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ABSTRACT Shortest path queries have been widely used in location-based services (LBSs). To calculate
the shortest path from an origin to a destination, an LBS provider usually needs to know the map data of
the underlying road network, which can be rather costly especially if such data need to be kept continuously
and up to date. A cost-effective way is that LBS providers outsource the shortest path query processing to
cloud-based mapping services such as Google Maps, by retrieving the detailed path information from them
through external requests. Due to the high cost of accessing data through external requests and the usage
limits of mapping services, we propose two optimization techniques in this paper, namely, path sharing and
path caching, to reduce the number of external requests and the user query response time. Unlike previous
work where the underlying road network is given, this paper optimizes path query processing only based
on query origins and destinations. The basic idea of path sharing optimization is that the path information
of a query can be shared with another query q if q values origin and destination both lie on the path.
To achieve this, we propose an effective method to compute whether or not a query origin/destination lies on
a path only based on the Euclidean distance between them. Path caching, an extension of path sharing, lets
an LBS provider answer path queries directly based on cached paths. To accomplish this, we first formulate
the problem of constructing path cache as a knapsack problem and design a greedy algorithm to solve it;
then, we devise an effective cache structure to support efficient cache lookup. Extensive experiments on
Bing Maps and real data sets are conducted, and the results show the efficiency, scalability, and applicability
of our proposed approaches.

INDEX TERMS Shortest path queries, location-based services, mapping services, cloud computing, path
sharing, path caching.

I. INTRODUCTION
With the fast development of wireless networks and
GPS-enabled devices, location-based services (LBS) are get-
tingmore andmore popular and important in our daily life [1],
such as finding the shortest driving route from our home to
the train station by Google Maps, locating the nearest taxi
with the help of Uber, searching all the restaurants in a given
region by Yelp, etc.. The basic principle underlying LBS are
spatio-temporal queries and their processing. Typical spatio-
temporal queries include shortest path queries, k-nearest-
neighbor queries, range queries and so on, among which
shortest path queries are the most widely used.

To calculate the shortest path from an origin to a destina-
tion, an LBS provider usually needs to know the topology of

the underlying road network and the real-time traffic data (for
computing the shortest path by driving). However, not every
LBS provider, especially those small and start-up companies,
has enough resources to collect and maintain so much data
not to mention the need to keep the data accurate. A cost-
effective way is that LBS providers outsource the shortest
path processing to cloud-based mapping services like Google
Maps, Bing Maps, MapQuest Maps, Baidu Maps, Amap
and so on, and focus on their own POI (Point of Interests)
maintaining and business processing. In other words, when
an LBS provider receives a user query to access the shortest
path from an origin to a destination, it can pass the path query
to a mapping service through an external request, instead of
processing the query by itself.
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These cloud-based mapping services are owned by large
and specialized companies, such as Google, Microsoft and
Baidu, which have enough resources to collect and maintain
map data, like collecting GPS data to obtain the road network
topology and deploying road-side cameras and sensors to
monitor live traffic conditions. Moreover, they are provided
with such user-friendly and easy-to-use APIs like the Google
Maps Directions API, the Bing Maps Routes API and the
BaiduMaps Direction API, that anyone can easily retrieve the
shortest path between two locations through them. Figure 1
shows an example of the request and response format of
Google Directions API. The Bing Maps Routes API and
Baidu Maps Direction API share the similar format.

FIGURE 1. The request and response format of Google Directions API.

The request is a URL query string, whose parameters
contain the origin and destination locations in latitude and
longitude, as well as the travel mode. In this example, the
origin is at (44.9060052,-93.2882202), the destination is at
(44.9071832,-93.2048781), and the travel mode is ‘‘driving’’.
The response is an XML (or JSON, which can be selected
in the URL request) document that stores a sequence of
path/route steps from the origin to the destination. Each
path step, enclosed by 〈step〉 tags, contains its start and end
locations, its travel distance, and its travel time by driv-
ing (see the 〈duration〉 tag). The start location, end loca-
tion, travel distance and travel time of the first step in this
path (see the dashed box in Figure 1) are 〈44.9060052,
−93.2882202〉, 〈44.9076455,−93.2881922〉, 182 meters and
21 seconds, respectively. The rest of path steps are folded
for brevity. Besides, the XML response contains the total
travel distance (e.g., 10,920 meters) and the total travel time

(e.g., 746 seconds) on the path, i.e., the sum of travel distance
and time on all steps.

In this way, with the help of cloud-based mapping services,
an LBS provider does not need to process map data by itself.
Instead, it can focus on its core business activities and reduce
its operational costs. For example, Yelp.com, a leading
Internet consumer rating and review website, outsources its
mapping services to Google Maps.

However, retrieving the shortest paths from cloud-based
mapping services suffers from some critical limitations,
including the following: [2]: (1) It is costly to access the
shortest path information from a cloud-based mapping ser-
vice through external requests. For example, retrieving travel
distance and time from the Bing Maps Routes API takes
502 ms while the time needed to read a cold and hot 8 KB
buffer page from the disk is 27 ms and 0.0047 ms, respec-
tively [3]. (2) There is a charge on the number of external
requests to a cloud-based mapping service. For example, the
Google Maps Directions API allows only 2,500 requests per
day for evaluation users and 100,000 requests per day for
business license users [4]. An LBS provider needs to pay
for higher usage limits. Therefore, when an LBS provider
endures high workload like a large number of concurrent path
queries, it needs to issue a large number of external requests to
cloud-based mapping services, which not only yields the high
business operation cost, but also induces the long response
time to its users.

To reduce the number of external requests to cloud-based
mapping services, and to speed up the query response time
to LBS users, we propose two optimization techniques in this
paper, namely path sharing and path caching.

Given a shortest path query qi = (oi, di), the basic idea
of the path sharing optimization is that the path information
from the origin oi to the destination di (i.e., Path(oi → di))
can be shared with another query qj = (oj, dj) if both
of its origin oj and destination dj lie on Path(oi → di).
Since the underlying road network topology is assumed to
be unknown to the LBS provider, we propose an effective
method in this paper to compute whether or not oj and dj lie on
Path(oi→ di) according to their locations.
Path caching is an extension of path sharing, which caches

selected paths at an LBS provider. When the LBS provider
receives a user’s path query, it checks the path cache first.
If there is a cache hit, i.e., the cache contains the shortest
path of the query, it directly returns the cached path to the
query user; otherwise, it issues an external request so as to
retrieve the desired path and return it to the user. Thus, it
can effectively reduce the number of external requests and the
user query response time. To this end, we construct the path
cache for an LBS provider based on historical query paths
as [5] and [6]. We first formulate the problem of constructing
path cache as a knapsack problem, which is NP-complete.
We design a greedy algorithm to solve it according to the
concept of sharing ability per node. To save cache space and
support efficient cache lookup, we also design an effective
cache structure.
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The main contributions of our work in this paper can be
summarized as follows:
• We have proposed an effective method to compute
whether or not a query origin/destination lies on a path
without knowing the underlying road network topology
for path sharing.

• We have formulated the problem of constructing path
cache as a knapsack problem, and devised a greedy
algorithm to solve it.

• We have designed an effective cache structure to save
cache space and support efficient cache lookup.

• We have conducted extensive experiments to evaluate
the performance of the proposed algorithms by using a
real cloud-based mapping service and real data sets.

The remainder of this paper is organized as follows.
Section II reviews the related work. Section III describes
the system model. Section IV presents the path sharing opti-
mization. Section V describes the path caching optimization.
Experimental results are given and analyzed in Section VI.
Finally, Section VII concludes this paper.

II. RELATED WORK
A. SHORTEST PATH ALGORITHMS
Shortest path query processing has always been a hot
research topic in academia and industry [7]. The most clas-
sic shortest path algorithms include Dijkstra’s algorithm [8],
BellmanFord algorithm [9], and A* search algorithm [10].
In recent years, more efficient algorithms have been
developed, such as parallel approaches for the shortest
path computation over large-scale graphs or networks like
1-stepping [11], PHAST [12] and Pregel [13]. To further
improve the path processing efficiency, pre-computing tech-
niques are fully exploited, including transit node routing [14],
arterial hierarchy [15] and metric backbone [16]. Unsurpris-
ingly, all the researches are based on the condition that the
underlying graph structure or network topology is known to
the server.

B. QUERY PROCESSING THROUGH CLOUD-BASED
MAPPING SERVICES
Different from the abovementioned studies, our approach lets
an LBS provider access the shortest paths through external
requests to cloud-basedmapping services, e.g., GoogleMaps.

There have been some studies related to spatial query
processing through cloud-based mapping services, includ-
ing k-nearest-neighbor query [2], [17], [18], concurrent
k-nearest-neighbor query [19], range query [18] and the
shortest path query [20], [21] processing algorithms in road
networks, where the distance metric is travel time instead of
network distance. Because of dynamic traffics, travel time
is harder for LBS providers to obtain than network distance.
Therefore, these studies assume that LBS providers have the
static road network data in their local databases, while the dis-
tance metric (i.e., travel time) is retrieved from cloud-based
mapping services through external requests. To reduce the
number of such external requests, and to speed up the query

response time for users, pruning [2], [17], grouping [2], [17],
direction sharing [17], [20], [21], parallel requesting
[19], [21], route log [18] and waypoint [20], [21] techniques
are proposed based on the distribution of query origins and
destinations over the underlying road network.

Even though these researches are based on cloud-based
mapping services, and share with our objectives to mini-
mize the number of external requests and the user query
response time, their optimization techniques and algorithms
are designed based on given road networks.

C. SHORTEST PATH CACHING
There have been some studies on path sharing and
caching [5], [22]. Thomsen et al. [5] proposed a path cache
SPC to reduce the path computation cost for a server. To con-
struct a good path cache, SPC computes a benefit value to
score a path when determining whether or not to preserve it in
the cache. The benefit value of a path is the summation of the
benefit value of each sub-path in the entire path. The benefit
value of a path consists of two parts: the popularity of a path
and its expense. The popularity of a path is evaluated based
on the number of its sub-paths, and the expense of a path
represents the computational time of the shortest path algo-
rithm. To support efficient cache lookup, a subgraph model
and inverted lists are utilized in the cache structure. However,
SPC works only when a cached path matches perfectly with
the query. In [22], another path caching system, i.e., Path
Planning by Caching (PPC), is proposed. PPC leverages the
partially matched cached paths to answer part(s) of a new
query. As a result, the server only needs to compute the
unmatched path segments, thus significantly relieving the
workload of the overall system.

However, both SPC and PPC still need the underlying
graph or network data to construct the cache (e.g., to estimate
path expense by SPC) or to answer a new query (e.g., to
compute the unmatched path segments by PPC). In contrast,
our proposed optimization techniques, i.e., path sharing and
path caching, are only based on the arriving queries, and does
not need any extra information like the underlying network
data.

III. SYSTEM MODEL
A. SYSTEM ARCHITECTURE
Figure 2 shows our proposed system architecture, which
consists of three entities:

FIGURE 2. System architecture.
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Users: Users browse POIs and the related information
provided by an LBS provider (e.g., restaurant information in
Yelp), and send path queries to the LBS provider to retrieve
the shortest paths from their locations to the specified POIs
(e.g. finding the shortest path from our home to the highest
rating restaurant in the city).
LBS provider: The LBS provider is the owner who has at

least one kind of POI datasets like restaurants, hotels, gas
stations and so on, and provides services to its users. Since
the LBS provider may not have enough resources to possess
map data by itself, it outsources path processing to a cloud-
based mapping service. In other words, when receiving a path
query from a user, the LBS provider will retrieve the path
information from the cloud-based mapping service by issuing
an external request, and then return the result to the user.
Cloud-based mapping service: Typical cloud-based map-

ping services are Google Maps, Bing Maps and Baidu Maps.
These mapping services usually are possessed by large and
specialized companies or enterprises, which have enough
resources to host and update map data continuously to keep
them accurate. Besides, they are provided with user-friendly
and easy-to-use APIs, such as the Google Maps Direc-
tions API, the Bing Maps Routes API and the Baidu Maps
Direction API.

B. OUR PROBLEM AND OBJECTIVES
Given a set of shortest path queries Q = {q1, q2, . . . , qn}
arriving at an LBS provider concurrently or within a short
time period, the LBS provider returns the shortest path
with the detailed step information from oi to di for each
qi = (oi, di) in Q like the XML format of Figure 1, which
is retrieved from the cloud-based mapping service through
external requests.
Definition 1 (Shortest Path Query): A shortest path query

qi = (oi, di) sent from a user, consists of an origin oi and a
destination di.
Definition 2 (External Request): An external request,

which is issued by an LBS provider to a cloud-based mapping
service, consists of at least an origin and a destination, e.g.,
the URL format of Figure 1.

Due to the critical limitations to accessing the path
information from a cloud-based mapping service as is stated
in Section I, i.e., high cost and usage limits, our objectives are
to reduce the number of external requests issued by the LBS
provider and speed up the query response time to users.

IV. PATH SHARING
In this section, we will introduce the path sharing optimiza-
tion to reduce the number of external requests, as well as
the user query response time. We will first introduce the
optimal sub-path property. Then, we will propose an effective
method to compute whether or not a path can be shared with
another query without knowing the underlying road network
topology. At last, we will present the algorithm of path
sharing.

A. OPTIMAL SUB-PATH PROPERTY
As is presented in Section I, the path information returned
by the cloud-based mapping service includes the detailed
turn-by-turn step information. For example, the shortest path
of q1 = (o1, d1) is Path(o1 → d1) = {〈o1 = (0, 9),
v1 = (3, 5), l(o1 → v1) = 6〉, 〈v1 = (3, 5),
v2 = (6, 5), l(v1 → v2) = 3〉, 〈v2 = (6, 5), v3 =
(6, 2), l(v2 → v3) = 4〉, 〈v3 = (6, 2), d1 = (9, 2), l(v3 →
d1) = 3〉}, as is shown in Figure 3, where a, b and l(a→ b)
are the start location, the end location and the travel distance
of the path step a → b, respectively. For the sake of sim-
plicity, we denote Path(o1 → d1) = {o1 → v1 → v2 →
v3→ d1}.

FIGURE 3. Path information example.

The shortest paths exhibit the optimal sub-path prop-
erty [23], i.e., every sub-path of the shortest path is also the
shortest path (see Lemma 1). In other words, the shortest
path Path(oi → di) returned from the cloud-based mapping
service for a query qi = (oi, di) can be shared with another
query qj = (oj, dj), if both oj and dj lie on the path (If the
path is directional, oj and dj should lie on it in order), i.e.,
oj ∈ Path(oi → di) and dj ∈ Path(oi → di); thus, there is no
need for the LBS provider to issue another external request
for qj = (oj, dj) any more to retrieve Path(oj → dj). As a
result, the number of external requests and the response time
for qj can be reduced.
Lemma 1 (Optimal Sub-Path Property): Let Path(oi →

di) = {oi → · · · → oj → · · · → dj → · · · → di} be the
shortest path for a query with the origin location oi to the
destination location di. Path(oj → dj) = {oj → · · · → dj} is
also the shortest path from oj to dj.

Proof: See the proof of [23, Lemma 24.1]. �

B. PATH SHARING CHECK
Since the LBS provider does not have the topology data of
the underlying road network, it will be impossible to check
whether or not a path Path(oi → di) can be shared with
another query qj = (oj, dj) simply based on their locations
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in the road network. In this section, we design an effective
method for path sharing check solely based on Path(oi→ di)
and qj = (oj, dj), which does not need any other information.
ForPath(oi→ di), we first decide for each path step a→ b

if it is a straight line or not. If the travel distance of a step is
equal to its Euclidean distance, i.e., l(a → b) = e(a → b),
which means that this path step is the shortest way from a
to b in the Euclidean space, the path step is a straight line;
otherwise, it is not. For a straight-line path step, we check
whether or not the origin oj of the query qj lies on it still by
the Euclidean distance between them. If e(a→ b) = e(a→
oj) + e(oj → b), we conclude that oj lies on the step a→ b
based on Lemma 2. Therefore, we have oj lies on the path,
i.e., oj ∈ Path(oi → di). Similarly, we can check whether or
not dj lies on the path. If both oj and dj ∈ Path(oi → di),
the path information of Path(oi→ di) can be shared with the
query qj = (oj, dj).
Lemma 2 (Location-on-Path Check): Given a path from

location a to location b and another location c, if l(a→ b) =
e(a → b) and e(a → b) = e(a → c) + e(c → b), we
have c located on the path, where l(N→ H) and e(N→ H)
stands for the travel distance and the Euclidean distance
from N to H, respectively.

Proof: As l(a→ b) = e(a→ b), we have the path from
a to b is a straight line. Assume that c not lies on the path, we
have e(a→ c)+e(c→ b) > e(a→ b) based on ‘‘the sum of
any two sides of a triangle is greater than the third one’’. This
contradicts with the given condition: e(a → b) = e(a →
c)+ e(c→ b). �

Take Path(o1 → d1) = {o1 → v1 → v2 → v3 → d1} as
an example, the start location o1, the end location v1, and the
travel distance l(o1 → v1) of the path’s first step o1 → v1
are (0, 9), (3, 5), and 6, respectively, as is shown in Figure 3.
It is easy to calculate that the Euclidean distance of the step
is 5, i.e., e(o1 → v1) = 5, which is not equal to its travel
distance. Therefore, the path step o1 → v1 is not a straight
line. Similarly, we can conclude that v1 → v2 and v3 → d1
are straight lines, while v2→ v3 is not.
Given another query q2 = (o2, d2), whose origin loca-

tion o2 and destination location d2 are (4, 5) and (8, 2),
respectively, as e(v1 → o2) + e(o2 → v2) = 1 + 2 = 3,
which is equal to e(v1 → v2) = 3, and v1 → v2 is a
straight line, we can induce that o2 is located on v1 → v2 by
Lemma 2. Likewise, d2 is located on v3 → d1. As both the
origin and destination locations of q2 lie on Path(o1 → d1),
the path information of q1 can be utilized to answer q2, i.e.,
Path(o2 → d2) = {o2 → v2 → v3 → d2} (see Figure 3).
Therefore, only one external request is needed instead of two
for the LBS provider to answer q1 and q2.

C. PATH SHARING ALGORITHM
Given a set of path queries Q = {q1, q2, . . . , qn} arriving at
an LBS provider concurrently or within a short time period,
to maximize the path sharing optimization, the LBS provider
should first process the query, the path of which has the
maximum sharing ability (see Definition 3).

Definition 3 (Sharing Ability): Let Q be a set of path
queries, and Path(oi→ di) be the shortest path from origin oi
to destination di. The sharing ability of Path(oi → di) with
respect toQ (denoted as SA(Path(oi→ di),Q)) is the number
of queries inQ, where the path information of Path(oi→ di)
can be shared with these queries, i.e.,

SA(Path(oi→ di),Q)

= |{qj = (oj, dj) ∈ Q | Path(oj→ dj) ⊂ Path(oi→ di)}|.
However, the path information is unknown until the LBS

provider issues external requests to the cloud-based mapping
services. It will be impossible to evaluate the path sharing
ability for each query in Q in advance. Considering that the
path with the longer Euclidean distance has the bigger chance
to be shared by other queries (i.e., the larger sharing ability),
our plan is to process queries in Q based on the Euclidean
distance from the origins to their respective destinations, as
is shown in Algorithm 1 (denoted as PSA).

Algorithm 1 Path Sharing Algorithm (PSA)
1: input: the query set Q
2: compute the Euclidean distance from the origin to the

destination for each query in Q;
3: while Q is not empty do
4: qs ← the query with the largest Euclidean distance in

Q;
5: retrieve Path(os → ds) for qs by issuing an external

request to the cloud-based mapping service;
6: for each query qi = (oi, di) in Q do
7: if both oi and di locate on Path(os→ ds) then
8: use Path(os→ ds) to answer qi;
9: remove qi from Q;
10: end if
11: end for
12: end while

For example, given a query set Q = {q1, q2, q3, q4, q5}, it
is easy to compute the Euclidean distance for these queries
based on their query origins and destinations, as is shown in
Figure 4. Since the Euclidean distance of q1 is the largest,
PSA retrieves the path of q1 first through an external request.
Suppose that Path(o1 → d1) = {o1 → v1 → v2 →
v3 → d1} (as is shown in Figure 3), we can get that both o2
and d2 are located on the path through path sharing check (see
Section IV-B), i.e.,Path(o1→ d1) can also answer q2, so both
q1 and q2 are removed from Q. Currently, Q = {q3, q4, q5}
and q3 has the largest Euclidean distance, so Path(o3 →
d3) = {〈o3 = (3, 0), v1 = (3, 5), l(o3 → v1) = 5〉, 〈v1 =
(3, 5), v4 = (4, 8), l(v1 → v4) = 4〉, 〈v4 = (4, 8), d3 =
(9, 8), l(v4 → d3) = 5〉} = {o3 → v1 → v4 → d3} is
accessed by another external request. Similarly, we can obtain
that the query origins and destinations of both q4 and q5 are
located on Path(o3 → d3) (see Figure 3). Therefore, besides
q3, q4 and q5 also can be answered by the path. As a result,
all of them are removed from Q. As Q is empty now, the
algorithm terminates here. Therefore, we can see that only
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FIGURE 4. An example query set Q = {q1, q2, q3, q4, q5}.

two external requests are needed instead of five to process
all queries in Q = {q1, q2, q3, q4, q5} with the path sharing
optimization.

V. PATH CACHING
As is presented in Section IV, it is expected that the more
path queries inQ the greater power that the path sharing opti-
mization has. However, in the real world, the number of path
queries arriving concurrently or within a short time period
at an LBS provider may be small, especially for small and
start-up LBS providers, which makes the path sharing opti-
mization ineffective. In this section, we will propose another
optimization, namely path caching, which is an extension of
path sharing. In the path caching optimization, the selected
paths are cached at an LBS provider, based on which each
path query is answered. Only when there is no cached path
that can answer the query, the LBS provider issues an external
request to retrieve the path information for the query. Based
on path caching, the LBS provider can effectively process
path queries when the number of arrived queries is small.

A. PRELIMINARIES
In this section, we give the preliminary knowledge of path
caching. A path cache and its size are defined as follows:
Definition 4 (Path Cache and Cache Size): A path

cache C contains a collection of shortest paths. The cache
size of C (denoted as |C|) is measured by the total number of
nodes of the cached paths in C, and |C| should not be larger
than the system’s maximum cache capacity 9, i.e.,

|C| ≤ 9.

As the shortest paths exhibit the optimal sub-path property
(see Lemma 1), the shortest path(s) in the cache can be
taken as an answer for any query as long as both its origin
and destination lie on the path(s), i.e., a cache hit happens
(see Definition 5).
Definition 5 (Cache Hit and Cache Miss): Given a path

cache C and a path query qj = (oj, dj), a cache hit means
there is at least one path in the cache that contains the query

origin oj and destination dj at the same time, i.e.,

∃ Path(oi→ di) ∈ C,

oj ∈ Path(oi→ di) ∧ dj ∈ Path(oi→ di);

otherwise, a cache miss happens.
Since the system’s maximum cache capacity 9 is limited,

the path with greater sharing ability but less nodes is much
more preferred to be put into the cache, than the ones with
smaller sharing ability but more nodes. Therefore, we define
the sharing ability per node of a path for cache construction
in Definition 6.
Definition 6 (Sharing Ability Per Node): Let Q be a set

of path queries, and Path(oi → di) be the shortest path
from origin oi to destination di. The sharing ability per
node of Path(oi → di) with respect to Q (denoted as
SA(Path(oi→ di),Q)) is defined as:

SA(Path(oi→ di),Q) =
SA(Path(oi→ di),Q)
|Path(oi→ di)|

,

where SA(Path(oi → di),Q) and |Path(oi → di)| stands for
the sharing ability of Path(oi → di) with respect to Q, and
the number of nodes in Path(oi→ di), respectively.
Take Q = {q1, q2, q3, q4, q5} as an example, since two

queries in Q (i.e., q1 and q2) can share the path information
of Path(o1 → d1), as is shown in Figure 3, the sharing
ability of Path(o1 → d1) with respect to Q is 2, i.e.,
SA(Path(o1 → d1),Q) = 2. As the number of nodes
in Path(o1 → d1) is 5, i.e., |Path(o1 → d1)| = 5,
it is easy to compute that the sharing ability per node of
Path(o1 → d1) with respect to Q is 2

5 , i.e., SA(Path(o1 →
d1),Q) = 2

5 = 0.4. In the same way, we can compute
SA(Path(o3 → d3),Q) = 3

4 = 0.75. Therefore, Path(o3 →
d3) is more preferred by the cache than Path(o1 → d1), as it
can be shared by more queries with less space.

B. CACHE CONSTRUCTION
Like most caching systems [5], [6], historical queries can
reflect the query situation in the future. In this section, our
plan is to construct a path cache based on historical queries
and their paths, which can be collected by the LBS provider
over the time.

Given the system’s maximum cache capacity 9, a set of
historical path queriesQh = {q1, q2, . . . , qm} and their paths,
our goal is to build an optimal path cache, in which the paths
are not sub-paths of each other, yet can be maximally shared
by queries inQh, i.e., the overall sharing ability of the cached
paths with respect toQh is the largest. Therefore, the goal can
be formulated as follows:

maximize
m∑
i=1

SA(Path(oi→ di),Qh)xi

subject to
m∑
i=1

|Path(oi→ di)| < 9,

and xi ∈ {0, 1},

and Path(oi→ di) is not a sub-path.
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This is essentially the same as the well-known 0-1 knapsack
problem [23] which is NP-complete. There is no efficient way
to find the optimal solution in polynomial-time.

Here, we propose a greedy algorithm to construct a near
optimal path cache, as is shown in Algorithm 2 (denoted
as PCCA). Based on Definition 6, PCCA first computes the
sharing ability per node of each historical path with respect
to Qh (Lines 4 to 16 of Algorithm 2). As the path with
the longest travel distance is impossible to be a sub-path
of others, the sharing ability per node is computed based
on the travel distance (Line 5). If a path is a sub-path, its
sharing ability (as well as the sharing ability per node) is set to
zero (Line 11). After finishing the above computation, PCCA
greedily constructs the path cache by continuously including
the path, which has the largest sharing ability per node (the
value should be larger than zero) and has not been put into
the cache before, into the cache until it reaches the system’s
maximum cache capacity 9 (Lines 17 to 20). Finally, the
filled cache is returned.

Algorithm 2 Path Cache Construction Algorithm (PCCA)
1: input: the set of historical queriesQh = {q1, q2, . . . , qm}

and their paths, the maximum cache capacity 9

2: output: a path cache C
3: C ← ∅;
4: while Qh is not empty do
5: Path(os → ds) ← the path with the longest travel

distance, and qs ∈ Qh;
6: SA(Path(os→ ds),Qh)← 1;
7: remove qs from Qh;
8: for each query qi = (oi, di) in Qh do
9: if both oi and di locate on Path(os→ ds) then
10: remove qi from Qh;
11: set SA(Path(oi→ di),Qh) to 0;
12: increase SA(Path(os→ ds),Qh) by 1;
13: end if
14: end for
15: calculate SA(Path(os→ds),Qh)

|Path(os→ds)|
16: end while
17: while |C| ≤ 9 do
18: Path(os → ds) ← the path with the largest sharing

ability per node and its value is larger than 0, and
Path(os→ ds) /∈ C;

19: insert Path(os→ ds) into C;
20: end while
21: return C;

For example, suppose that the system’s maximum cache
capacity 9 = 10, the historical query set Qh =

{q1, q2, q3, q4, q5}, and the path information of these queries
are shown in Figure 3, it is easy to calculate that
SA(Path(o1 → d1),Qh) = 0.4 (see Section V-A). As
Path(o2 → d2) is a sub-path of Path(o1 → d1), we have
SA(Path(o2 → d2),Qh) = 0. Similarly, we can compute
that SA(Path(o3 → d3),Qh) = 0.75, SA(Path(o4 → d4),

FIGURE 5. The cache structure of C = {Path(o3 → d3), Path(o1 → d1)}.

Qh) = 0 and SA(Path(o5 → d5),Qh) = 0. As Path(o3 →
d3) owns the largest sharing ability per node, it is the first one
to be selected into the cache, i.e., C = {Path(o3 → d3)}.
Since |C| = |Path(o3 → d3)| = 4 < 9 = 10,
PCCA continuously selects the next one with the largest
sharing ability per node from the remaining historical paths,
i.e., Path(o1 → d1), and puts it into the cache. Then, we
have C = {Path(o3 → d3),Path(o1 → d1)}. Currently,
|C| = 9. Because all paths (except for sub-paths) have
been put into the cache, the algorithm stops here and returns
C = {Path(o3→ d3),Path(o1→ d1)}.

C. CACHE STRUCTURE
Upon receiving a path query qj = (oj, dj), the cache system
performs a lookup operation by checking each path in C until
a path can answer the query (i.e., cache hit) or all paths have
been checked (i.e., cache miss). To support efficient cache
lookup, for each path Path(oi→ di) in C, we also:
1) Store the location region of the path. By this way,

the system can quickly filter the locations beyond the
region, which are impossible to be located on the path.
In other words, the path can not answer the query, if its
origin or destination is not in the path location region.

2) Pre-compute and record the straight line situation of
each path step to avoid repeated calculation during
cache lookup. To save cache space, bit arrays are uti-
lized for recording.

Take Path(o1 → d1) = {o1 → v1 → v2 → v3 → d1} as
an example, based on the location of each node in the path,
we can calculate that the horizontal range of the path is [0, 9]
and the vertical range of the path is [2, 9] (see the red dashed
box in Figure 6). In Section IV-B, we have computed that
the first, second, third and fourth steps of the path are non-
straight, straight, non-straight and straight lines, respectively.
To save cache space, a bit array with the value of 0101 is
used to record this, where a bit with the value of 1 represents
a straight line and 0 represents a non-straight line.

In the same way, we can compute that the horizontal range,
the vertical range and the bit array of Path(o3 → d3) are
[3, 9], [0, 8], and 101, respectively. Hence, we can have the
cache structure of C = {Path(o3 → d3),Path(o1 → d1)}, as
is shown in Figure 5.

D. PATH CACHING ALGORITHM
Given a path cache C that is constructed by PCCA, and

a set of path queries Q = {q1, q2, . . . , qn} arriving at an
LBS provider concurrently or within a short time period, the
proposed path caching algorithm (i.e., Algorithm 3, denoted
as PCA) processes each query in Q through a cache lookup

VOLUME 5, 2017 12969



D. Zhang et al.: Efficient Path Query Processing Through Cloud-Based Mapping Services

FIGURE 6. The location region of paths in C = {Path(o3 → d3),
Path(o1 → d1)} and the query set Q = {q6, q7}.

Algorithm 3 Path Caching Algorithm (PCA)
1: input: the query set Q, the path cache C
2: for each query qj = (oj, dj) in Q do
3: for each path Path(oi→ di) in C do
4: if both oj and dj locate on Path(oi→ di) then
5: use Path(oi→ di) to answer qj;
6: remove qj from Q;
7: break;
8: end if
9: end for
10: end for
11: process Q by PSA (Algorithm 1);

first (Lines 2 to 10). If there is a cache hit, i.e., there is a path
in the cache that can be taken as the query answer, the LBS
provider can reply the query directly and does not need to
issue an external request any more. For the queries that can
not be answered by the cache, the LBS provider processes
them in the same way with PSA (Line 11).
Take Figure 6 as an example, the path cache and the

query set are C = {Path(o3 → d3),Path(o1 → d1)} and
Q = {q6, q7}, respectively. The cache structure of C is shown
in Figure 5.

For query q6 = (o6, d6), as its origin o6 is not in the
location region of Path(o1 → d1) (see the red dashed
box in Figure 6), it is impossible that Path(o1 → d1) can
answer q6. While both o6 and d6 are in the location region
of Path(o3 → d3) (see the blue dashed box in Figure 6), we
need to continuously check whether or not both o6 and d6 lie
on the path. Based on the bit array of Path(o3 → d3) (see
Figure 5), the first and third steps of the path (i.e., o3 → v1
and v4 → d3) are straight lines, so we only need to decide
whether or not o6 and d6 are located on these two steps. Since
e(o3 → v1) = e(o3 → o6) + e(o6 → v1), we have o6 lies
on path step o3→ v1. Similarly, we have d6 lies on path step
v4 → d3. Hence, Path(o3 → d3) can be used to answer q6
since both o6 and d6 are on the path, i.e., a cache hit happens.

For query q7 = (o7, d7), as o7 is not in the location region
of any cached path (see Figure 6), we can learn that there is
no path in the cache that can answer the query. Then, PCA
processes it in the same with PSA, i.e., issuing an external
request to retrieve the path information for the query.

VI. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETTING
To the best of our knowledge, there is no other existing algo-
rithm that focuses on path query processing through cloud-
based mapping services, when the underlying road network
topology is unknown to the LBS provider. Therefore, we only
evaluate the performance of the two proposed algorithms, i.e.,
PSA (Algorithm 1) and PCA (Algorithm 3). The performance
metrics include:

1) The average number of external requests per path
query, which are issued by the LBS provider to the
cloud-based mapping service;

2) The average query response time that the LBS provider
answers path queries;

3) The cache hit ratio of PCA.
The response time of a query is the difference between from
the time when the path query is received by the LBS provider
to the timewhen the answer is returned to the query user; thus,
it includes the local CPU processing time, the communication
time between the LBS provider and the cloud-based mapping
service, and the remote processing time at the cloud-based
mapping service provider.

In our experiments, we generated 18k shortest path queries
from the GeoLife trajectory dataset [24], which were col-
lected from 182 users in a period of over three years by
Microsoft Research Asia, by extracting the start and end loca-
tions of each trajectory as the query origin and destination.
Then, we randomly selected 13k queries as the historical
queries and constructed the path cache based on the path
information of these queries by PCCA (i.e., Algorithm 2).
The rest 5k path queries were utilized to evaluate the perfor-
mance of our proposed algorithms. Bing Maps was taken as
the cloud-based mapping service in our experiments. Unless
mentioned otherwise, the number of path queries arriving at
the LBS provider concurrently or within a short time period
was 300, and these queries were randomly selected from
5k path queries. The default cache size was 30k nodes, i.e.,
nearly 120kB if four bytes a node. A large-scale cache can
be used if the LBS provider has a huge number of historical
paths.

B. EXPERIMENTAL RESULTS
We evaluate the scalability, efficiency and applicability of
PSA and PCA with respect to the number of path queries and
cache size.

1) EFFECTS OF THE NUMBER OF PATH QUERIES
In this experiment, we evaluate the performance of PSA and
PCA with respect to the number of path queries arriving
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concurrently or within a short time period from 50 to 500,
as is shown in Figure 7.

FIGURE 7. Effects of the number of path queries. (a) Average number of
external requests. (b) Average query response time. (c) Cache hit ratio.

Without any optimization, one path query needs one
external request, and the average response time of exter-
nal requests from Bing Maps is 304 ms according to our
experiments. By PSA, we can see that nearly 8.4% external
requests are reduced on average because of the path sharing
optimization (Figure 7a). It is expected that the more queries
arriving concurrently or within a short time period the greater
path sharing power PSA has, so the number of external
request and the response time per path query gradually reduce
with the increase of the number of path queries (see PSA in
Figure 7a and Figure 7b).

With the help of the path caching optimization, 35.8%
external requests are reduced on average (see PCA in
Figure 7a). This is because PCA caches many selected his-
torical paths and uses them to answer path queries, while
PSA dose not. Since the cache size is fixed, i.e., 30k nodes,
the cache hit ratio remains unchanged with the increase of
the number of path queries, i.e., 35.4% on average (see
Figure 7c). Consequently, the average number of external
requests and the average response time of a path query by

PCA almost remain the same, as are shown in Figure 7a and
Figure 7b, respectively.

2) EFFECTS OF THE CACHE SIZE
Figure 8 shows the performance of PSA and PCAwith respect
to the cache size from 10,000 to 50,000 nodes. When the
cache size gets larger, i.e., more paths can be cached, it
is expected that the cache hit ratio of PCA increases, as is
shown in Figure 8c. As a consequence, the average number
of external requests per path query decreases, as is shown in
Figure 8a.

FIGURE 8. Effects of the cache size. (a) Average number of external
requests. (b) Average query response time. (c) Cache hit ratio.

However, the average query response time gets longer
along with the increase of cache size. The reason for this
is that the query response time for a path query consists
of the cache lookup time (i.e., the local CPU processing
time), and the request response time from the cloud-based
mapping service (i.e., the communication time between the
LBS provider and the cloud-based mapping service and the
remote processing time at the cloud-based mapping service
provider). When the cache size gets larger, PCA needs more
time to search the cache, i.e., the cache lookup time gets
longer; hence, the average query response time becomes
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longer. Despite this, the average query response time of PCA
is still only 81% of PSA. Since the path cache optimization is
not employed in PSA, the performance of PSA is not affected
by different cache sizes, as shown in Figure 8a and Figure 8b.

This set of experiments not only demonstrates that a large
cache size can effectively reduce the number of external
requests, but also shows that a large cache size may induce
the long query response time due to the costly cache lookup.
Therefore, an efficient cache structure plays an important role
in the cache system, as it can not only save cache space but
also improve the cache lookup efficiency.

VII. CONCLUSION
It is challenging to process shortest path queries when
the map data of the underlying road network is not
given/available to an LBS provider. To address this prob-
lem, we have presented a system architecture, in which an
LBS provider retrieves path information from cloud-based
mapping services like Google Maps, Bing Maps and Baidu
Maps, by issuing external requests. Since that accessing data
through external requests takes much more time than access-
ing local data, we have proposed two optimization techniques
in this paper, namely path sharing and path caching, to reduce
the number of external requests and the user query response
time. For path sharing optimization, we have proposed an
effective method to compute whether or not a query origin/
destination lies on a path without knowing the underlying
road network topology, and then given an algorithm of path
sharing based on the Euclidean distance between each query’s
origin and destination. For path caching optimization, we
have formulated the problem of constructing path cache into
a knapsack problem and designed a greedy algorithm to solve
it; we also have devised an effective cache structure to save
space and support efficient cache lookup. In the end, we have
conducted extensive experiments on real datasets by taking
BingMaps as the cloud-basedmapping service. Experimental
results show that more than 35% external requests can be
reduced by our proposed techniques.
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