among the co-located execution
sessions which is in contrast to the trend of the memory
resources. For this reason, we perform further investiga-
tion into days showing abnormal fluctuations of idle CPU
resources among the co-located task execution session within
the same day. We chose the days showing high resource
time fluctuation (Day 8, 14, 22, 23) along with days char-
acterised by minimum fluctuations (Day 13, 12) to observe
the behavioural trend of CPU idleness. Fig. 11 illustrates
the CDF of the idle CPU resource percentage and Table 6
presents the observed statistics for the selected days. It is
evident that the CDF curves of all the observed days are
negatively skewed, which is significant for the days show-
ing increased fluctuations among the co-located sessions of
the same day. The curve skewness is insignificant for the
Day 12 and 13, insisting that the distribution curve is deviat-
ing away from normal with increasing fluctuation in the idle
resource time among the co-located execution session. The
median is observed to be between 75 to 85 percent for all

FIGURE 11. CPU idle time cdf distribution.

of the days of interest, insisting the fact that at least half of
the allocated CPU resources suffer 75% of minimal idleness.
Since task submissions are loosely correlated with resource
idleness, user requests are not observed to be affecting the
presence of idle resources to a considerable margin.

VII. POWER CONSUMPTION ANALYSIS
This section presents our analysis of the power consump-
tion incurred by the presence of zombie server resources.
Such undesirable power consumption will increase the non-
computing or overhead energy, which is an undeniable waste
of input energy. The power consumed by idle CPU and mem-
ory resources has been computed based on their respective
proportions of idleness during task execution based on the
server capacities as shown in Table 3.

Based on the compute capacities of the servers, we clas-
sify the server platform A and C as mid-range servers and
platform B as a high-spec server. From the trace log analysis,
the idle resource times presented in section VI are measured
across a total number of 12,500 active servers. We therefore
consider 12,500 active servers across the datacentre, for pro-
filing the power consumption of the zombie resources in an
entire datacentre. The measured power consumptions of the
idle CPU and memory resources are presented for the three
server profiles in Fig. 12 accordingly. The average power
consumption incurred by the idle CPU resource time across
the observed period are 1.461, 4084 and 1343 (presented
in kW-hours) respectively for platform A, B and C. It is
notable that the power consumption levels of the servers
are correspondingly higher with increasing process capacity.
An interesting observation is that the CPU compute capacity
of server platform B is around 6 times higher than the other
two servers, but the idle CPU power consumption of server
profile B is measured at only around 3 times more than
profile A and C. This suggests that the power consumption
levels of the active CPU resources are better optimised with
increasing server capability, thereby proportionally reducing
the power consumed. The idle resource time is the time during
which the resource is either not being realised or is under-
utilised, though the resource is still active and immediately
available to use (not switched to any lower power ‘‘sleep’’
state). Such resource time could be effectively utilised
by either increasing the intensity of task computation or
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FIGURE 12. Power consumption of zombie resources (a) idle CPU and (b) idle memory.

FIGURE 13. CO2 emissions of zombie resources (a) idle CPU and (b) idle memory.

increasing the server task load. Though both actions
would increase the power consumption of the servers,
their computation capacities can be effectively realised and
an optimum utilisation of the available resources can be
achieved.

The characteristics of idle memory resource time are
viewed from a different perspectives to that of CPU, since the
memory usage would most often exhibit less minimal fluc-
tuation within a single execution session than those of CPU
usage. The power consumption levels of the idle memory
resource time are measured at 499, 1394 and 458 for server
platform A, B and C respectively. It can be observed that the
power consumption trend of memory resource is similar to
that of CPU, with both exhibiting the trend of proportional
power reduction of the active resources with increasing server
capabilities. While the memory capacity of server platform B
is 4 times larger than A and C, its idle memory resources are
incurring a power consumption which is only 3 times higher.
Further, the power consumption levels of the idle memory
resources are observed to be much lower than that of idle
CPU due to the fact that the idle memory resource times are
observed to be just around one third of the idle CPU resource
times. The input power to the servers also incurs power supply
losses from AC/DC and DC/DC conversion, with AC/DC
losses being much higher [42] than DC/DC losses. Besides
the PSU, CPU and memory resources, the internal power
consumption of the servers also includes power consumed by
fans, drives, PCI cards, chip set etc. Though their power con-
sumption levels are noticeable, we only acknowledge their
presence but consider them to be outside of the scope of this
paper.

VIII. ENVIRONMENTAL IMPACTS
The power consumption of zombie resources has a direct
environmental impact through the means of their CO2 emis-
sions. While the CO2 emissions created along the path
of the power consumption cannot be completely avoided,
there is seemingly always scope for reducing the level of
emission. Some statistics insist that datacentres [43] can
reduce CO2 emissions by an incredible 88% or more. This
section presents the environmental implications of the zombie
servers for investigating the potential for reducing the intensi-
ties of the datacentre CO2 emissions by the way of effectively
reducing the presence of idle resources.

Fig. 13 presents the amounts of CO2 emissions incurred
by the power consumed (kW-hours) by the idle CPU and
memory resource time for the three server profiles under con-
sideration. The CO2 emissions are measured according to the
statistics [44] of the U.S. Energy Information Administration.
The average CO2 emissions incurred by the power consumed
during the idle CPU resource time are 1213, 3390 and 1115
(presented in kg) for server platformsA, B and C respectively.
The average CO2 emissions of the memory counterpart are
414, 1157 and 381 respectively for the three servers.

Findings presented earlier in this paper mean that it is
no surprise that idle CPU resource time has a significantly
higher level of environmental implication than idle memory
resource time. Themanufacturer data also confirms that high-
spec servers consume more power than mid-range servers,
thereby resulting in increased amounts of C02 emissions. The
statistics presented in Fig. 13 confirm that datacentres are
one of the contributors toward global pollution, with their
CO2 emissions known to be in the range of thousands of
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tonnes per annum. The CO2 emissions are measured based
on the actual method of power generation; the worst case
of emission occurs when the electricity is generated with
conventional coal combustion. It has been reported that there
is a possibility of zero CO2 emissions [45] for the electric-
ity being generated from renewable energy sources such as
nuclear and hydro-sources, especially if the emissions related
to plant construction, use and maintenance are neglected.

IX. APPLICATION OF THE WORK
Although the analysis presented in this paper is based on
the publicly available Google Cloud trace logs, we expand
the scope of the applicability of this analysis by using the
trace logs as a baseline for the energy profile of various
commercial servers being widely used in 2016. The analysis
presented in this paper provides insightful observations and
inferences for the target audience and for researchers pro-
moting green computing. We believe that our analysis can
also be applied in similar computing environments such as
transparent computing, grid computing and other parallel and
distributed systems. The analysis presented in this paper will
find applications in the following ways:

• To achieve an effective PUE. The PUE figure is usu-
ally the calculated ratio of the total facility power to
the IT equipment power. By reducing the presence of
zombie servers, Cloud providers can ensure there is no
substantial overhead or non-compute energy incurred.
Thus achieving an effective PUE by transforming most
of the power consumption into useful compute energy.
With the world average PUE [46] is reported as 1.7,
there is still a lot of scope for enhancing the PUE of
datacentres.

• To achieve optimum resource management. Cloud
providers are intent on maximising profits by min-
imising production costs. Spotting server zombieness
and allocating tasks accordingly can help to reduce the
presence of low-level server utilisations. Issues such
as red spots can be avoided in the datacentre, these
usually incur excess energy consumption resulting from
the increased operating temperature levels of individual
servers.

• Reducing under-utilised resources and allocating opti-
mum level of resources within individual VMs without
affecting the job requirements can consolidate more
number of VMs onto the physical servers to achieve
maximum utilisation from minimum number of running
servers.

• Prediction analysis. The characterisation of the user
requests can be used to predict their resource require-
ments. The prediction of anticipated workloads in the
near future would help providers with not only achiev-
ing energy-efficient resource scaling but also ensuring
the availability of the requested resource to achieve
effective QoS.

X. CONCLUSION
This paper has extensively analysed the energy related impli-
cations of the zombie servers caused by the presence of
idle resource times whilst executing user requested tasks in
large-scale Cloud environments based on power profiles of
current servers used in large-scale datacentres. Three such
server profiles have been used as examples to determine
power consumption incurred by the presence of idle CPU and
memory resource times. Our empirical analysis demonstrates
that CPU resources account for the highest proportion of idle
resource time at 75.6%, with memory resources exhibiting
25.5% of idleness. We further presented the environmental
implications of idle resource time in terms of CO2 emissions
in order to highlight the demand for energy efficient com-
puting. Idle resource time is the result of not fully realising
the complete compute potentials of IT resources; the idle
resource time has the scope of being utilised to process a
greater number of useful workloads in the same time period.
Important inferences obtained in the analysis presented in this
paper include:

• Idle resource time results from over-allocated resources.
The proportion of idle resource time is high in
every individual task execution session. Over-estimated
resources cause the providers to over-allocate the server
resources, which in turn increases the proportions of
resource idleness.

• Power consumption levels are proportional to the server
capabilities. We observe that the higher-spec server con-
sumed 3 times more power than the mid-range servers
for the same level of idle resource time given the fact that
their CPU compute capacities are 6 times higher than
those of the mid-range servers. We note that, in some
cases, the higher-spec server offers more effective con-
solidation of workloads than the mid-range servers. As a
result, resource idleness can be greatly reduced when
the datacentre composition includes several higher-spec
servers capable of effectively consolidating the work-
loads onto a minimum number of servers which are
operating at near maximum utilisation levels.

• CPU behaviours varies more abruptly than memory
resource behaviours. We observe abrupt spikes in the
presence of idle resource times for CPU resources
on a day-wise analysis, with the memory counter-part
being almost saturated over the period of observation.
Predicting the future workloads is a potential way of
achieving optimum resource scaling by reducing idle
resource times. However, while it offers the greatest
benefit, predicting CPU idleness is more complex than
predicting the memory idleness trend.

• Cloud workloads are highly heterogeneous in terms of
the CPU and memory consumption and the encom-
passed task length within a single job.

As a future work, we plan to develop a prediction model
to estimate the user requests anticipated in the near future.
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The objective is to achieve optimum resource scaling,
ultimately to promote energy-efficient computing by reduc-
ing the server zombiness. Another extension of the analysis
presented in this paper would be predicting the resource
consumption levels of individual task requests, which would
help allocating the optimum levels of server resources for
processing. Finally, we plan to study the characteristics
of other distributed processing environments such as grid,
mobile cloud and transparent computing systems with the
motivations of promoting green computing.
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