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ABSTRACT With the popularity of cloud computing and high performance computing, the size and the
amount of the datacenter develop rapidly, which also causes the serious challenges on energy consumption.
Dynamic voltage and frequency scaling (DVFS) is an effective technique for energy saving. Many previous
works addressed energy-officiate task scheduling based on DVFS. However, these works need to know the
total workload (execution time) of tasks, which is difficult for some real-time tasks requests. In this paper,
we propose a new task model that describes the QoS requirements of tasks with the minimum frequency.
In addition, we define energy consumption ratio (ECR) to evaluate the efficiency of different frequencies
under which to execute a take. Thus, it is possible to convert the energy-efficient task scheduling problem
into minimizing the total ECR. By transforming the problem to the variable size bin packing, we prove that
the minimization of ECR is NP-hard in this paper. Because of the difficulty of this problem, we propose task
allocation and scheduling methods based on the feature of this problem. The proposed methods dispatch the
coming tasks to the active servers by using servers as less as possible and adjust the execution frequencies of
relative cores to save energy. When a task is finished, we propose a processor-level migration algorithm to
reschedule remaining tasks among processors on an individual server and dynamically balance the workloads
and lower the total ECR on this server. The experiments in the real test-bed system and simulation show that
our strategy outperforms other ones, which verifies the good performance of our strategy on energy saving.

INDEX TERMS Data center, energy aware, optimal scheduling.

I. INTRODUCTION
Nowadays, cloud computing provides solutions for scientific
and engineering applications while bringing a very large
number of electricity energy cost and significant carbon foot-
prints at the same time. The computing resources consume
about 0.5% of worldï£¡ï£¡s total power usage [1] and the
economic cost of energy in data centers is about $11.5 billion
in 2010 [2]. In recent years, instead of the previous focus on
system performance, cloud platform designers have begun to
concentrate about the issue of power management due to the
huge power consumption. Reducing the energy consumption
of data centers has even become a primary issue in the design
of modern data center [3].

Dynamic Voltage and Frequency Scaling (DVFS), being
widely applied in modern processors, is recognized as an
effective technique for achieving the tradeoff between system
performance and energy saving. With DVFS, the processor

could dynamically adjust the working frequency, which leads
to different energy consumption. However, ‘‘lower frequency
fewer energy consumption’’ is not always true because
low frequency increases the task execution time as well as
energy depends both on power and execution time. Pervi-
ous works [4]–[6] indicate that there is a certain optimal
frequency for a given processor, under which the energy
consumption of executing a task is minimized.

Generally, letting each processor in a data center works
under the certain optimal frequency will result in an over-
all minimum energy consumption. However, many real-time
tasks have the QoS (Quality of Service) requirements. For
a batch of coming tasks, if we execute all the tasks under
the optimal frequency, several tasks may miss the deadline.
Thus, it is a challenge how to allocate tasks to processors
and set a suitable frequency for each processor to optimize
the total energy consumption. A good DVFS based task
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allocation strategy should minimize overall energy consump-
tion, as long as meeting the QoS requirement, i.e. achieving
tasks in time.

To apply effective task allocation, we need to estimate
the workload of each task beforehand, based on which
the energy-aware schedulers set the proper frequencies for
all the working processors. If the systems could complete
all the tasks before their deadlines, each processor should
work under the optimal frequency; otherwise, the processors
should be set to a higher working frequency to meet their
deadlines [4], [7]. Previous works generally adopt the Worst
Case Execution Time/Cycle (WCET/WCEC) [4], [6]–[10],
the upper bound of execution time under maximum fre-
quency, as the workload of a task. But WCET usually does
not match the real running workload of a task, which results
in a gap between theoretical results and real energy sav-
ings. Therefore, some works [9], [11], [12] make use of
probability-based WCET as a workload to improve effective-
ness of the task scheduling. However, it is still difficult to get
WCET without source code. Even worse, for some long-time
running tasks, WCET is unbounded.

Motivated by this, we define a new task model that uses
theminimum frequency to represent QoS requirement instead
of deadline. That is, if the task is running on the processor
that works upon the required frequency, the QoS requirement
is satisfied. In addition, we propose Energy Consumption
Ratio (ECR) to evaluate energy consumption under different
working frequencies compared with the maximum frequency,
which indicates the energy efficiency in different frequencies.
Thus, the energy-aware task scheduling is converted into
minimizing the overall ECR, which is proved analogous to
but more difficult than Variable Size Bin Packing problem.

In our previous work [13], we proposed two task-to-
processor allocation algorithms to minimize the total ECR
while ensuring frequency requirements of tasks when a set of
tasks arrive. In this paper, we extends these energy-aware task
allocation algorithms. Firstly, we formally prove the hardness
of this allocation problem and analyze the performance of
the two task allocation algorithms in detail. Secondly, we
investigate the runtime task migration problem. During the
running time, when a task finishes, the remaining tasks may
not be running in an optimal situation. We propose a local
task migration algorithm and accordingly adjust frequencies
of related processors to reduce the energy consumption, since
a running task migrating among processors within a server
is quick and low cost. Finally, We improve the real testbed
to evaluate our energy-efficient task scheduling mechanism,
combining with task allocation and migration. Both real
testbed and simulation experiments show that our mechanism
may significantly reduce energy consumption while meeting
the QoS requirement of tasks.

The main contributions of this paper are as follows:
• This paper proposes a general model to express QoS
requirements of real-time tasks, which is more common
than workload-deadline model as well as could easily
represent tasks with unknown workload and deadline.

• This paper proves that the energy-efficient tasks allo-
cation problem (i.e. minimizing ECR) is NP-Hard,
and proposes two effective heuristics to achieve tasks
allocation.

• This paper also investigates the runtime optimization,
and presents a task migration and frequency readjust-
ment scheme to further reduce energy consumption of
the server, on which a task is just finished.

• This paper proposes a prototype system in a real testbed,
and conducts some experiments in different cases com-
pared to other algorithms. Results prove that our method
is more effective.

The rest of this paper is organized as follows. Section II
introduces some related works. Section III presents task
model and ECR model. Section IV presents the task alloca-
tion algorithms to achieve effective task-to-CPU allocation
and local tasks migration schema. In the section V, we eval-
uate the energy-efficient task scheduling mechanism through
simulation and experiments in the real system. Section VI is
the conclusion of the paper.

II. RELATED WORK
DVFS based Energy-efficient task scheduling is widely stud-
ied in recent years. The goal of this task scheduling is to
optimize the energy consumption while meeting the QoS
requirement. Generally, there are two phases, including task-
to-processor allocation and frequency scaling. That is, we
need to assign each task to a processor and set a proper work-
ing frequency to the processor, so that all the tasks could catch
the deadline and the overall energy is minimized. In [8], this
optimal problem is shown to be NP-hard in the strong sense,
if each task has a fixed deadline and the workload is known
beforehand. The authors suggested load balance strategy for
energy saving, and proposed a Worst-Fit Decreasing (WFD)
task allocation scheme to balance the workload and reduce
energy consumption. In [9], the authors studied various task
partitions and DFS schemes to analyze the effectiveness on
energy saving. It is shown that the WFD has good perfor-
mance for off-line task scheduling, while it does not work
well for online task partition.

Actually, when a task is submitted, it is difficult to pre-
cisely estimate the total workload before execution. Previous
works usually utilized deterministic Worst-Case Execution
Time (WCET) to express workload. WCET is the upper
bound execution time that the task is running on the processor
with maximum frequency [14]. Reference [4] proposed an
approximation algorithm with polynomial bounded running
time, which has a 1.283 approximation ratio if the cost of
turning on/off processor is minor and has a 2 approximation
ratio if the cost is non-negligible. Reference [7] presented
an approximate scheme in polynomial complexity on the
basis of the assumption that the higher workload leads to
larger energy consumption in comparison with the lower
workload. Reference [6] proposed 2 algorithms to optimize
the dynamic energy consumption based on DVFS platform,
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where processors share the same frequency. Reference [15]
presented a lightweight energy-aware task allocation algo-
rithm for multi-core processor. Although it does not have
a bounded approximation ratio, it has a good performance
according to the experiment results.

WCET is the upper bound of the workload and it some-
times has a big gap with the actual task execution. Some
research works regarded the real workload as a random vari-
able and follows some probabilistic distributions based on
WCET. Then, the task execution time is divided into bins
that has related probabilities to be consumed. Reference [11]
investigated the task scheduling with uncertain workload and
suggested a new algorithm to unify the intra- and inter-
task voltage scheduling into a single optimization problem.
In [12], the authors studied energy-aware real-time tasks
scheduling with uncertain execution time. Based on probabil-
ity, this energy-aware task scheduling is converted into a load-
balance problem. They designed an algorithm that minimizes
the energy consumption as well as guarantees the perfor-
mance. Reference [16] addressed the Processor and Voltage
Assignment with Probability problem with a probabilistic
algorithm. These works are more realistic, however, we still
need to get theWCET of each task, which actually is not easy
without the source code of the task to be performed.

Most of the energy-aware scheduling algorithm based on
DVFS technique are designed for single server with multi-
processors such as [10] and [17]. Some other works have
been proposed for cluster level energy-aware task schedul-
ing. In [18], the authors estimate the required frequency to
determine the optimal number of servers to provide services.
The idle node will be turned off and the frequency of each
server will be scaled to the estimated value for energy sav-
ing. In [19], the authors investigated the affect of frequency
of server’s power and solved the optimal power allocation
problem under power budget in server farms. In [20], the
authors researched energy saving strategies of real-time tasks
on cluster-based multi-cores. They showed that the minimum
energy on each island is dependent on the the core number
and leakage power. Based on the observation, they gave a
polynomial algorithm to obtain the minimum energy.

III. MODELS AND SYSTEM OVERVIEW
A. REAL-TIME TASK
Nowadays, tasks with unknown execution time and deadlines
are common in data centers, such as web service, Hadoop
task scheduler, this paper proposes a DVFS-based schedul-
ing solution which is different to existing works which
using Worst Case Execution Time (WCET) as workload.
The energy-aware scheduling for this type of tasks makes it
significant for service providers to reduce power costs. A task
is represented as a two-tuple (Ri,Fi), where Ri is the task
release time, Fi is the minimum proportion of frequency to
highest profiling frequency. Fi is the frequency requirement,
which is the QoS requirements of tasks. That is, if the task
is allocated to a processor, the working frequency of the
processor should upon this minimum frequency, so that the

task could be finished in time. The frequency of a processor
indicates the number of clock cycles in a unit time. System
should guarantee the clock cycles allocated to τi in a unit time
are larger than Fi of maximum frequency, in order to meet the
QoS requirement.

We believe that the minimum frequency is a reasonable,
feasible and more general model for expressing QoS require-
ments. Firstly, a task has a fixed number of instructions when
it is allocated to a processor. And the number of instructions
that can be processed per unit time is different, which results
in different execution time at different frequencies. Thus,
this is why the frequency can represent the relative task
execution time. Secondly, While the total execution time of
some long-running tasks is difficult to measure, the minimum
frequency used to ensure the execution of these tasks can be
easily measured. Finally, resource providers mainly meet the
requirement of the volume of CPU, memory, and bandwidth.
Actually the bottleneck of some tasks is not the computing,
users may need a lower frequency to match the bottleneck
of other resources, and avoid wasting the economic cost of
computing resources. Service providers can dynamically or
statically recommend prices for different frequencies so that
the system can use DVFS-based energy-saving strategies to
reduce the economic cost of electricity. Users could require
tasks’ running speed based on the price of services and the
property of tasks. Service providers and users have reached
an agreement on energy-aware scheduling services.

B. ECR MODEL
As we known, most processors are structured by Comple-
mentary Metal-Oxide-Semiconductor Transistor (CMOS).
The energy consumption of CMOS includes dynamic one
Pdynamic and static one Pstatic. According to the previous
studies [7], [21], dynamic part of energy consumption is
approximately proportional to the square of the voltage V
and frequency f . Generally speaking, the voltage is linear
with the frequency [18]. Consequently, the dynamic energy
consumption has a cubic relationship to applied frequency,
i.e. Pdynamic(f ) = α · f 3, where α is a coefficient that is
related to different processor. The static part Pstatic is basic
energy consumption if the processor is running. Therefore,
the processor’s power consumption can be expressed by the
following formula:

P(f ) = α · f 3 + Pstatic. (1)

Under a fix frequency f in t seconds, the energy consumed
of a processor E is P(f ) · t . If one instruction is executed in a
clock cycle, then one unit of energy is consumed; otherwise,
no energy costs. Let Clock cycle Per Instruction (CPI) is one,
i.e. one clock cycle executes one instruction averagely. Then,
the energy consumption of one instruction at frequency f is:
E j = P(f ) · 1

f , where
1
f is the duration of a clock cycle

with frequency f . Let It is the total instruction set of task
τi and the frequency of executing jth instruction be f j, the
entire energy consumption of τi is: Ei(f j) =

∑
j∈It P(f

j) · 1f j .
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According to [15], the total energy can be minimized by
Lagrange Multiplier Method. And it shows that if all the
instructions are running at the same frequency, the total
energy consumption is minimized. Therefore, we set the
same frequency f for each instruction, and the total energy
consumption of execute τi is Ei(f ) = |It | · P(f ) · 1f .

The energy consumption of the task is determined by the
applied frequency and the total instruction number. For a
given task, the instructions are usually fixed. Although the
number of instructions is unknown in our task model, we may
compare the energy consumption of running a certain task
between the two frequencies. Therefore, we apply the energy
consumption ratio (ECR) to express the relative energy con-
sumption of task execution at different frequencies in com-
parison with the maximum frequencies, which is:

r(f ) =
Ei(f )
Ei(fmax)

=
fmax

P(fmax)
· (α · f 2 +

Pstatic
f

). (2)

The fmax ,P(fmax), α,Pstatic are constants to a certain proces-
sor, so the ECR are fixed for a given processor. As shown
in equation (2), function r(f ) is convex, there is an optimal
frequency that brings minimum ECR. In real systems, the
frequencies that a processor runs are discrete. That is, a pro-
cessor could choose a set of working frequencies fmin = f1 <
f2 < · · · < fk = fmax , where fk represent k th available
frequency. For simplicity, fk represent the relative frequency
compared to the maximum frequency. Different frequency
leads to different ECR, there exists an optimal frequency fopt
that has the minimum ECR. For a given processor, it is easy
to get the r(f ) and fopt through offline energy tests, which are
used to achieve energy-aware scheduling.

FIGURE 1. ECR function example.

For clarity, Fig. 1 shows the energy consumption ratio of
a processor under different frequencies, and the frequency
set is {1.20GHz, 1.86GHz, 2.00GHz, 2.13GHz, 2.26GHz,
2.39GHz, 2.53GHz, 2.66GHz, 2.79GHz}. We can see the
ECR of different frequencies is different. When f = 1.5GHz
the energy consumption ratio is minimum if frequencies are
continuous, while in the case of non-continuous frequencies,

the energy consumption ratio can reach a minimum value
under the frequency of 1.86 GHz.

C. SYSTEM OVERVIEW
Our goal is to reduce the energy consumption by energy-
aware task scheduling. The ECR cannot represent how much
energy consumption working at different frequencies could
save, it indicates the energy consumption compared to that
of the maximum frequency, which shows how efficiency
this frequency is. If the task runs at an optimal frequency,
it consume minimum energy to complete this task. Conse-
quently, we should make the tasks working at an optimal
frequency as possible as we can. When there is opportunity
to change frequency i.e. a task is finished, we will apply
task migration within a single server to balance the workload
among processors, so that it may achieve a better performance
for the remain tasks. Although we do not know the execution
time to predict the total energy consumption of the tasks, we
could reduce the energy consumption by settingmore energy-
efficient frequencies in different time segments during the
tasks running time. Here, we briefly introduce the basic archi-
tecture of energy-efficient tasks scheduling in a data center,
which includes the following two parts.

1) ENERGY-AWARE TASK ALLOCATION
Task-to-Processor allocation aims to assign tasks to the avail-
able servers to minimize the energy of the cluster to execute
these tasks, meanwhile satisfying the requirements of tasks
when a set of tasks are submitted to a set of multi-core servers
in a data center. In order to predict the energy consumption of
different configurations, ECR is used to evaluate the energy
consumption of each task and task schedular selects a task
allocation with the lowest energy consumption. However, to
meet the QoS requirement, the frequency to execute a task
should be upon its minimum frequency requirement, so we
need to adjust the frequency of the processor considering both
new coming and existing tasks. Through comparing all the
possible allocations, the incoming task will be assign to one
processor with the minimum overall energy cost.

2) LOCAL TASK MIGRATION
When a task is completed on a processor, the workload on this
processor will decrease. Therefore, we should adjust the fre-
quency to a more energy-efficient level. On the other hand, if
we migrate some tasks to the processor with decreased work-
load, it is possible to scale down the frequency of multiple
processors which will lead to more energy saving. Our main
idea is migrating tasks to another processors that have leaving
tasks, if the total ECR of these two processors decreases.
Through task migration, the total ECR of the related server
may reduce.

IV. ENERGY-EFFICIENT REAL-TIME TASKS SCHEDULING
In this section, we first introduce the task scheduling and fre-
quency scaling on individual processor based on ECRmodel.
Then we explain the energy-aware Task-to-Processor alloca-
tion. Finally, we present the local task migration algorithm.
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A. FEASIBILITY TEST OF TASK ALLOCATION
In this section, we introduce 1) the schedulingmethod on each
servers, and 2) which processors can load the coming tasks
according to the scheduling method, i.e., feasibility test of
task allocation.

Nowadays, the multi-processor architecture is applied
wildly. There are two main scheduling methods in multi-
processor system: global and partitioning-based scheduling.
There is a single ready queue of tasks in the global scheduling
method, tasks will be scheduled to run in the idle processor,
which means the task migration among processors is allowed.
The method can take the full advantage of each processor,
but it is difficult to apply in energy-aware system [22].
The partitioning-based method binds the tasks to only one
processor and the tasks will be executed on this processor
until finishing. However, this method cannot fully utilize
the processor and will causes the wastage of some comput-
ing resource [22], [23]. Therefore, we applied compromised
scheduling method in multi-processor servers. When tasks
come, we allocate the to a processor using energy-aware
task allocation method. When a task finishes on a server,
the scheduler will make a decision to migrate tasks (Task
migration method will be introduced in Section IV-C). This
compromised method is easy to deploy and can take the full
utilization of each processor and let each processor work
under a more energy-efficient frequency.

According to our schedulingmethod, a processor may have
a set of tasks need to be executed. Generally, the real-time
task scheduling on single-processor can be divided into 2 cat-
egories: priority-driven and share-driven. The priority-driven
scheduling is not suitable for the task allocation without task
execution time. That is because the long time running task
will starve a coexisting task on the same processor. There-
fore, we utilize the weighted sharing scheduling, so that the
processor have chance to run any task assigned to it. The
share-driven task scheduling gives each task τi a weight wi,
which expresses the clock cycles in each scheduling period,
by which the execution of each task is proportional to the
weight wi. To improve the resource utilization, the entire
weight of all tasks on the same processor is 1, i.e.

∑
τi∈Tc wi =

1 where Tc is a set of tasks that running on this processor c.
To optimize the energy consumption, the weight of each task
will be adjusted when a new task is assigned to this processor.

We will then describe the method how to minimize the
energy cost by weight setting. Assume a task τi is running
with the weight wi on a processor at the frequency fi, this task
essentially is running at the frequency of wi · fi. To guarantee
the QoS requirement, we need to ensure the clock cycles
of each task is more than the clock cycles under required
frequency in a scheduling period, i.e.,

wi · fi ≥ Fi

Therefore, for a given processor and related assigned tasks,
the objective of energy-aware task scheduling within a
processor is to optimize the total ECR, which can be

formalized as:

min
∑
τi∈Tc

r(fi)

s.t. wi · fi ≥ Fi ∀i ∈ |Tc|∑
τi∈Tc

wi ≤ 1.0

wi ∈ [0, 1]

fi ∈ {fmin, . . . , fmax} (3)

where r(f ) is the energy consumption ratio (ECR), fi is the
frequency to execute task τi, Tc is the set of tasks assigned
to processor c and |Tc| indicates the task number of the set.
To optimize the overall energy consumption, both weight and
frequency should be carefully selected, which is non-trivial.
In addition, although modern processors may switch working
frequency quickly, there still some performance loss and
energy cost of such frequency switch. Consequently, we never
change the working frequency of a processor if no incoming
and departure tasks, we only adjust the correspondingweights
of each task to satisfy their QoS requirements. Since each task
should meet the constraint wi · fi ≥ Fi, so we have:∑

τi∈Tc

wi · fi ≥
∑
τi∈Tc

Fi (4)

Given a set of tasks running on processor c with same fre-
quency f c, i.e., fi = fj, ∀i, j ∈ |Tc|, then working frequency
f c should satisfy the following equation:

f c ≥
∑
τi∈Tc

Fi s.t. f c ∈ {fmin, . . . , fmax} (5)

After determining the frequency on the processor, the min-
imum required weight of each tasks can also be determined
by equation (4), which means that τj’s weight is

Fj∑
τj∈Tc

Fi
.

Theorem 1: Given a task with known WCEC wj and dead-
line dj, let the utilization uj be uj =

wj
fmax ·dj

. If we set tasks’
minimum requirement frequency as Fj = uj · fmax , these tasks
can be finished before their deadline under our scheduling.

Proof: Assume that all the tasks arrive to a processor c
at the same time 0. Let tasks be scheduled by our scheduling
method on this processor. According to the equation (6), we
have f c ≥

∑
τi∈Tc Fi =

∑
τi∈Tc (ui · fmax). In a unit time, each

task τj can get f c ·wj, wherewi =
Fj∑

τj∈Tc
Fi
=

uj∑
τj∈Tc

ui
cycles.

So the unit time consumed from the arrival of task τj to the
end of tauj is:

ej =
wj

f c · wj

≤
wj

(
∑
τi∈Tc ui · fmax) ·

uj∑
τi∈Tc

ui

=
wj

fmax · uj

=
wj

fmax ·
wj

fmax ·dj
= dj
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Therefore, the execution time of task τi is less than the
deadline, i.e., tasks can be finished before deadline (arrival
time is 0).

Beside, we want to let the processor work under a more
energy-efficient frequencies. We already know that if we
run a task using the frequencies with lower ECR, the task
will consume less energy. On the promise of ensuring the
requirement of each task on the same processor, we want to
let processor work under a more energy-efficient frequencies,
i.e., with lower ECR. According to the equation (2), the
function of ECR is convex, there is an optimal frequency
fopt that bring minimum ECR. When the frequency is lower
than fopt , the ECR declines with the increase of frequency.
When the frequency is larger than fopt , the ECR ascends
with the increase of frequency. Therefore, when theminimum
required frequency according to equation (6) is smaller than
fopt , we let the processor run under optimal frequency fopt .
While the minimum required frequency is larger than fopt ,
we set the running frequency to be the smallest frequency
that larger than the minimum required frequency. Thus, the
running frequency on each processor is set to be:

f = max(fopt ,
∑
τi∈Tc

Fi), ∀f ∈ {fmin, . . . , fmax} (6)

Assume a task can be allocated to a processor c, the fre-
quency of this processor should satisfy the equation (6) i.e.
f ≥

∑
τi∈Tc Fi+Fn, where τn is the new task and Tc represents

the set of tasks allocated on processor c. The equation can be
changed as follow:

f −
∑
τi∈Tc

Fi ≥ Fn (7)

As long as the frequency f (f ≤ fmax) of processor c satisfies
the above equation, the new task can be allocated to this
processor and executed under frequency f . We call the value
of Fi as Capacity Requirement for task τi. To describe the
value of remain capacity of a processor to satisfy the capacity
requirements, we define the Remain Capacity of processor c
at frequency f as:

cap(f , c) = f −
∑
τi∈Tc

Fi (8)

When a task comes, these processors whose remain capacities
of max frequency are lager than task’s capacity requirement
can load the coming task.

Based on the above inter-processor task scheduling, we
now present the tasks allocation strategy among all processors
to optimize the overall energy consumption.

B. ENERGY-AWARE TASK ALLOCATION
1) PROBLEM DEFINITION
The problem is to find a feasible task-to-CPU allocation
for coming tasks that brings minimum energy consumption
to complete these tasks. Because the more energy efficient
frequencies a task runs, the less energy it will consume.
From this point, we minimize the total ECR to reduce the

energy consumption, so we call energy-aware method Opti-
mal Energy Consumption Ratio (OECR). We want to address
the online task allocation problem based on the Energy Con-
sumption Ratio, which is describe as follow:

Given a set T with N tasks, whose frequencies is rep-
resented by (F1,F2, . . . ,FN ), and a set of homogeneous
servers, and each server has c processors whose frequencies
can be adjusted independently in l discrete frequencies levels.
Each frequency level f has different remain capacity and
Energy Consumption Ratio (ECR) r(f ). The objective of task
allocation is find a task-to-processor assignment in the server
set, such that: 1) the active number of servers is minimum,
and 2) the total energy consumption ratio of the system is
minimized.
Theorem 2: The online task allocation problem based on

the Energy Consumption Ratio is NP-hard.
Proof: If we only minimize the total ECR of tasks

and the number of processors are unlimited, the problem can
be transformed into the following form: there is unlimited
number of processors which have the different size (remain
capacity), and the size set is finite. Different remain capac-
ities of processors have different cost. The objective of the
problem is to allocate a set of items (tasks) to minimize the
total cost. This problem is equivalent to the Variable Sized
Bin Packing, which is NP-hard [24].

If we only minimize the number of active servers, we can
let all the servers run at the maximum frequency to load the
tasks. Therefore, the size of each server is fixed, the objective
is to minimize used number of bins (active servers), this
problem is equivalent to the bin packing problem, which is
NP-hard [25].

Therefore, the online task allocation problem based on
ECR is NP-hard.

2) TASK ALLOCATION ALGORITHM
The random release time of tasks need us to develop effective
online algorithms to schedule the tasks for energy saving
instead of offline algorithms. System should rapidly deal with
the requests for avoiding influencing the task allocation in
next period, and the time complexity of allocation algorithms
should be bounded. However, as shown above, the minimiza-
tion of ECR is NP-hard in the strong sense. So we design
a lightweight algorithm to allocate tasks efficiently. In our
settings, we allocate a batch of incoming tasks in a unit time.
We present two heuristics for a single task allocation and a
batch of tasks allocation respectively. The main idea of these
two algorithms is to use less active servers and to balance the
workload among active servers.

If one task submitted, our allocation algorithm checks
whether we could load it at the optimal frequency. The
increment of total ECR caused by this task is minimized, if
the task could be loaded at optimal frequency. We fully use
the optimal frequency fopt of active server to execute tasks,
whichwill minimize the energy consumption of running these
tasks. The algorithm for one task allocation is shown in
the Alg. 1.
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Algorithm 1 Minimum Energy Consumption Ratio
Increment (MECRI)
Input:

Incoming task (Ri,Fi)
Output:

The processor and the optimal frequency loading that
new task (c, fopt );

1: if maxc∈C cap(fopt , c) >= Fi then
2: find the first fit processor c
3: return (c, fopt )
4: end if
5: if Fi > maxc∈C cap(fopt , c) and Fi <=

maxc∈C cap(fmax , c) then
6: Cm = {c|Fi < cap(fmax , c)}
7: for c in Cm do
8: θr (c) = (|Tc ∪ τi|) · r(f ′)− |Tc| · r(f )
9: end for
10: The processor with least ECR variation θr (c) is

selected
11: return (c, f ′)
12: end if
13: if Fi >= maxc∈C cap(fmax , c) then
14: The task is allocated to processor c on a new server
15: return (c, fopt )
16: end if

For an incoming task, the Alg. 1 first compares its capac-
ity requirement to the maximum remaining capacity of the
optimal frequency fopt in the processor set C . If this max-
imum remaining capacity is larger than the task’s capacity
requirement, we use the first fit strategy to select a processor
of τi (line 1–4). Otherwise, if the maximum remaining capac-
ity of fmax satisfies τi’s capacity requirement, the algorithm
calculates the each corresponding increment of ECR when
the task is allocated to a processor. The algorithm selects the
processor for the task that will bring the minimum increment
of ECR. The frequency f ′ (line 7) is determined to be the
minimum frequency guaranteeing the requirements of all the
tasks on processor c, including the particular task τi. f ′ can
be easily calculated by equation (9), as we record the sum of
ECR for each processor. The frequency of tasks on the same
processor is same, so are the ECRs of these tasks. The total
ECR on the processor is equal to r(f ) · |Tc|. The algorithm
calculates the total ECR for each processor, which can reflect
the number of tasks running on it. The processor having
more tasks or working under higher frequencies than fopt will
obtain the higher total ECR, which means that the processor
has higher workloads. A new task may bring more increment
on ECR on this processor, which may lead to the processor
working under inefficient frequency for a long time. If the two
processors have the same ECR under current frequency, the
algorithm tends to allocate the processor with less tasks. If the
total capacity requirements are stored using suitable data
structure, the difference of ECR under two frequencies can
be calculated in O(1). Therefore, the total time complexity in

this step is O(|C|), where |C| is the number of processors in
active servers. If there is no processor can load this coming
task, the algorithm will start a new server to load this task.
As a result, the total time complexity of Alg. 1 isO(|C|). After
selecting the processor for the coming task, we can change
the frequency and recalculate the weights of tasks on this
processor according to the frequency requirements.
The number of tasks coming in a unit time is usually larger

than one, e.g. the MapReduce job usually exposes many sub-
tasks at a time. As we describe above in this section, the
problem of task-to-CPU allocation to minimize the total ECR
is NP-hard in the strong sense. It is impossible to come up
with an efficient online algorithm to find the optimal solution.
An alternative is to sort the tasks first and use the Alg. 1 to
allocate tasks one by one. This strategy is based the First
Fit Decreasing (FFD), which is shown that FFD uses the
11
9 OPT+1 bins (servers) to load the items (OPT is the number
of bins used by the optimal solution). The time complexity is
still highwhen there are a larger number of tasks to be allocate
in a short time. The datacenter usually has to deal with the
scenario that a large number of tasks come in a short time.
If we allocate tasks one by one using Alg. 1, then the algo-
rithm would have O(|N | log |N |+ |N | · |C|) time complexity,
where |N | is the number of tasks coming in a unit time.
This time complexity is intolerable for large size datacenters
and may spend much time to assign tasks, which may in
turn affect the allocation of in subsequent rounds. For better
scalability, we propose a lightweight algorithm to allocate
a batch of tasks as shown in Alg. 2. The main idea is to
allocate the task with small requirement onto the processors
whose optimal frequency can load them by Best Fit strategy,
and load the big tasks using the Worst Fit Dereasing (WFD)
strategy. The Best Fit strategy could allow more tasks to
work under the optimal frequency and reserve large capacities
under the optimal frequency for tasks with high requirements.
The WFD strategy can balance the workloads, which in turn
leads to good performance in energy saving [8].

The Alg. 2 sorts the set of tasks in a non-decreasing order
of capacity requirements (line 1). In the first phase (line 2–4)
of the algorithm, it uses the optimal frequency to load the
new tasks. The algorithm allocates the tasks form the first
task and allocate them to the last processor in C whose
remaining capacity of optimal frequency is larger than task’s
requirement (Best Fit strategy). In this phase, because the
processor set have been sorted, we can find the best processor
for a task inO(log|C|) time complex by binary search. There-
fore, the time complexity of first phase is O(|C| log |C| +
|T | log |T |+|T | log |C|), whereO(|C| log |C|),O(|T | log |T |)
and |T | log |C| are the time complexity of task sorting, pro-
cessor sorting and task allocation.

In the second phase (line 5–15), the algorithm utilizes
the Worst Fit Decreasing (WFD) strategy to allocate the
remaining tasks in the set, which first allocates the task with
highest requirement. As the tasks have been sorted in the
first phase, we only need to allocate the remaining tasks
from the head of the sorted set. We sort the set of processors
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Algorithm 2 Power-Aware Task Allocation for Batch Tasks,
PTAB
Input:

A batch of tasks T
Output:

Task partition
1: sort T in a non-decreasing order of Fi, where τ0 has

minimum requirement
2: C = {c|cap(fopt , c) > F0}
3: sort C in a non-decreasing order of cap(fopt , c)
4: allocate the tasks using Best-Fit heuristic until the tasks

can be allocated under the optimal frequency fopt and
remove the allocated tasks

5: Let Tr be the remain tasks that have not allocate in the
step 4

6: C = {c|cap(fopt , c) > Fi}, where τ0 has minimum
requirement in remain tasks

7: sort C in a non-decreasing order of Nc · r(f )
8: for k = |Tr | to 1 do
9: if the first log|C| processors cannot hold Tr [k] then
10: start an idle server
11: insert all processors into the front of C
12: end if
13: allocate Tr [k] to the first processor c in first log|C|

processors could load τi in C
14: insert processor c into correct position using binary

search
15: end for

in a non-decreasing order of total Energy Consumption
Ratio (ECR), which is the product of task number and ECR
of current frequency on processor c. We sort the processor
according to the total ECR instead of the remain capacity
of maximum frequency. In the second phase, the algorithm
allocates form the end of task set. When allocating a task, the
log|C| first processors with least total ECR will be tried to
load the task. The task will be allocated the first processor
which can load it in the log |C| processor. If these log |C|
processors cannot load the tasks, a new server will be started
and the processor will insert into the front of processor set C .
After allocating the biggest task, the capacity of the selected
processor will reduce and the total ECR will increase. The
processor could be inserted into the correct position in the
set of processors by binary searching (line 9–14). The cost of
maintaining the sorted list of processors is O(log |C|). And
the time complexity of this phase is sum of cost in sorting
the processors, allocating each task by trying log|C| first pro-
cessors and maintaining the order of processor set, which is
O(|C| log |C|+ |T | log |C|+ |T | log |C|). Therefore, the total
complexity of Alg. 2 is O(|T | log |T | + 2(|T | + |C|) log |C|),
which is more lightweight.

C. LOCAL TASK MIGRATION
When a task finishes, the total ECR of current partition of
tasks may not be optimal. The processor having tasks leave

may have more remain capacity to load the task on processors
and make the total ECR of these processors become lower.
Although the ECR can describe the relative energy consump-
tion in some degree, it can not represent how much energy a
task consume under different frequencies. A task may expe-
rience some segments under different frequencies, the real
total energy consumption of a task is equal to the sum of
energy consumption in all the segments the task experiences.
Unfortunately, we do not know the accurate length of each
segments beforehand i.e. the execution time. On the other
hands, the minimum ECR of the whole cluster does not mean
the minimum energy consumption. This problem is caused by
the unknown execution time essentially.

As shown in the Fig. 2, there are two tasks τ1 and τ2 running
on c1 and c2 respectively in the original task partition. Their
ECRs under the current frequencies are both equal to 0.7.
Then a new task τ3 comes, τ3 can be allocated to c1 or c2,
which brings 0.7+ 0.9× 2 and 0.7+ 0.8× 2 of ECR respec-
tively. Due to smaller increment of ECR, τ3 will be allocated
to c2. After a short time, τ1 will finish and the c1 will be idle.
However, the processor c2 will still work under a less effective
frequency for two tasks. If we allocate τ3 to c2, τ3 will be
executed under an effective frequency after τ1 finishes. The
second allocation may bring less energy consumption that
the first one. Unfortunately, we do not exactly know when
the the tasks finish, so we can not calculate exact energy
consumption of different allocations. However, if we migrate
the task τ3 to c1 when τ1 finishes in the first allocation, the
total energy can be reduce.

To amend the negative effectiveness of original task allo-
cation, we apply task migration strategy to adjust the task
allocations for more energy saving. When a task finishes on
a processor, the total capacity requirement of tasks on this
processor will reduce, so the frequency of this processor has
the chance to be scaled down for reducing total ECR. But
the frequency on the other processors could not be scaled
down because the capacity requirements have no changes.
Some long tasks on the other processors have to be execute
under less effective frequencies for a long time. If we migrate
some of tasks to the processor that a task completes just now,
the total ECR may be decreased. However, the migration
between different servers will cost much time and resource
wastage(eg. memory copy, network transmission and context
recovery). Besides, the optimal migration is also difficult to
be applied, it is not a wise choice to migrate the tasks between
different servers. Thanks to the multi-processor architecture,
themigration between the processors on the same server takes
negligible costs. Meanwhile, the number of processors and
tasks on a server are usually not large, so the migration on the
host is a feasible strategy for task scheduling and we propose
our method of task scheduling in the Alg. 3.

To avoid the frequency invokes of migration due to the
completion of tasks in a short time, we set a threshold. If the
time interval of two migration invokes is less than the thresh-
old, the task scheduler scales the frequency according to
equation 8 but notmigration. Themigrationwill be conducted
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FIGURE 2. Allocate a task τ3 in a two-processor system at time t1. τ3 is allocated to c2 because of the smaller sum of ECR. However, the real energy
consumption in (b) may be less than the real energy consumption (c). If we move τ3 from c2 to c1 and adjust frequencies at t2 like (d), more energy may
be saved.

until the time interval between current time last migration is
large than the threshold. Tasks completions may happen in
some processors, so the input of Alg. 3 is the set of processors
that have task completion. The algorithm divides the proces-
sors into two sets i.e. the tried set Ct and untried set Cu. The
tried set is the processors that have be tried to migrate tasks
to other processors or have task leaving, while the untried set
stores the untried processors. Our algorithm first sort the set
Ct in the non-decreasing order, and tries themigration of tasks
according this order of processors. The algorithm selects the
processor that have the maximum sprocessor as the source
processor and tries to migrate a task to target processor.
If the migration will brings the decrease of total ECR of
the two processors, the processor will select as a candidate
(line 9–13). After comparing all possible migrations to the
processors in tried set, the algorithm will select the processor
that bring maximum decreasing on ECR to migrate the task
and add the processor c to the set Ct . This algorithm tries
migrate the tasks on the processor with high total ECR to
‘tried processors’ to lower the total ECR. The processor with
high total ECR and the task with high frequency requirement
will be tried to migrate with a high priority. By doing so, we
want to lower more total ECR.

V. EVALUATION
In this section, we evaluate the performance of our strategies
on energy saving in clusters in real testbed and simulations,
respectively. The results show that our strategies can achieve
significant energy savings.

FIGURE 3. Prototype system architecture.

A. PROTOTYPE SYSTEM
The overall structure of the system shown in Fig. 3. This
article uses the traditional master-slave frame structure, and
every slave server is connected to the master node.

The system is realized with C++ in Linux, consisting
of two main components, the master controller and server
controllers. The master controller mainly contains the task
receiving module, the task information module, the task
assignment module and communication module.

According to requests that users submit such as CPU fre-
quency, memory space, network bandwidth, disk size and
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Algorithm 3 Local Task Migration
Input:

The processor cf where has completed a task just now
Output:

The migration solution.
1: Cu = C − cf
2: put cf into a tried set Ct
3: for k = 1 to |C| − 1 do
4: select a untried processor q with maximum value of

r(c, f ) · |Tc|
5: sort tasks Tc on c in non increasing order
6: for each task τi ∈ Tc do
7: max = 0
8: for each processor q ∈ Ct do
9: sa indicates the ECR sum of processor c and q
10: if Fi < cap(c, fmax) then
11: sb indicates the ECR sum of processor c and q

if task τi migrates from c to q
12: else
13: sb to be the maximum value
14: end if
15: if sa − sb > max then
16: max = sa − sb, and store q
17: end if
18: end for
19: put processor c into Ct
20: if max > 0 then
21: migrate τi from c to q
22: end if
23: end for
24: end for

other information, the master controller deploys tasks to the
appropriate server’s processor and synchronously updates
data in the cluster based on the task allocation algorithm.
This paper focuses on the processor resources, in each server,
there are a number of modules controlling task execution,
frequency adjustment, and task scheduling of processors.

B. REAL TESTBED RESULT
As shown in Fig. 4, we implemented our algorithms in the
real system to evaluate the performance of our strategies
on energy conversation. We use three Dell R720 servers to
build our experiment system. The R720 server has two Intel
Xeon processors and the frequency of each processor can
be adjusted independently from 1.2 GHz to 2.1 GHz, plus
a turbo mode. The ECRs of each frequency are obtained by
offline experiments. The details of server R720 are shown
in the Tab. 1. To evaluate the energy consumption precisely,
we turn off the hyper-threading on each server. We use the
Aitek Power Analyzer AWE21011 to record the power con-
sumption, according to which the energy consumption can be
calculated.

1http://www.aitek.tw/BIG5/awe2101.asp

FIGURE 4. Real system architecture.

TABLE 1. Details of Dell R720 server.

We use NAS Parallel Benchmarks 3.3 (NPB) to generate
the testing tasks, which is widely used to simulate the real
cluster tasks. The tasks are generated with different classes
of NPB 3.3 for outputting with different execution time.
Meanwhile, the arrival time of tasks are generated following
a Poisson Distribution with average arriving interval in one
minute.

The mechanism mentioned in this paper is called OECR
(Energy Consumption Ratio), that is, when there is only one
task in a unit time, the single task allocation algorithm is
called, meanwhile batch task allocation algorithm is called
when there aremultiple tasks between time units.When a task
is over, system uses the task migration algorithm to adjust
the CPU frequency and tasks., we also realize a variety of
traditional algorithms for comparing with the strategy pro-
posed in this paper, such as First Fit Decreasing (FFD), Worst
Fit Decreasing (WFD), RESERVATION (RES) [3], Modified
Best Fit Decreasing (MBFD) [5].

Firstly, we compared the efficiency of the task migration
algorithm on one single server. In the benchmark set, a set of
task sequences are randomly generated, and the arrival time
of tasks obeys the PoissonDistributionwith an average arrival
rate of 5/min.

Here theOECR andOECRv2 represent the strategies using
and without using the local migration algorithm, and com-
pared with FFD algorithm as shown in Fig. 5 (a) below.
It shows that the migration of tasks plays a certain effect for
energy-saving. With increasing of the task number, the effect
of migration on energy savings is more obvious.

At the same time we also compare the energy saving effect
of the single task allocation algorithm (MECRI) and the batch
task allocation algorithm (PTAB) with the energy saving
effect of FFD in the case of a batch of tasks arriving at the
same time, As shown in Fig. 5 (b), we compare the results in
cases of different task numbers. It shows that when the task
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FIGURE 5. Energy saving effect in a single server. (a) Task migration.
(b) Single task vs. Batch tasks.

number is relatively small, the two algorithms lead to good
results, that’s because they can have tasks working in more
energy-efficient frequencies, while the FFD algorithm may
focuses tasks on some processors, increasing the total time the
server completes this tasks. In addition, tasks is not working at
the best energy-saving frequency. When the number of tasks
are large, single task allocation algorithm performs better
than the batch algorithm.

FIGURE 6. Energy saving effect in three servers. (a) Energy saving effect.
(b) Different arriving ratio.

In the real environment of three servers, we compare the
effect for energy saving at different arrival rates. The task
arrival time and frequency requirements are still the same.
The energy-saving effect of each algorithm in the actual
environment is shown in Fig. 6. Fig. 6 (a) shows the difference
of the energy consumption of above algorithms with the
FFD algorithm. It can be seen that the algorithm proposed
in this paper achieves the best results in cases of different
task numbers. In Fig. 6 (b), we compare the energy efficiency
of the OECR algorithm with respect to the FFD algorithm
at different task arrival rates and task numbers, in the best
case, our algorithm can save more than 15% energy. With
increasing of the number of tasks and the arrival rate, how-
ever, energy-saving effect has declined compared with FFD
algorithm. It may due to the large number of arrival tasks, the
server almost keeps in a full load state, resulting in reduction
of the static power energy consumption of the server.

In addition, we also compare loaded task numbers using
different algorithms. In the real environment, the number of
servers is limited, when the number of tasks, the arrival rate

FIGURE 7. Proportion of unaccepted task number in different arriving
ratio. (a) 100 Tasks. (b) 200 Tasks.

and the frequency requirements vary, the task number server
can host is different using different algorithms, because the
minimum frequency requirements of tasks needs to be guar-
anteed. It’s shown in Fig. 7. We can see that FFD algorithm
can host the most tasks, meanwhile our proposed strategy
performs better thanWFD andMBFD in terms of the number
of tasks accepted.

C. SIMULATION RESULT
We perform some simulations to evaluate our algorithm in
the large-scale DC because the complexity of a actual large
cluster. The simulation involves different scales of clusters,
different task numbers and different arriving rates. We model
the R720 server whose details are shown in Tab. 1 to build
the simulated clusters. What’s more, we also compared the
execution time of our method with other algorithms, where
we generate the arriving time and the minimum frequency
requirement as the pattern in the real environment.

FIGURE 8. Energy saving effect and active server number when erver
number is unlimited. (a) Energy saving effect. (b) Active server number.

In Fig. 8, this paper compares results of different algo-
rithms in terms of energy saving and the servers usage in the
case of low arrival rate. The time distribution of task arriving
in Fig. 8 satisfies the Poisson Distribution with an average
arrival rate of 10/min, and the maximum frequency of the
task execution time is a random value between 60s to 3600s,
where the task executing time is mainly used to simulate the
execution of tasks.

In Fig. 8 (a), we can see that the task allocation strategy
and migration strategy proposed in this paper can save about
20% energy, which is better than other allocation strategies.
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As the number of tasks increases, energy efficiency of our
strategy is relatively stable. In Fig. 8 (b), we compare the
number of servers used of different algorithms in cases of
different number of tasks, the FFD algorithm uses the least
number of servers, but the performance of FFD is poor in
terms of energy savings. The FFD algorithm focuses the
task on a small number of servers resulting in high load on
these servers, which leading to a certain amount of energy
waste. With the increase in the number of tasks, the number
of servers used has little change, mainly because the task
arriving rate is low in our experimental settings. When some
tasks arrived, previous tasks has been completed, so that these
tasks can be assigned to active servers.

FIGURE 9. Different task arriving ratio when erver number is unlimited.
(Total task number is 20000). (a) Energy saving effect. (b) Active server
number.

We also experimented with a high task arriving rate and
results are shown in Fig. 9. It can be seen that our proposed
strategy achieves the best energy saving effect at different
task arriving rates. However the energy saving effect has been
reduced the task arriving rate increases compared with the
FFD algorithm. The main reason is the difference of numbers
of servers used between different algorithms and FFD results
become obvious, as shown in Fig. 9 (b), the proportion of
static power consumption of the server itself increases. On the
other hand, the number of servers used becomes flattened
with increasing the task arriving rate. As can be seen from
the comparison in Fig. 8 (b) and Fig. 9 (b), the task arriving
rate has a great influence on number of servers.

FIGURE 10. Energy saving effect when erver number is limited.
(a) 30 Servers. (b) 65 Servers. (c) 100 Servers.

At the same time, we compared energy saving effect of
different algorithms when the number of servers is fixed, as
shown in Fig. 10. The number of tasks performed among
clusters of different sizes is same, but different the task

arriving rate, 10/min in (a), 20/min in (b) and 40/min in (c).
We can see that the algorithm proposed in this paper has
achieved better energy saving effect in clusters of various
sizes.

VI. CONCLUSION
In this paper, we study the energy-efficient task scheduling,
where the task execution time is unknown. We define a novel
task model to describe the tasks and the energy consumption
ratio to describe the effectiveness of different frequencies.
We prove that the task allocation is similar to the variable
size bin packing problem and is more complex than it. Then,
we present two effective heuristics to allocate tasks. We also
design a local task migration algorithm to improve the per-
formance when a task finishes. Finally, this paper introduce
a prototype system to evaluate our strategies, which obtains a
good performance in terms of energy saving.
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