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ABSTRACT Diagonal loading provides a powerful and effective way to improve the robustness of the
standard Capon beamformer. Several parameter-free robust adaptive beamformers (RAB) are considered
in this paper. We reveal that the performances of them have somewhat degradation when the number of
snapshots or that of sensors is large. To solve this problem,we emphatically study thewell-known generalized
linear combination-based method, the performance of which may degrade severely when the number of
sensors increases, and propose a novel parameter-free technique, which is a combination of noise reduction
preprocessing technique and truncated minimum mean square error criterion. As most of the parameter-free
RAB techniques are very sensitive to the desired signal steering vector mismatch, this paper further proposes
to construct a series connection between these RAB techniques and a steering vector estimation (SVE)
method, where the SVE is implemented by a convex optimization technique. Simulation results show that
the proposed method can achieve a promising performance in comparison with the competing methods.

INDEX TERMS Diagonal loading, robust adaptive beamforming, parameter-free, steering vector estimation.

I. INTRODUCTION
The standard Capon beamformer (SCB) is an optimal spatial
filter with remarkable resolution and interference suppression
capability [1]. However, it is very sensitive to the impre-
cise knowledge of the true covariance matrix and the mis-
match of the steering vector of signal-of-interest (SOI). In the
last half century, many robust adaptive beamformers (RAB)
have already been proposed to improve the robustness
of SCB. They can be roughly classified into four categories:
diagonal loading method [2]–[5], uncertainty set-based
method [6]–[11], eigenspace-based method [12]–[14], and
interference-plus-noise covariance matrix reconstruction-
based method [15]–[18].

Diagonal loading is one of the most widely used
RAB method, where a scaled identity matrix is injected into
the sample covariance matrix according to some rules [2].
Most of the conventional diagonal loading methods are user
parameter dependent. For example, the norm constrained
Capon beamforming is a frequently used conventional

diagonal loading method, whose the diagonal loading level
is determined by the user parameter upper bound of the
square of the weight vector norm [2]. In recent decades,
the uncertainty set-based robust adaptive beamformers have
been proposed, such as the worst-case performance opti-
mization beamformer [7], the linear programming beam-
former [8], and the distributional robust chance-constrained
beamformer [9]. They are proved equivalent to the diagonal
loading method [6], and their corresponding diagonal loading
level can be calculated by the user defined size of the uncer-
tainty set of the array steering vector. Therefore, the conven-
tional diagonal loading method and the uncertainty set-based
diagonal loading method have the common problem that their
diagonal loading level is uneasy to be determined beforehand.

Several parameter-free RAB techniques have been
presented in the literature, including the Hoerl-Kennard-
Baldwin (HKB) method [19], the general linear
combination-based (GLC) method [20], the spatial matched
filter-based (SMF) method [21], and the quadratically
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constrained (QC) method [22]. HKB is based on the gener-
alized sidelobe canceler formulation of SCB, which belongs
to the family of the ridge regression Capon beamformer [23].
As has been pointed out in [20], HKB’s performance degrades
when the number of snapshots beyond a certain number,
i.e., from hundreds to thousands times as many as the number
of sensors. GLC is a shrinkage-based beamformer which
is usually utilized in knowledge-aided space-time adaptive
processing [24]–[26], where it estimates the true covariance
matrix in the sense of minimummean square errors (MMSE).
However, the performance of GLC degrades when the num-
ber of sensors is relatively large, i.e., from tens to hundreds
times as many as the number of directional signals. The
output power of the spatial matched filter associated with
the SOI is chosen as the diagonal loading level for the
SMF method, which has a low computational complex-
ity [21]. However, as the diagonal loading level of SMF
fluctuates mildly around a constant, in the scenario of large
number of snapshots, the diagonal loading level of SMF
may be too large that will result in the reduction of null
depth of the beamformer, while in the scenario with small
number of snapshots, the diagonal loading level may be too
small that will affect the robustness of this technique. QC is
based on a nonconvex quadratically constrained optimization
technique, where the diagonal loading factor is introduced in
by an iterative algorithm [22]. We reveal that QC has some
limitations on the desired uncertainty range of DOA, the array
geometry and the allowable maximum number of sensors.

As the scenario of large number of sensors is popu-
lar recently [27]–[33], this paper focuses on improving the
performance of SCB for a large array. We study how
the number of sensors will affect the MMSE estimator in the
GLC technique and thus present a novel fully automatic
diagonal loading method which estimate the true covari-
ance matrix by combining noise reduction preprocessing
with truncated MMSE (NRP-TMMSE) criterion, where the
noise reduction can be implemented by the least-square-
estimate (LSE) method [34] and the multichannel wiener
filtering (MWF) method [35] with a roughly estimation of
the number of directional signals.

The mentioned parameter-free RAB techniques all focus
on the covariance matrix estimate except QC, which consider
an uncertainty set that constrains the steering vectors with a
desired uncertainty range of DOA. As a consequence, HKB,
GLC, SMF, and NRP-TMMSE are all somewhat sensitive
to both the DOA mismatch and the sensor position pertur-
bations. To further solve this problem, a joint estimation of
covariancematrix and steering vector has been proposed [36],
where the estimation of covariance matrix is implemented by
GLC and the steering vector is estimated using the method
proposed by the literature [10]. As a result, this method
retains the drawbacks of GLC and the estimation of steering
vector relies on the precise knowledge of the number of
directional signals. Differently, this paper proposes a new
RAB technique by constructing a series connection between
NRP-TMMSE and a steering vector estimation (SVE)

method that is based on a convex optimization technique [11].
The only prior information used in the corresponding
SVEmethod is the imprecise knowledge of the angular sector
of the desired signal and array geometry, resulting in a high
robustness of the proposed NRP-TMMSE-SVE.

Numerous simulation results show that
NRP-TMMSE-SVE has better performance in terms of
the robustness and the output signal-to-interference-noise
ratio (SINR) in most cases when comparing with other diago-
nal loading methods, especially when the number of sensors
is relatively large (from tens to hundreds times as many as
the number of directional signals), and that of snapshots is
relatively small (less than twice as many as the number of
sensors). Besides, the performance of NRP-TMMSE-SVE is
robust to the imprecise estimation of the number of signals.

The contributions of our work are briefly listed as follows.
i) Asymptotic analysis on the performances of the exist-

ing non-parameter RAB techniques are demonstrated
in two limiting cases (the number of snapshots/sensors
trends to be infinite). This analysis shows that the ten-
dency of the diagonal loading levels of these techniques
is somewhat unreasonable when considering covari-
ance matrix uncertainty under these two assumptions.

ii) To improve the performance of GLC in the case
with a large number of sensors, we propose
a NRP-TMMSE method, which combines the noise
reduction preprocessing algorithm with a proposed
truncatedMMSE criteria, and validate the feasibility of
the LSE method [34] as well as the MWF method [35]
in the noise reduction preprocessing procedure.

iii) A SVE method based on convex optimization
technique [11] is proposed to be connected with
NRP-TMMSE as well as the existing RAB techniques,
which can improve the robustness of these techniques
against the steering vector mismatch.

II. SIGNAL MODEL AND PROBLEM FORMULATION
We consider D far-field narrowband signals impinging on
an array of M (M > D) omnidirectional sensors. Although
the cases with multipath propagation has been considered in
array processing recently, e.g., see [21], the unipath propa-
gation is widely assumed in this field, e.g., [19], [20], [22],
and [36]. In this paper, we only consider the case with unipath
propagation. Thus, nth snapshot of the received signal can be
written as a vector x(n) ∈ CM×1, which is

x(n) =
D−1∑
d=0

ad sd (n)+ n(n), (1)

where sd (n) with (d = 0, 1, . . . ,D − 1) denote the
D directional narrowband signals. We assume that d = 0
corresponds to the SOI and d = 1, 2, . . . ,D − 1 correspond
to the interferences. ad ∈ CM×1 is the steering vector of the
signal sd with ‖ad‖2 = M , n(n) ∈ CM×1 is the additive noise
vector.
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The true covariance matrix can be expressed as

Rx = E
{
x(n)xH (n)

}
= σ 2

0 a0a
H
0 +Q, (2)

where E{·} denotes the expectation operator, the superscript
H denotes Hermitian transpose, σ 2

0 denotes the power of
the SOI, and Q is the interference-plus-noise covariance
matrix. SCB is formulated so as to select a weight vector
that minimizes the array output power by using the following
linearly constrained quadratic equations:

min
w

wHRxw, s.t. wHa0 = 1. (3)

If the steering vector of the SOI, a0, and the true covariance
matrix, Rx , are accurately known, the optimal weight vector
and its corresponding optimal output SINR can be, respec-
tively, given by

wopt =
R−1x a0

aH0 R
−1
x a0

, (4)

SINRopt =
σ 2
0

∣∣∣wH
opta0

∣∣∣2
wH
optQwopt

= σ 2
0 a

H
0 Q
−1a0. (5)

In practical applications, the true covariance matrix Rx
is unknown, which needs to be substituted by the sample
covariance matrix, given by:

R̂x =
1
N

N∑
n=1

x(n)xH (n), (6)

where N is the number of snapshots. The estimated weight
vector and the output SINR of SCB are, respectively, given
by

wSCB =
R̂−1x a0

aH0 R̂
−1
x a0

, (7)

SINRSCB =
σ 2
0

∣∣wH
SCBa0

∣∣2
wH
SCBQwSCB

. (8)

As we know, the true covariance matrix can not be esti-
mated accurately due to limited available data samples.
As N increases, R̂x can converge to Rx , and the output
SINRwill approach SINRopt. Unfortunately, the convergence
rate of SCB is very slow, especially in the presence of SOI.
Therefore, even in the absence of steering vector mismatch,
the performance of SCB can degrade substantially when the
number of snapshots is relatively small [2].

III. TYPICAL PARAMETER-FREE RAB TECHNIQUES
To improve the performance of SCB, many diagonal
loading methods have been proposed and widely
used [2]–[5], [19]–[22]. Supposing ρ is the corresponding
diagonal loading level, the weight vector can be expressed as

wDL =
(R̂x + ρI)−1a0

aH0 (R̂x + ρI)−1a0
. (9)

When ρ = 0, (9) reduces to SCB. Conversely, when
ρ → ∞, it becomes the delay-and-sum beamformer due to
wDL→ a0/M [2].

Because ρ has a significant impact on improving the per-
formance of SCB [3], it is always a hot topic to choose an
optimal diagonal loading level according to the given data.

A. HKB METHOD
HKB is a parameter-free robust beamformer [19], whose
weight vector has the following form:

w =
a0
M
− Bη, (10)

whereB ∈ CM× (M−1) is the blockingmatrix, withBHa0 = 0
and BHB = I. The blocking matrix is not unique, and its
columns can be calculated as the eigenvectors corresponding
to theM − 1 non-zero eigenvalues of I− a0aH0 /M . By intro-
ducing (10), (3) can be interpreted as a least-squares (LS)
problem [19]. Let X = R̂1/2

x B and b = R̂1/2
x a0/M , then the

LS problem can be expressed as

min
η

(
Bη −

a0
M

)H
R̂x

(
Bη −

a0
M

)
= min

η
‖Xη − b‖2, (11)

where η can be estimated as

η̂ = (XHX)−1XHb. (12)

Thus, the diagonal loading level of HKB can be calculated
as [19]

ρHKB =
(M − 1)σ̂ 2

‖η̂‖2
, (13)

with
σ̂ 2
= ‖Xη̂ − b‖2, (14)

where ‖ · ‖ denotes the Frobenius norm of a matrix.
Finally, the weight vector of HKB can be written as

wHKB =
(R̂x + ρHKBI)−1a0

aH0 (R̂x + ρHKBI)−1a0
. (15)

B. GLC METHOD
GLC is another parameter-free beamformer [20]. In this
method, an estimate of Rx is a linear combination of the
sample covariance matrix R̂x and an identity matrix I:

R̃x = αR̂x + βI, (16)

where R̃x is a positive semidefinite matrix (R̃x ≥ 0).
α and β are the nonnegative shrinkage parameters which
can be obtained by minimizing the mean square error of R̃x ,
given by

min
α,β

{
MSE(R̃x)

}
= min

α,β
E
{
‖R̃x − Rx‖

2
}

= min
α,β

E
{
‖αR̂x + βI− Rx‖

2
}
. (17)
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By some mathematical derivations, the shrinkage
parameters α and β can be obtained, which can be
given by:

α =
γ

ε + γ
, (18)

β = ν(1− α) = ν
ε

ε + γ
, (19)

where ε , E{‖R̂x − Rx‖
2
}, γ = ‖νI − Rx‖

2, and
ν = tr(Rx)/M , in which tr(·) is the trace operator. In practice,
Rx is unknown, [20] provided an effective way to estimate
α and β without the knowledge of Rx , which are denoted as
α̂ and β̂, respectively, herein. Assuming α̂ 6= 0, the weight
vector of GLC can be written as

wGLC =

(
R̂x +

β̂

α̂
I

)−1
a0

aH0

(
R̂x +

β̂

α̂
I

)−1
a0

, (20)

where β̂/α̂ denoted as ρGLC is the diagonal loading level
of GLC.

C. SMF METHOD
The diagonal loading level of SMF is empirically defined
as [21]

ρSMF = āH0 R̂x ā0, (21)

where, ā0 = a0/‖a0‖ is the normalized steering vector. The
reason for defining this loading level is as follows.

The loading level of an effective diagonal loading method
should satisfies the two conditions [3]: (a) the loaded noise
eigenvalues are approximately equal, and (b) the loaded inter-
ference eigenvalues are minimally affected. Since the loading
level given in (21) is actually the output power of the spatial
matched filter, which contains three parts: the filtered noise
power σ̃ 2

n , signal power σ̃
2
0 and interference power σ̃ 2

d , with
d = 1, . . . ,D − 1, ρSMF is usually much larger than the
noise power. Thus, the condition (a) can be satisfied generally.
As σ̃ 2

d will be at least 13 dB smaller than the input interference
power σ 2

d [37], with d = 1, . . . ,D − 1, assuming that the
desired signal power is much smaller than the interference
power, then ρSMF � σ 2

d , d = 1, . . . ,D − 1, and the
condition (b) is satisfied too. However, when the desired
signal power is equal or larger than the interference powers,
the condition (b) will not be satisfied, leading to the null
depths reduction of the beampattern.

D. QC METHOD
The QC method is a simplified version of the uncertainty-
based methods, which only constrains the steering vec-
tors with a desired uncertainty range of DOA. Define the
uncertainty range of DOA as [θ1, θ2] herein, where θ1 ≤
θ0 ≤ θ2 and θ0 is the impinging direction of SOI, to find
a suboptimal solution, the optimization problem can be

written as [22]

min
w,φ,l0≥1,l1≥1

wHRxw (22)

subject to AHw =
(

l0
l1 ejφ

)
, (23)

where, A = [ a(θ1) a(θ2) ], a(θ1) and a(θ2) are the steering
vectors with directions θ1 and θ2, respectively. l0, l1, and
φ are real numbers. If we let(

AHR−1x A
)−1
=

(
r0 r2 ejµ

r1 e−jµ r0

)
, (24)

where r0, r1, and r2 are non-negative numbers, then l0, l1 can
be calculated as

l0 =


1,

r2
r0
≤ 1

r2
r0
,

r2
r0
> 1,

l1 =


1,

r2
r1
≤ 1

r2
r1
,

r2
r1
> 1,

(25)

and φ can be chosen as −µ + π . As the solution of the
optimization problem can be obtained as

wQC = R−1x A
(
AHR−1x A

)−1 ( l0
l1 ejφ

)
, (26)

The final QC beamformer can be obtained by substitut-
ing (24) and (25) into (26).

To avoid the zero between θ1 and θ2, the diagonal loading
method is used to modify the objective function in an iter-
ative way. The detailed procedure can be referred to in the
literature [22].

Remarkably, this technique only works with an uniform
linear array (ULA), and the desired uncertainty range of DOA
must satisfy the inequality

|sin θ2 − sin θ1| ≤
λ

dM
, (27)

where λ is the wavelength, and d is the inter-element space
of sensors.

IV. ASYMPTOTIC ANALYSIS OF PARAMETER-FREE
TECHNIQUES
In this section, we analyze the performance of the parameter-
free techniques mentioned above in terms of their diagonal
loading levels, where two limiting cases are considered that
the number of snapshots N and the number of sensors M
approach infinity. As the scenario of large number of sensors
is popular recently [27]–[33], we emphatically analyze the
case with a large value of M (from tens to hundreds times
as many as the number of directional signals). Note that
diagonal loading is introduced to improve the robustness of
RAB against covariancematrix uncertainty, a proper diagonal
loading level is expected to achieve a high output SINR.

A. IMPACT OF THE NUMBER OF SNAPSHOTS
On the one hand, when the number of snapshots N increases
with a given number of sensors M , SCB tends to work
optimally in the absence of steering vector mismatch, and
thus the diagonal loading level should decrease. In a limiting
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case, when the number of snapshots tends to be infinite,
the theoretical diagonal loading level should be close to zero,
however, the diagonal loading level of HKB tends to become
infinite too [20]. This is because the numerator of ρHKB which
represents the estimate SOI power will be as large as the true
SOI power, while the denominator which is the solution of
the LS problem (11) will decline to 0, resulting in a serious
degradation of its performance, even worse than SCB.

The diagonal loading level of SMF tends to become a
constant when the number of snapshots becomes infinite, due
to that R̂x is equal toRx , and the diagonal loading level given
in (21) is exactly the output power of the spatial matched
filter. If the input desired signal power is relatively large,
ρSMF will be much larger than 0, leading to the null depths
reduction of the beampattern. In addition, when the number
of snapshots N is very small, i.e., less than M , the diagonal
loading level of SMF is not large enough, which may also
reduce its performance.

B. IMPACT OF THE NUMBER OF SENSORS
On the other hand, when the number of sensor M increases
with a given number of snapshots N , the estimation
uncertainty of the sample covariance matrix will increase
when considering the Cramér-Rao bounds distance between
R̂x and Rx [38], thus a larger diagonal loading level is
expected. The diagonal loading level of QC will satisfy the
expected trend, because the number of iteration will also
increase when M increases, followed by an increasing diag-
onal loading level. However, as shown in (27), the assumed
uncertainty range of DOAwill be very small asM approaches
a large value [22], which may lead to the degradation of its
robustness. In the meanwhile, the diagonal loading level of
GLC will decrease as M increases. A proof is presented in
this part to show this behavior.

From (18) and (19), the theoretical diagonal loading level
of GLC can be calculated as

ρo,GLC =
β

α
= ν

ε

γ
. (28)

We focus on analyzing the change tendency of the three
parameters ν, ε and γ asM increases with a given number of
snapshots N .
Supposing the number of sensors is a variable, when it

is equivalent to M , we let RM denote the true covariance
matrixes and rewrite (2) as

RM =

D−1∑
d=0

σ 2
d ada

H
d + σ

2
n IM , (29)

where σ 2
d (d = 0, . . . ,D − 1) is the power of the

d th directional signal, σ 2
n is the power of the white complex

Gaussian random process, and IM is the unit matrix with the
size M ×M , then the parameter ν can be calculated as

ν =
tr(RM )
M

=
M (
∑D−1

d=0 σ
2
d + σ

2
n )

M
=

D−1∑
i=0

σ 2
d + σ

2
n , (30)

thus ν is independent of the number of sensors.

The denominator of ρo,GLC is defined as γ = ‖RM −

νIM‖2, which can be given by

γ =

∥∥∥∥∥
D−1∑
d=0

σ 2
d ada

H
d + σ

2
n IM −

(
D−1∑
d=0

σ 2
d IM + σ

2
n IM

)∥∥∥∥∥
2

=

∥∥∥∥∥
D−1∑
d=0

σ 2
d (ada

H
d − IM )

∥∥∥∥∥
2

. (31)

If only focusing on one term in (31), we can get∥∥∥σ 2
d

(
adaHd − IM

)∥∥∥2 = σ 4
d

{
tr
[
(M − 2)adaHd

]
+M

}
= σ 4

d

(
M2
−M

)
, (32)

with d = 0, . . . ,D− 1, so we can draw a conclusion that

γ = O(M2), (33)

where O(·) means "on the order of".
As for the parameter ε, we let EM = ‖R̂M − RM‖. As the

truncation argument described in [39], for every δ > 0, one
has with probability at least 1− δ that:

EM .q,δ (log logM )2
(
M
N

) 1
2−

2
q

, (34)

if the receiving signal satisfies the moment assumptions:

‖x(n)‖2 ≤ K
√
M a.s., (35)

(E|〈x(n), x0〉|q)1/q ≤ L ∀x0 ∈ SM−1, (36)

for some K and L, with 4 ≤ M ≤ N and q > 4, where
SM−1 denotes the unit Euclidean sphere in RM , 〈·〉 denotes
inner product, and inequality of the form a .q,δ bmeans that
a ≤ Cq,δb where Cq,δ depends only on the parameters q, δ.
Because the boundedness assumptions (35) and (36) can

be sufficed in the analysis of GLC [39], [40], assuming that
the number of snapshots N is constant and large enough, and
let

p =
1
2
−

2
q
, (37)

then the parameter ε satisfies that

ε = O(M2p(log logM )4), (38)

where 0 < p < 1/2 due to q > 4.
From (33) and (38), one can find that the order of magni-

tude of ε is much less than that of γ with high probability.
Thus, ρo,GLC will decrease when the number of sensors M
increases.

In order to study the behavior of the diagonal loading level
of GLC intuitively, we give the variation curves of ρo,GLC
whenM increases from 10 to 100withN = 100 andN = 200
in Fig. 1. Without loss of generality, we assume that there
are three directional far-field narrowband signals impinging
on a ULA from directions 0◦, 30◦ and 45◦, respectively.
Regard the first signal as SOI, and the others are interfer-
ences. The power of SOI is 10dB and that of interferences
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FIGURE 1. ρo,GLC versus the number of sensors M. (a) N = 100,
(b) N = 200.

are 20dB. In addition, there is spatially white complex Gaus-
sian noise with zero-mean and power 0dB. For each scenario
1000 Monte-Carlo trials are performed. As can be seen from
Fig. 1, whenM increases from 10 to 100, the diagonal loading
level of GLC will decrease. Comparing Fig. 1 (a) with (b),
one can also find that the diagonal loading level of GLC will
decrease as N increases.

From this study and previous studies, one can find that
all the mentioned parameter-free RAB techniques will have
performance degradation in the cases with a large number of
snapshots or that of sensors, so a novel automatic diagonal
loading method is expected which can perform well in the
two limiting cases.

V. PROPOSED NRP-TMMSE METHOD
To solve the problem that the diagonal loading level of GLC
declines when the number of sensors increases, this section
introduces a noise reduction preprocessing into a truncated
minimummean square error criterion (NRP-TMMSE), where
the TMMSE criterion can be given by

min
αt ,βt

{
MSE(R̃t )

}
= min
αt ,βt

E
{
‖αt R̂t + βtTt − Rt‖

2
}
, (39)

where αt and βt are nonnegative shrinkage parameters.
R̃t , R̂t and Rt are the estimated, the sample and the true
covariance matrix of target-plus-interference signal of x(n),
respectively. Tt is an M ×M matrix that can be constructed
by the eigenvectors of R̂t . By solving (39), we can obtain the
parameters α̂t and β̂t , thus the estimate covariance matrix can
be expressed as

R̃NRP−TMMSE = α̂t R̂x + β̂tI. (40)

There are two critical issues in NRP-TMMSE, one
is to estimate R̃t and the other is to construct the
matrix Tt .
Note that both (39) and (17) use the MMSE criterion to

estimate the covariance matrix in an optimal way. There are
two obvious differences between (39) and (17). First, (39)
only considers the true covariance matrix of the target-plus-
interference signal, while (17) also considers the noise covari-
ance matrix. Second, (17) use the identity matrix directly,
while (39) uses a reconstructed matrix Tt instead, where

Tt relates the estimate covariance matrix of the target-plus-
interference signal.

A. NOISE REDUCTION PREPROCESSING
We utilize two conventional methods to reduce the noise of
x(n). One is the least-square-estimate (LSE) method [34],
in which the received noisy signal of themth sensor is denoted
as xm = [xm(0), xm(1), . . . , xm(N − 1)]T (m = 0, 1, . . . ,
M − 1). Then we construct an N1 × N2 Hankel matrix of xm
as [34]:

H(m)
=


xm(0) xm(1) . . . xm(N2 − 1)
xm(1) xm(2) . . . xm(N2)
...

...
. . .

...

xm(N1 − 1) xm(N2) . . . xm(N − 1)

 ,
(41)

where N1 + N2 = N + 1 and N1 ≥ N2. As shown in [34],
H(m) can be written as

H(m)
= H(m)

ti +H(m)
n , (42)

whereH(m)
ti andH(m)

n are theHankelmatrixes derived form the
target-plus-interference signal and the white complex Gaus-
sian noise signal, respectively. In addition, rank(H(m)

ti ) =
D < N2, and rank(H(m)) = rank(H(m)

n ) = N2. If the number
of the signals is estimated asD0, and the number of snapshots
is large enough, then we can let N2 = 2 D0.

The singular value decomposition (SVD) of H(m) can be
given by

H(m)
= G6PH , (43)

where the nonnegative diagonal elements of6 ∈ CN1×N2 are
the singular values of H(m), ranging in order from large to
small, namely ζ0 ≥ ζ1 · · · ≥ ζN2−1. The columns of G ∈
CN1×N1 andP ∈ CN2×N2 are the left and right singular vectors
ofH(m), respectively. The SVD ofH(m) can be divided as [34]

H(m)
= [G1 G2]

[
61 0
0 62

] [
PT1
PT2

]
, (44)

where, G1 ∈ CN1×D0 , 61 ∈ CD0×D0 , and P1 ∈ CN2×D0 . The
LSE of H(m)

ti can be obtained as

Ĥ(m)
ti = G161PH1 , (45)

The denoised signal of the mth sensor ym(n) can be recon-
structed by arithmetic averaging along the anti-diagonals
of Ĥ(m)

ti :

ym(n) =
1

κ − ι+ 1

κ∑
i=ι

Ĥ(m)
ti (n− i+ 2, i), (46)

with,

ι = max(1, n− N1 + 2), (47)

κ = min(N2, n+ 1). (48)

Accordingly, by repeating the process for each sensor,
we can obtain the signal vector of the nth snapshot, namely
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yLS(n) = [y0(n), y1(n), . . . , yM−1(n)]T . As the computa-
tional complexity of LSE method is O(M · N 3), which is
too high for implementation, we need to introduce a low-
complexity noise reduction algorithm.

The multichannel wiener filtering (MWF) method can be
a choice for reducing the computational complexity in noise
reduction, the filtering process of which can be written as [35]

yMWF(n) =WMWF x(n), (49)

where
WMWF = R̂−1x

(
R̂x − R̂n

)
, (50)

is the estimated multichannel wiener filter, R̂n is the estimate
white noise covariance matrix. If the eigenvalue decomposi-
tion of R̂x can be written as

R̂x = U0̂UH , (51)

where each column of matrix U∈CM×M is the eigenvector
of R̂x , and the elements ofmatrix 0̂ = diag(τ̂0, τ̂1, . . . , τ̂M−1)
are the eigenvalues of R̂x , then the noise covariance matrix
can be estimated as

R̂n =

 1
M − D0

M−1∑
m=D0

τ̂m

 · I. (52)

Thus, by substituting (52) into (50), we can obtain the multi-
channel wiener filter. The computational complexity ofMWF
is O(M2

· N ), which is much less than the LSE algorithm,
especially when considering N � M generally. For conve-
nience, we unify the denoised signal yLS(n) and yMWF(n) as
y(n) in what follows.

Algorithm 1 LS-TMMSE
1) Conditions

a) Given the input signal vector of the mth sensor xm(n).
b) Estimate the number of directional sound sources D0.
c) Set the size of the Hankel matrix H(m) as N1 × N2.

2) Computation
a) Noise reduction
i) Construct the Hankel matrix H(m) (H(m)

= H(m)
ti +H(m)

n ).
ii) Calculate the SVD of H(m) using (43).
iii) Divide the SVD of H(m) using (44), and Estimate the LSE

of H(m)
ti .

iv) Repeat the steps above for each sensor and reconstruct the
denoised signal y(n).

v) Calculate the estimated target-plus-interference covariance
matrix R̂t = 1

N
∑N

n=1 y(n)y
H (n).

b) Construction of Tt
i) Calculate the eigenvalue decomposition of R̂t .
ii) Construct Tt by using (55).

c) TMMSE criterion
i) Solve equation (39), and obtain the parameters α̂t and β̂t .

B. CONSTRUCTION OF Tt
Once we obtain the denoised signal y(n), the sample covari-
ance matrix R̂t can be calculated by

R̂t =
1
N

N∑
n=1

y(n)yH (n). (53)

Algorithm 2 MWF-TMMSE
1) Conditions

a) Given the sample covariance matrix of input signals R̂x .
b) Estimate the number of directional sound sources D0.

2) Computation
a) Noise reduction

i) Estimate the white noise covariance matrix R̂n using (52).
ii) Calculate the multichannel wiener filter WMWF.
iii) Obtain the denoised signal y.
v) Calculate the estimated target-plus-interference covariance

matrix R̂t = 1
N
∑N

n=1 y(n)y
H (n).

b) Construction of Tt
i) Calculate the eigenvalue decomposition of R̂t .
ii) Construct Tt by using (55).

c) TMMSE criterion
i) Solve equation (39), and obtain the parameters α̂t and β̂t .

The eigenvalue decomposition of R̂t can be expre-
ssed as

R̂t = V4̂VH , (54)

where each column of matrix V∈CM×M is the eigenvector
of R̂t . And the elements of 4̂= diag(~̂0, ~̂1, . . . , ~̂D−1, . . . ,
~̂M−1) with ~̂0 ≥ ~̂1 · · · ≥ ~̂M−1 ≥ 0 are the eigenvalues
of R̂t , which can be divided into two parts: ~̂i(i = 0, . . . ,
D − 1) corresponds to target-plus-interference power, and
~̂i(i = D, . . . ,M − 1) corresponds to noise power. Then the
matrix Tt can be constructed as

Tt = Vdiag

1, 1, . . . , 1︸ ︷︷ ︸
D0

, 0, . . . , 0

VH . (55)

The solution of (39) can be obtained in a similar way
to GLC:

β̂t = min

[
ν̂t

ε̂t∥∥R̂t − ν̂tTt
∥∥2 , ν̂t

]
, (56)

α̂t = 1−
β̂t

ν̂t
, (57)

where ν̂t = tr(R̂tTHt )/D0, and the value of ε̂t can be esti-
mated as

ε̂t =
1
N 2

N∑
n=1

‖y(n)‖4 −
1
N

∥∥R̂t
∥∥2 . (58)

Accordingly, the weight vector of NRP-TMMSE can be
expressed as (assuming that α̂t 6= 0)

wNRP−TMMSE =

(
R̂x +

β̂t

α̂t
I

)−1
a0

aH0

(
R̂x +

β̂t

α̂t
I

)−1
a0

. (59)

As can be seen from (59), NRP-TMMSE also belongs to
the diagonal loading method and its diagonal loading level
is β̂t/α̂t , we denote it as ρNRP−TMMSE. The validation of the
proposed method is given in Appendix A.
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As mentioned above, NRP-TMMSE is a combina-
tion of noise reduction preprocessing and the TMMSE
criterion, which can be denoted as LS-TMMSE and MWF-
TMMSE according to its noise reduction algorithm. We sum-
marize the implementation of the proposed LS-TMMSE
and MWF-TMMSE in Algorithm 1 and Algorithm2,
respectively.

VI. STEERING VECTOR ESTIMATION
As the parameter-free RAB techniques such as HKB, GLC,
SMF, LS-TMMSE, and MWF-TMMSE only consider esti-
mating the covariance matrix, they are all sensitive to the
DOA mismatch as well as the sensor position perturba-
tions. To solve the problem, we construct a series con-
nection between these RAB techniques and a well-known
steering vector estimation (SVE) method given in [11].
Thus, they are denoted as HKB-SVE, GLC-SVE, SMF-SVE,
LS-TMMSE-SVE and MWF-TMMSE-SVE, respectively.

The only prior information used in the SVE method is the
imprecise knowledge of the angular sector 2 of the desired
signal and array geometry. By introducing the following pos-
itive semi-definite matrix variable Z , â0âH0 , the steering
vector can be estimated using a convex optimization approach

min
Z

tr(R̂−1x Z)

subject to tr(Z) = M

tr(C̃Z) ≤ 10

Z � 0, (60)

where C̃ ,
∫
2̃
a(θ )aH (θ )dθ , 2̃ is the complement of the

sector 2, a(θ ) is the assumed steering vector with the direc-
tion of θ , and 10 , maxθ∈2 aH (θ )C̃a(θ ). Because there is a
high possibility of the rank-one solution for this optimization
problem [11], the estimated steering vector â0 can be calcu-
lated as the principal eigenvector of the positive semi-definite
matrix Z.

VII. NUMERICAL RESULTS
In this section, we evaluate HKB, GLC, SMF, QC,
LS-TMMSE and MWF-TMMSE algorithms through simu-
lations. A ULA with M = 20 elements is adopted in the
test. Suppose that D = 4, and the temporally white complex
Gaussian far-field narrowband signals impinge on the ULA
from directions 0◦, 30◦, 45◦, and 60◦, respectively. We regard
the first signal as the SOIwith power 10dB, and the remaining
signals as interferences with power 20dB. The noise is spa-
tially and temporally white complex Gaussian process with
zero-mean and power 0dB. In the following examinations,
the output SINR is calculated by substituting the optimized
weight vector forwSCB in (8). In the following scenarios, two
conditions are considered. In the first condition, the steering
vector of SOI is accurately known. In the second condi-
tion, that steering vector of SOI is imprecise because of
the DOA error and the sensor position perturbations, where
the DOA error is assumed to be random and uniformly dis-
tributed in [−5◦, 5◦] and the sensor position perturbations are

uniformly drawn from [−0.05, 0.05]. Particularly, to satisfy
the constraint in (27) and to simulate a realistic circumstance
that the assumed uncertainty set is smaller than the real DOA
mismatch, we set the DOA range of QC as [−2◦, 2◦]. For each
scenario 1000 Monte-Carlo trials are performed.

A. THE IMPACT OF INACCURATE ESTIMATION
OF THE SIGNAL NUMBERS
As mentioned above, in the implementation of
NRP-TMMSE, we need to estimate the number of signal
number. To examine how the estimation error affects the
performance of NRP-TMMSE. Fig. 2 shows the averaged
output SINRs of LS-TMMSE and MWF-TMMSE versus the
number of snapshots N as D0 = 1, 4, 6, 10, 12, respectively.
As shown in Fig. 2 (a), we can observe that LS-TMMSE
can achieve the optimal performance as D0 = D = 4, and
it is not very sensitive to the inaccurate estimation of the
number of the sources. When D0 > D, the performance
of LS-TMMSE degrades as the estimation error increases.
And when D0 = 1, the performance of LS-TMMSE is very
close to the optimal one. We may draw an extra conclusion
that we’d better underestimate the number of sound sources
rather than overestimate it when applying the proposed
LS-TMMSE. As shown in Fig. 2 (b), the estimation error
can barely affect the performance of MWF-TMMSE. As a
consequence, when using NRP-TMMSE, we only need a
rough estimated number of directional signals,

FIGURE 2. Beamformer output SINR versus N for different values
of D0 using NRP-TMMSE. (a) The output SINR of LS-TMMSE.
(b) The output SINR of MWF-TMMSE.

B. THE IMPACT OF THE NUMBER OF SNAPSHOTS
Then, we examine the diagonal loading level of each beam-
former as the number of snapshots N increases, assuming
that the steering vector of SOI and the number of signals are
precisely known. Fig. 3 show the mean value of the diagonal
loading levels of HKB, GLC, SMF, QC, LS-TMMSE and
MWF-TMMSE, respectively. One can find that the diag-
onal loading levels of GLC and NRP-TMMSE decrease,
but the diagonal loading level of HKB increases contrarily,
as N increases. At the meanwhile, the diagonal loading levels
of SMF and QC tend to be a constant. In addition, we note
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FIGURE 3. Comparison of average diagonal loading levels versus N with
M = 20. (a) ρHKB. (b) ρGLC. (c) ρSMF. (d) ρQC. (e) ρLS−TMMSE.
(f) ρMWF−TMMSE.

FIGURE 4. Output SINRs of the original RAB techniques versus N with
M = 20. (a) In the absence of mismatch. (b) In the presence of mismatch.

that the diagonal loading level of NRP-TMMSE is larger than
those of GLC , SMF and QC, especially the MWF-TMMSE.
Among the four diagonal loading methods, the diagonal load-
ing level of GLC is the smallest one.

To analyze how the diagonal loading levels affect the per-
formances of the considered beamformers, Fig. 4 shows the
mean output SINRs of the mentioned RAB techiques versus
the number of snapshots N , where Fig. 4 (a) presents the
circumstance that the steering vector is accurately known, and
Fig. 4 (b) presents the circumstance that there exists steering

vector mismatch. As shown in Fig. 4 (a), the output SINRs
of all diagonal loading methods are larger than SCB. The
output SINR of HKB decreases when N exceeds about 440 in
this example. When N is larger than 2500, the performance
of HKB will be even worse than SCB. This is because the
diagonal loading level of HKB, as shown in Fig. 3 (a), grows
from a small value to a very large value as N increases.
Comparing the proposed algorithms to GLC, we note that
their output SINRs are close to each other when N is less
than 200, but the proposed algorithms are better than GLC
as N increases. As for the SMF and QC, their convergence
rates are as fast as the proposed algorithms. By local ampli-
fication, we note that when the number of snapshots is very
small, ie., N is equal or twice as large as M or even smaller
than M , the output SINR of LS-TMMSE is the largest. This
is because the diagonal loading level of LS-TMMSE is large
enough to improve the convergence rate. However, the larger
diagonal loading level is not always the better choice. The
diagonal loading level of MWF-TMMSE is up to 105 when
N is around 20, but its performance is relatively worse than
LS-TMMSE, SMF, and QC. From Fig. 4 (b), we note that
when there exists steering vector mismatch, all the RAB
techniques have a severely performance degradation, where
the curves of GLC, LS-TMMSE and MWF-TMMSE drop
more seriously than SMF, QC and HKB. The reason is
that, as N increases, the diagonal loading levels of GLC,
LS-TMMSE and MWF-TMMSE decline to very small val-
ues, which are not enough to guarantee the robustness of them
to the steering vector mismatch.

FIGURE 5. Output SINRs of the series connection structure between
RAB techniques and SVE algorithm versus N with M = 20. (a) In the
absence of mismatch. (b) In the presence of mismatch.

To examine the effect of the SVE algorithm, Fig. 5 shows
the mean output SINRs of the series connection structure
between the RAB techniques and the SVE algorithm ver-
sus N , where Fig. 5 (a) presents the circumstance that
the steering vector is accurately known, while Fig. 5 (b)
presents the circumstance that there exists steering vector
mismatch. By comparing Fig. 4 (a) and Fig. 5 (a), we note
that SVE improves the performance of GLC, which can be
explained as that the covariance matrix deviation caused by
the small number of snapshots is somewhat equal to the
steering vector mismatch in terms of output SINR, and SVE
can correct this mismatch. However, HKB-SVE has a poor
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FIGURE 6. Comparison of average diagonal loading levels versus M with
N = 120. (a) ρHKB. (b) ρGLC. (c) ρSMF. (d) ρQC. (e) ρLS−TMMSE.
(f) ρMWF−TMMSE.

performance as N increases. This is because the SVE algo-
rithm make the diagonal loading level of HKB more redun-
dant. As shown in Fig. 5 (b), we can see that the series
connection structure between the RAB techniques and SVE
algorithm improves the robustness of those techniques
remarkably. By locally magnify Fig. 5 (a) and Fig. 5 (b),
we note that LS-TMMSE outperform other beamformers,
especially when the number of snapshots is very small,
i.e., less than 40. In addition, in the Fig. 4 (b) and Fig. 5 (b),
the output SINR of QC is very small, which is due to that the
real DOA range is larger than the assumed DOA range of QC.

C. THE IMPACT OF THE NUMBER OF SENSORS
Next, we examine the diagonal loading level of each beam-
former as the number of sensors M increases without any
steering vector mismatch, which is shown in Fig. 6. In this
case, we set the snapshot number N equal to 120. In addi-
tion, to satisfy the constraint of QC given in (27), we let
the uncertainty range of DOA to be |sin θ2 − sin θ1| =
λ/dM , i.e., θ2 = arcsin (1/M ), and θ1 = − arcsin (1/M ).
From Fig. 6, we observe that both the diagonal loading lev-
els of GLC and HKB decrease as M increases. Whereas,
the diagonal loading levels of SMF, QC, LS-TMMSE and

FIGURE 7. Output SINRs of the original RAB techniques versus M with
N = 120. (a) In the absence of mismatch. (b) In the presence of mismatch.

FIGURE 8. Output SINRs of the series connection structure between
RAB techniques and SVE algorithm versus M with N = 120. (a) In the
absence of mismatch. (b) In the presence of mismatch.

FIGURE 9. Output SINRs of the original RAB techniques versus input SNR
with N = 120, M = 20. (a) In the absence of mismatch. (b) In the presence
of mismatch.

MWF-TMMSE have the same variation tendency with M .
Among them the diagonal loading level of QC can be much
larger than other methods when M is larger than 70.

Fig. 7 shows the mean output SINRs of the original RAB
techniques versus the number of sensors M , where Fig. 7
(a) considers the circumstance that the steering vector is
accurately known, and Fig. 7 (b) takes into account the
steering vector mismatch. In this examination, N is set to be
120. As shown in Fig. 7, if the input signal-to-noise ratio
is given as SNRin, then the optimal output SINR will be
estimated as SINRopt(dB) ≈ SNRin(dB) + 10 lgM . There-
fore, when SNRin is constant, SINRopt will increase in log-
arithmic form as M increases. The performance of SCB has
serious degradation in Fig. 7 (a), which is due to the growing
deviation between the sample covariance matrix R̂x and the
true covariance matrix Rx as M increases. Moreover, from
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FIGURE 10. Output SINRs of the series connection structure between RAB
techniques and SVE algorithm versus input SNR with N = 120, M = 20.
(a) In the absence of mismatch. (b) In the presence of mismatch.

Fig. 7 (a), we note that the performance of HKB is worse than
LS-TMMSE, MWF-TMMSE, SMF, and QC, especially
when M exceeds 80. This is because of the decreasing diag-
onal loading level of HKB, as shown in Fig. 6 (a). However,
the curve of GLC declines with the increasingM . The reasons
account for the behavior are the declining trend of diagonal
loading level of GLC and the whole value of diagonal loading
level is very small. Therefore, GLC is somewhat sensitive
to the number of sensors M . We note that the output SINR
of QC is the closest to the optimal value. The reason is
that when the deviation between R̂x and Rx get larger as M
increases, the diagonal loading level of QC appears a expo-
nential growth trend in the iterative procedure. In particular,
when M = 80, the diagonal loading level of QC can reach
5 × 1018, which can effectively compensate the covariance
matrix deviation. However, as the desired uncertainty range
of DOA is becoming smaller with an increasingM , QC is not
robust to the steering vector errors. As shown in Fig. 7 (b),
the performance of all the RAB techniques have great degra-
dation because of the steering vector mismatch. Among them,
LS-TMMSE and MWF-TMMSE seem to be the most robust
methods. This is because the diagonal loading levels of
LS-TMMSE and MWF-TMMSE are relatively large when N
is equal to 120.

Fig. 8 shows the mean output SINRs of the series con-
nection structure between the RAB techniques and SVE
algorithm versus the number of sensors M (N = 120),
where Fig. 8 (a) considers the circumstance that the steering
vector is accurately known, and Fig. 8 (b) takes into account
the steering vector mismatch. Interestingly, by comparing
Fig. 7 (a) with Fig. 8 (a), one can find that when combining
with SVE algorithm, the performance of HKB and GLC will
become better. The reason is the same with the improvement
of the performance of GLC-SVE compared to GLC in terms
of increasing N . As shown in Fig. 8 (b), the series connection
structure between RAB techniques and SVE is highly robust
to the steering vector mismatch, which has been verified
in Fig. 5.

D. THE IMPACT OF INPUT SNR
In this part, we examine the performance of the beamformers
as a function of the input SNR. The number of snapshots
is fixed at 120. Fig. 9 (a) and Fig. 9 (b) show the output
SINRs of the original RAB techiques versus the input SNR
in the absence and in the presence of the steering vector
mismatch, respectively. Fig. 9 (a) reveals that when the true
steering vector is known, all the RAB techniques have the
similar performance to each other, except the SCB. When
there exists steering vector mismatch, as shown in Fig. 9 (b),
the GLC, HKB, QC and SCBmethod have poor performance,
especially the input SNR is greater than 0 dB. And the
LS-TMMSE provides the best performance followed by the
MWF-TMMSE.

Fig. 10 (a) and Fig. 10 (b) show the output SINRs of the
series connection structure between the RAB techniques and
the SVE algorithm versus input SNR in the absence and in
the presence of the streeing vector mismatch, respectively.
Comparing Fig. 9 (b) and 10 (b), we know that when con-
nected with the SVE algorithm, those RAB techniques can be
robust against the increasing input SNR and steering vector
mismatch.

FIGURE 11. Beamformer output SINR with respect to the DOA angle mismatch. (a) Output SINRs of the original RAB techinques.
(b) Output SINRs of the series connection structure between the RAB techinques and SVE algorithm.
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E. THE IMPACT OF DOA ANGLE ERRORS
To further examine how the steering vector mismatch affect
the performance of those RAB techniques, Fig. 11 shows the
mean output SINRs with respect to the DOA angle errors,
where N is set to 60, and M is set to 20. Fig. 11 (a)
and Fig. 11 (b) show the performance of the original RAB
techniques and the series connection structure, respectively.
As shown in Fig. 11 (a), we note that LS-TMMSE is the
most robust technique to the DOA angle mismatch, even
without the series connection structure with the SVE algo-
rithm. Its performance is followed by the MWF-TMMSE.
This is because when the number of snapshots is equal to
60, the diagonal loading levels of LS-TMMSE and MWF-
TMMSE are much larger than other RAB techniques. If con-
structing the series connection between these RAB tech-
niques with the SVE algorithm, as shown in Fig. 11 (b),
the robustness of these techniques are improved remarkably.
Among them, LS-TMMSE-SVE and MWF-TMMSE-SVE
are the most robust ones.

VIII. CONCLUSION
In this paper, we have asymptotically analyzed several
parameter-free RAB techniques such as HKB, GLC, SMF
and QC, and find that the performances of these conventional
RAB techniques have different levels of degradation when
the number of snapshots and that of sensors are relatively
large, i.e., the number of sensors is from tens to hundreds
times as many as the directional signals and the number of
snapshots is from hundreds to thousands times as many as the
number of sensors. To solve this problem, we emphatically
study the problem of GLC, the performance of which may
degrade with an increasing number of sensors, and propose
the NRP-TMMSE algorithm which reduces the impact of
number of sensors on the MMSE criterion by combining
LSE-based or MWF-based noise reduction preprocessing
with truncated MMSE criterion. Meanwhile, to improve the
robustness of these RAB techniques against the steering
vector mismatch, including the DOA errors and the sensor
position perturbations, a series connection structure of RAB
techniques and SVE algorithm is presented. A large number
of simulations have been used to evaluate the performance
of the proposed algorithm. It has been demonstrated that the
diagonal loading level of NRP-TMMSE varies reasonably
with varying number of snapshots and that of sensors, which
makes it robust in all the cases, especially when the number of
sensors is large, and the number of snapshots is very small,
i.e., less than twice as many as the number of sensors. The
simulations also verify that the series connection structure
of RAB techniques and SVE algorithm is very robust to
the steering vector mismatch. Moreover, the performance of
NRP-TMMSE will barely be affected by the estimation error
of the signal number. Thus, in the implementation of this
method, the signal number is not the necessary prior knowl-
edge, where it only needs to be roughly estimated according
to the input signals.

APPENDIX A
VALIDATION OF THE PROPOSED METHOD
To validate the proposed method, the diagonal loading level
of it is analyzed herein when the number of sensor approaches
infinity.

As the theoretical diagonal loading level of GLC is
given in (28), the theoretical diagonal loading level of
NRP-TMMSE can be defined in a similar way, given by

ρo,NRP−TMMSE = νt
εt

γt
, (61)

where, νt = tr(RtTHt )/D0, γt = ‖νtTt − Rt‖
2, and εt =

E{‖R̂t−Rt‖
2
}. In the following, we will analyze the diagonal

loading level of NRP-TMMSE by means of calculating the
order of the three parameters in (61) as a function of M .

Note that if the noise portion of the signal x(n) has been
reduced completely, then the true covariance matrixRt of the
denoised signal y(n) can be written as

Rt =

D−1∑
d=0

σ 2
d ada

H
d . (62)

According to the Cauchy-Schwarz inequality, the parameter
νt can be calculated as

νt =
tr
(
RtTHt

)
D0

=

tr
(∑D−1

d=0 σ
2
d ada

H
d T

H
t

)
D0

≤
MD0

∑D−1
d=0 σ

2
d

D0

= M
D−1∑
d=0

σ 2
d , (63)

therefore, when M →∞, the parameter νt satisfies that

νt = O(M ). (64)

In practice, νt is the mean of the first D0 eigenvalues of Rt .
The parameter γt can be expressed as

γt = ‖Rt − νtTt‖2

= ‖Rt‖
2
− D0ν

2
t , (65)

where,

‖Rt‖
2
=

D−1∑
i=0

D−1∑
j=0

σ 2
i σ

2
j (aia

H
i )(aja

H
j ) = O(M2). (66)

Since γt ≥ 0, it is obvious that

γt = O(M f ), (67)

where f ≤ 2.
As for the parameter εt , we letEt = ‖R̂t−Rt‖, it is obvious

that Et is of the same form with EM , so Et also satisfies the
inequality (34). Accordingly, the order of ε and that of εt as a
function ofM are similar with each other, we can obtain that

εt = O(M2p(log logM )4). (68)
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Specifically, if the number of snapshots is large enough, it is
feasible to choose q > 8 in the boundedness assumptions (36)
[39], then p will satisfies 1/4 < p < 1/2. Since M1/2 <

(log logM )4 < M , we can conclude that

M < M2p(log logM )4 < M3/2. (69)

Finally, by substituting (64), (67), and (68) into (61),
we can draw a conclude that when M increases, the diag-
onal loading level of NRP-TMMSE increases too, i.e., the
tendency of the diagonal loading level of NRP-TMMSE
with an increasingM coincides with the theoretical expected
result. Therefore, NPR-TMMSE will outperform GLC when
M approaches a large value (about from tens to hun-
dreds times as many as the number of directional
signals).
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