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ABSTRACT Le Havre Port Authority is putting into service a multimodal hub terminal with massified
hinterland links (trains and barges) in order to restrict the intensive use of roads, to achieve a more attractive
massification share of hinterland transportation and to provide a river connection to its maritime terminals
that do not currently have one. This paper focuses on the rail–rail transshipment yard of this new terminal.
In the current organizational policy, this yard is divided into two equal operating areas, and, in each one,
a crane is placed, and it is equipped with reach stackers to enable container moves across both operating
areas. However, this policy causes poor scheduling of crane moves, because it gives rise to many crane
interference situations. For the sake of minimizing the occurrence of these undesirable situations, this paper
proposes a multi-agent simulation model including an improved strategy for crane scheduling. This strategy
is inspired by the ant colony approach and it is governed by a new configuration for the rail yard’s working
area that eliminates the use of reach stackers. The proposed simulation model is based on two planner agents,
to each of which a time-horizon planning is assigned. The simulation results show that the model developed
here is very successful in significantly reducing unproductive times and moves (undesirable situations), and
it outperforms other existing simulation models based on the current organizational policy.

INDEX TERMS Le Havre seaport, container terminal, multi-agent system, engineering strategy, crane
interference, modeling and simulation.

I. INTRODUCTION
In recent years, the container has become an impor-
tant asset in multimodal cargo transportation. It has con-
tributed extensively to the sustainable development of
supply chains by improving the transportation conditions
of goods and handling operations. Furthermore, container
flow around the world has undergone exponential growth,
especially in recent decades, increasing from 120 million
TEU (twenty-foot equivalent unit) in 1994 to 679 million
TEU in 2014 [1]. However, in 2009, a slight decline was
recorded in world-wide container port traffic as a result of
the economic crisis in 2008. This fast growth containerized
cargo is due to the revolution in global trade and the rapid
development of industrial sectors, especially within econom-
ically strong and stable countries.

On the other hand, the main concern of logistic service
providers is to ensure smooth and secure transportation for
the container at a low price. In addition, door-to-door trans-
portation for the increasing traffic of containers shipped by
sea requires a reliable and efficient port-hinterland connec-
tion (by road, rail and river). In general, the road-only culture
predominates [2]. The attractiveness of this mode arises from
its flexibility, reliability and reasonable cost. Recently, some
ports have sought to promote massified transportation in
order to reduce greenhouse gas emissions [3], which are a
drawback of road transportation. In line with this vision of
transportation, Le Havre Port Authority is putting into service
a multimodal terminal linked only with massified hinterland
connections in order to limit the heavy use of roads and to
improve its massification share of hinterland transportation,
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which is currently much lower than that of its major com-
petitors in the northern European range (Rotterdam, Ham-
burg, Antwerp, Bruges-Zeebrugge andBremen) [4]. This new
multimodal terminal (MMT) acts as a hub for several mar-
itime terminals (MTs) of Le Havre port through an efficient
scheduling of the intra-port transfer activity of containers by
rail shuttles.

Operations management and resource allocation within
container terminals are laborious and complex tasks. Indeed,
the dynamic and distributed nature of these platforms,
the diversity and complexity of handling operations, and the
uncertainty and lack of information needed to control the
containerized flow complicate the decision-making process.
Handling processes are governed by a set of time and space
constraints which aim to optimize the use of the available
resources in order to derive maximum benefit and to guaran-
tee the container’s delivery time. However, the annual growth
in container flow causes many problems for container ter-
minals, mainly the avoidance of landside congestion and the
receipt of new container shipswith high capacity. To deal with
these problems, container terminals must adopt an operating
system that allows efficient scheduling of handling tasks in
order to speed up container processing.

A common issue in terminal operating areas is crane inter-
ference. In real-world yards, container handling cranes move
on the same track to carry out non-preemptive jobs on trans-
port vectors. A job involves handling a container from a given
area on a transport vector. Crane arms cannot be crossed,
that is, they cannot perform adjacent jobs simultaneously,
and a minimum safety distance must be kept at all times.
If an interference situation emerges, one crane must wait for
the other to move away before achieving its remaining jobs.
Much research in recent years has addressed this problem
with various non-crossing constraints [5], [6]; despite this,
little attention has been paid to gantry cranes in rail yards.

In the present paper, we propose a simulation model for
the rail yard of the MMT. This model is based on two planner
agents, to each of which a time-horizon planning is assigned.
Additionally, we focus particularly on reducing unproductive
moves and on minimizing undesirable situations, such as
those inwhich cranes arewaiting (unproductive times). In this
way, we design an improved scheduling approach for gantry
crane interference problem. This approach contains a novel
partitionmechanism for the rail yardwith a new configuration
that eliminates the use of reach stackers involved in the
container exchanges between crane areas. Using a numerical
study, the developed model is evaluated and compared to
other existing simulation models for the MMT. The sim-
ulation results show that our model is very successful in
significantly reducing unproductive times andmoves, thereby
improving the productivity of rail gantry cranes.

The rest of the paper is organized as follows. Section II
provides a brief description of related works. Section III
describes the multimodal terminal of Le Havre seaport. Sec-
tions IV describes the design of the proposed multi-agent
based simulation model. Section V presents the scheduling

approach for gantry cranes. The process of model imple-
mentation is illustrated in Section VI. This is followed in
SectionVII by a discussion of the simulation results. The final
section summarizes this paper and highlights future work.

II. RELATED WORKS
Modeling is a concrete or conceptual representation that
makes a complex and dynamic system easier to under-
stand [7]. Various modeling techniques have been used to go
from the informal description to the formal specification of
a given system (e.g. object-oriented modeling, agent-based
modeling, Petri net, cellular automata, etc.). On the other
hand, the simulation allows the modeler to check whether
the designed model reflects the expected behavior of the
studied system as accurately as possible. Moreover, it offers
the possibility of ascertaining the reaction of the simulated
model to a given action [8].

Bielli et al. [9] developed an object-oriented simulation
model for the container terminal of Casablanca in an attempt
to provide a decision support system for terminal managers.
Wiegmans [10] developed a dynamic simulation model in
ARENA to compare the performance of various rail-rail
exchanges. Ottjes et al. [11] provided a simulation model
based on elementary functions (transfer, transport, stacking)
to compare three forms of inter-terminal container transporta-
tion within the Rotterdam-Maasvlakte terminal. Likewise,
in the paper by Benghalia et al. [12], the authors designed
a discrete event simulation based on an object model for
comparing and evaluating three modes of container transfer
between maritime terminals and the multimodal terminal
of Le Havre port. Dubreuil [13] used an ARENA simula-
tion tool to describe and analyze the handling operations
of a container terminal. Cartenì and de Luca [14] proposed
several microscopic discrete event simulation models for a
container terminal. These models share the same logical
architecture, but differ in the way in which handling activity
time duration is estimated. Validation was carried out by
analyzing the local and global indicators of each model.
Finally, the authors compared their models in order to find
the best one. Leriche et al. [15] studied the economic and
strategic interests of the MMT of Le Havre using a multi-
method simulator (Anylogic).

Henesey [8] used an agent-based simulation model to
assess and analyze the impact of operational policies and
strategies on container terminal performance. Sun et al. [16]
built a multi-agent simulation platform called MicroPort to
assess the operational efficiency of various designs of con-
tainer terminals. The structure of MicroPort consists of three
layers: (1) the Functions layer contains basic tools to support
the higher layers; (2) the Applications layer is managed by
a multi-agent system that represents the operating system
and ensures tactical and operational decisions; and (3) the
Extensions layer acts as an interface with the users. Likewise,
Najib et al. [17], [18] proposed a multi-agent simulation plat-
form for the TDF (Terminal De France) terminal of Le Havre
which involved a high-risk container management process

VOLUME 5, 2017 13143



M. N. Abourraja et al.: Multi-Agent-Based Simulation Model for Rail–Rail Transshipment

FIGURE 1. MMT.

to target containers with unlawful goods. Fotuhi et al. [19]
modeled yard cranes as reinforcement learning agents, taking
into consideration interference issues.

Petri nets are also employed in the modeling of container
terminal operation, particularly to describe the sequence
of the activities in container processing as a cycle for-
mat [20], [21].

III. MULTIMODAL TERMINAL LOGISTIC SYSTEM
The multimodal terminal (MMT) of Le Havre is an industrial
massification platform equipped with two interfaces (land-
side and waterside) and can handle 200,000 containers per
year. It includes three zones (Fig. 1): two operating areas (the
rail yard and the fluvial yard) and a receipt beam.

The receipt beam is composed of eight electrified railways
for various uses: receiving long trains, sorting and composing
rail shuttles, etc. After arriving at the receipt beam, long trains
are decoupled from their electric locomotives; following this,
they are coupled to their allocated traction unit and then
transferred to their target operating area, unlike shuttles that
can access an operating area directly. Once a freight train’s
wagons (a freight train is a long train or a rail shuttle) are
on the assigned track, the traction unit is decoupled and
moves (or returns) to the receipt beam. The rail yard is
designed to receive a maximum of eight freight trains. It is
divided between two gantry cranes, spanning all tracks, and
two buffers with a storage capacity of more than 1000 TEU.
Additionally, according to Boysen et al. [22], this rail yard
can be considered modern rail–rail transshipment yard of the
third generation. This paper focuses on rail yard operations.
The fluvial yard is the zone in which containers are loaded
onto barges and unloaded from them. It contains four tracks
under two gantry cranes, a temporary storage area and a quay
400 meters in length.

Meanwhile, the gantry cranes carry out jobs. It should be
noted that a ‘‘job’’ is the handling of a container from a given
area on a transport vector and is composed of two tasks: a
pick-up task and a drop-off task. A job is performed using
several actions: firstly, the translational motion of cranes; sec-
ondly, the trolley direction; and finally, the pick-up or drop-
off movement. Once the handling operations of a train have

been completed, the departure operation step is executed.
This consists of calling a traction unit either to help long train
wagons to reach their electric locomotive and then leave the
MMT or to transfer shuttle wagons to their MT.

The intra-port transfer activity of containers via rail shut-
tles is seen as a key performance indicator of Le Havre
port. Several rail shuttles are formed and deployed in each
Le Havre port terminal with regard to daily container flow,
i.e., the containers to be distributed and collected from the
MMT. Moreover, rail shuttles have priority during handling
operations since they have a short processing-time window.

IV. MULTI-AGENT BASED SIMULATION MODEL
A multi-agent system (MAS) is a powerful method for
research, and is suitable for large-scale and complex prob-
lems. A MAS is a distributed and robust system consisting of
one or more sub-systems, also called organizations, in each
of which several agents communicate, negotiate, and col-
laborate with each other to achieve specific goals. Agents
are computer systems that able to act in an environment via
certain behaviors and to adapt their internal states to the
changes that take place [23]. Agents may be autonomous and
even learn from their experiences or make decisions, in order
to efficiently solve a given problem.

Designing multi-agent based model for the operation
management of a complex and dynamic system is often a
laborious and tedious task, which requires the definition of
a modeling approach in order to simplify the design pro-
cess. In this way, we defined a top-down approach with
several steps of specification, conception, implementation
and verification-validation. The first step is the capture of
requirements and definition of system context. It starts with
the highlighting of the external actors related to the system,
internal actors acting on the system and internal components
existing in the system. Then, the business processes and
functional requirements of the system are split into a set of
consistent units. Finally, these consistent units and the iden-
tified actors are clearly mapped. More details of the business
modeling and requirements are given in [24]. The second step
concerns agentification, i.e., each system actor is modeled
as an agent, and agent-to-agent interactions and agent-to-
environment influences are then defined in respect to the rela-
tionship between the internal state and external perception of
each agent. In addition, agents are classified in this step into
two sub-systems based on a coherent functional grouping.
The agentification is more described in the paper of Garro and
Russo [25]. In the third step, we focus on coding, debugging
and running the model using the AnyLogic simulation tool.
The final step is the verification and validation of the simu-
lation model to demonstrate its ability to reflect the studied
system’s behavior.

A. OPERATION CONTROL SUBSYSTEM
The proposed operation control subsystem includes all activ-
ities related to resource allocation, operation planning, equip-
ment and transportation vector deployment and container
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FIGURE 2. Agents’ social relations, theirs roles and used resources.

flow generation. This workload is shared between three
control agents, namely an operational planner agent (OPA),
who takes short-time planning decisions, a tactical plan-
ner agent (TPA), who schedules intra-port container transfer
activities (medium-time planning decisions), and a transport
service provider agent (TSPA), who creates long freight trains
and plans their arrival and departure dates from MMT. The
social relationships of these control agents, their roles and
resources are illustrated in Fig. 2 using Agent Modeling
Language (AML) specifications.

The TSPA agent represents rail transportation actors, and
coordinates container routing to and from Le Havre seaport
over its hinterland. At the beginning of each working day,
the TSPA loads the inbound and outbound container flow
passing through the MMT from an Excel file (provided by Le
Havre Port Authority). Next, the TSPA checks whether there
are any containers remaining on buffers from the previous
working day and then creates long trains. Finally, the TPSA
saves the created dataset in its own XML File and sends it to
the TPA.

The TPA agent uses the received dataset to determine the
required number of shuttles to be deployed on Le Havre sea-
port terminals by taking account of the containers’ character-
istics (such as size, type, origin and target terminal and date of
arrival at maritime terminals and the MMT, etc.), in addition
to rail shuttle deadlines at the MMT and the number of rail
cars allowed by shuttle. In this study, we assume that import
containers arrive on time at the MMT. Thereafter, the TPA
plans the all-day intra-port container transfer activities in
order to avoid empty journeys of shuttles. Then, it records
the designed plan in its own XML File. Furthermore, any rail
shuttle which wants to use a GPMH (Grand Port Maritime
du Havre) link track first needs to ask permission from the
TPA. At the end of each working day, this agent sends to the

TSPA a list of the containers remaining on buffers, in order to
synchronize the container flow for the followingworking day.

The OPA manages short-time operations within the MMT,
dispatches internal equipment, communicates the contact
information of an agent to other interested agents, supervises
and receives information in real time from other agents about
simulation progress, and logs the metadata of executed oper-
ations in a data warehouse (start and end date, operation type,
duration, distance traveled, resource utilization rate, etc.).
As soon as this agent receives notification of an incoming
freight train from another control agent, it begins preparation
for its reception, using three phases. The first is the receipt
operations phase. Here, the OPA assigns an identifier to the
incoming freight train, determines its needs and adds it to the
agents directory (agentType@id). The second phase involves
resource allocation. The order of execution of operations in
this phase varies depending on the freight train type (long
train or shuttle). In the case of a long train, the OPA reserves
two railways, one at the receipt beam and another at the rail
yard, and a traction unit (shunter); this is because long trains
arrive directly at the receipt beam to be decoupled from their
electric locomotives. For a shuttle, the OPA reserves only
a railway at the rail yard. The OPA concludes this phase
by sending an access authorization to the freight train that
details the resources reserved for it. The final phase involves
operations planning and sending the established plan to the
rail gantry cranes. Once handling operations on this train are
complete, the OPA executes the departure operations. These
consist of calling a traction unit, either to help long train
wagons to reach their electrified locomotive and then leave
the MMT or to transfer shuttle wagons to their maritime ter-
minal. In conjunction with these operations, the OPA releases
the allocated resources and logs all the actions executed (see
Fig. 3).
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FIGURE 3. Serving freight train process.

B. REPRESENTATION SUBSYSTEM
This subsystem comprises agents representing real entities
acting or spending time in the MMT, i.e. gantry cranes, trac-
tion units and freight trains. The goals of this representation
subsystem are to reproduce the transfer, transportation and
storage operations, and also to provide the output data needed
in the model verification process and in the analysis of the
impact of the proposed scheduling approach on the global
system performance. Fig. 3 shows the functioning of this
subsystem, and Fig. 4 gives an overview of the relationships
existing between the various agents.

When each incoming freight train has nearly arrived at
the MMT landside border, the OPA designs an operating

plan which contains the priority index of the freight train,
the containers to unload and their positions on the train, and
the containers to load and their locations in the MMT. The
priority index determines the freight train that will be handled
next (see the formula 1); as a rule of thumb, cranes operate
first on the rail shuttle with the highest priority index, and
if there are no shuttles at the rail yard, they apply the same
rule to long trains. This priority index was proposed and
discussed by Leriche et al. [15]. Generally, the shuttle gathers
the export containers intended to be supplied to its maritime
terminal, as long as there is a vacant position, favoring those
with an urgent delivery date, and leaves the MMT as soon
as its deadline has expired, even if there are more containers
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FIGURE 4. Overall agent diagram.

FIGURE 5. Crane blocked move.

to transfer. Long trains, on the other hand, enter the MMT
early in the morning and leave the MMT when they have
received their entire import container. After arriving at the
MMT, the long train agent instructs the OPA to call the
allocated traction unit. Thereafter, the long train is decoupled
from its electric locomotive, and its wagons are coupled to
the traction unit and then transferred to the rail yard, unlike
shuttles, which arrive directly at the rail yard. Once the freight
train wagons are on the track, the traction unit is decoupled
and returns to the receipt beam. The freight train’s parking
position at the rail yard is determined in an attempt to achieve
a good workload balance between cranes (sharing containers
equally between cranes). Meanwhile, gantry cranes carry out
handling jobs under an anti-collision strategy (described in
the following sections); when they finish working, each one
returns to its initial position and stands by for upcoming
jobs.

Pi =
α1

ed i
+
α2

dt i
+

α3.nci∑n
j=0 ncj

(1) (1)

Such as:
αi/i ∈ {1, 2, 3}

∑
αi = 1: weighting parameters which

determine the importance given to each term.
ed i: export deadline of the most urgent container of train i.
dt i: departure deadline of train i.
nci: number of containers in train i.

V. GANTRY CRANE SCHEDULING APPROACH
In some situations, the movement of a crane can be blocked
by another (Fig. 5), when one is operating in between the
start and target position of the other, since cranes cannot
move beyond the borders of the working area. In a deadlock

FIGURE 6. The proposed rail yard structure.

TABLE 1. Comparison between all defined zones.

situation such as this, another piece of equipment is required
to enable container processing across both working areas;
in the MMT, reach stackers carry out this task. However,
this causes additional waiting times in avoiding interference
between cranes and reach stackers, and increases the overall
costs (handling and equipment costs) and energy consump-
tion. To overcome these drawbacks, we propose here a new
configuration for the operating area to govern the behavior of
crane agents.

A. SYSTEM ARCHITECTURE
The rail yard working area is composed of several
zones (Fig. 6); each zone has a set of properties, includ-
ing size, location, and role. The diversity of the theses
zones helps gantry cranes to choose feasible jobs and to
reduce waiting time. Zones follow the motion of the crane
to which they are attached; as a consequence, they may be
enlarged or narrowed or even change their location. This
mechanism is essential for the functioning of this scheduling
approach. Fig. 6 illustrates the proposed rail yard structure
and Table 1 shows the main differences between the defined
zones. The main goal of all zones is to provide collision-free
spaces for both cranes.

The rail yard is divided into two operating zones (dashed
blue segments). The right-hand zone relates to crane A and
the other to crane B. Cranes cannot move outside of the bor-
ders of their operating areas, and moving within these is also
subject to certain constraints. These constraints are related
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FIGURE 7. Dynamic separator allocation process.

to the composition of these zones. Each zone is subdivided
into two sub-zones. The first is an accessible zone (dashed
green segments) and the second is a private or inaccessi-
ble zone (dashed red segments). In the accessible zones,
both cranes can handle containers; however, before moving
they must adapt their own operating zones according to the
position of their chosen containers. For instance, if crane A
intends to pick up a container from the accessible zone of
crane B, it must first enlarge its operating area so that this con-
tainer will lie inside. Conversely, the private zone is reserved
for its owner, that is, one crane never enters the private space
of another (a strong constraint). Furthermore, the private zone
is a non-zero area, while the accessible zone may be null if
the distance between the two cranes is equal to 2d, i.e., equal
to the safety distance. In an attempt to describe the system
architecture in a formal way, we present the components
explained above as follows:{

Z∗ = ZA ∪ ZB
Zh = Z+h ∪ Z

−

h , h ∈ {A,B}
(2)

Such as:
Z∗: the rail yard.
Zi: the operating zone of crane i.
Z+i : the accessible zone of crane i.
Z−i : the private zone of crane i.
To ensure the safety distance between both cranes, each

private zone has a security zone located at the end (solid

orange segments) which is designed to have an area of
fixed size (always equal to d). Likewise, each accessible
zone comprises a warning zone, characterized by a length
which does not exceed the distance d and is located at the
beginning (dashed orange segments). Security zones are used
to ensure a minimum spacing between cranes and delim-
iters (dynamic separator and security barriers). A warning
zone is a risky area for another crane, that is, crane A may
not handle a container situated within the warning zone of
crane B. A common property of these two additional zones is
that they have a dynamic location (they follow themovements
of the cranes). In addition, they inherit the characteristics of
their owner zones; thus, security zones are non-zero areas and
warning zones may be null.We can formulate these zones and
the relationships with their owners as:

Z sh ∈ Z
−

h , lengthZ sh = d ∧ Z s
′

h ∈ Z
+

h , 0 ≤ lengthZ s′h
≤ d

(3)

Such as:
Z si : the security zone of crane i.
Z s
′

i : the warning zone of crane i.
As can be seen from Fig. 6, there are two type of delim-

iters: a dynamic separator and a security barrier. Firstly,
the dynamic separator is the line separating the two operat-
ing zones (the blue vertical line). It is considered the main
delimiter of this strategy, as its role consists of synchronizing
the manipulation of the working area (the two operating
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zones). In other words, in order to update the dimensions
of its own operating zone, the crane must have control over
the dynamic separator. Note that only one crane can control
this at any given time, and the other must wait until it is
released. TheOPA is the agent which take cares of this critical
resource, as illustrated in Fig. 7. Secondly, the security barrier
is the line that divides the security and warning zones of a
crane (the orange vertical line). It also indicates the limits of
the dynamic separator, that is, the dynamic separator cannot
outpass a security barrier since it is subject to this strong
constraint:

S ∈
⋃

h∈{A,B}

Z+h (4)

For example, if crane A intends to handle a container
situated at the warning zone of crane B, it must first enlarge
its operating zone using the dynamic separator and according
to its next movement. Following this, it must update the
dimensions or the location of all elements composing its
operating area (zones and security barrier). We assume that
the dynamic separator is allocated to crane A. As a result
of this, both security zones will be intersected, since the
dynamic separator will outpass the security barrier of crane
B. Finally, the safety distance will be not respected.

B. NEXT CRANE MOVEMENT PROCESS
A change in the configuration of the working area can be done
only by one crane at any given time, because it is a critical
process and in order to avoid dysfunctional situations. This
process of manipulation of zones is inspired by the ant colony
approach, and contains three steps: (1) defining of the list of
feasible jobs; (2) selecting of a feasible job; and (3) adjust-
ment of zones. The goal of the ant colony approach [26] is to
find the best path on aweighted graph. Here, ants aremodeled
as crane agents. The solution is incrementally constructed
by moving on the graph. In each iteration (run), a list is
prepared of jobs to be performed and pheromone values are
initialized on the graph, either using the values of the previous
iteration or a starting value (for the first iteration). Then, crane
agents are placed in a random position within their operating
areas before being launched. The execution order of each job
depends on the pheromone quantity of the chosen path in the
graph (to which the job belongs) and the visibility of the job
to the cranes. This process is detailed below.
Defining the list of feasible jobs: crane h chooses from the

operating plan the jobs that have not been executed and which
respect the constraints of the system components. The list of
feasible jobs is defined by the following constraints:

(Pcorigin ,Pctarget ) /∈
(
Z−h′ ∪ Z

s′
h′

)
, such as h, h′ ∈ {A,B}

(5)

g (craneh) = true (6)

Such as:
Pcorigin : the origin position of the container.

TABLE 2. Values of the parameter γ c
j .

Pctarget : the target position of the container. This is the
nearest position to Pcorigin , and may be a wagon (rail-rail
transshipment) or a buffer stack (when the freight train has
not yet arrived at the operating zone).
g : h → boolean: a function that returns a Boolean and

indicates whether or not the separator is allocated to the crane.
If this is evaluated as true, the separator is allocated to the
crane h.
The constraint 5 means that the two positions of the con-

tainer must be outside of both the private zone and the warn-
ing zone of crane h’. If so, crane h adds the container to its
list. Moreover, any job situated within the operating zone of
the other crane requires the manipulation of the separator.
However, if the container has an urgent delivery date (that
is, its shuttle will leave the MMT soon), it will be treated
as a priority without checking these constraints or executing
the next step. In this situation, this crane forces the other
to move away if it is too close, in order to perform this
urgent job. Otherwise, when a crane has other jobs to perform
but none of them are feasible, since none of them respect
Constraints 5 and 6, the crane will return to the parking
position and remain motionless pending a feasible job (a
waiting situation).
Selecting a feasible job: the crane’s next job is chosen using

the following equation:

j = argmaxu∈J ki
(τiu(t))α(ηiu(t))β∑

m∈J kl
(τlm(t))α(ηlm(t))β

if q ≤ q0 (7)

We start by generating two random numbers. The, q0,
is a fixed parameter in the interval [0,1], and q is a random
value between 0 and 1. The next feasible job is then chosen
using Equation (7). The crane selects the job with highest
probability, if q ≤ q0. Otherwise, it selects a random job
in order to explore other paths in the graph. The visibility,
ηiu (t) of a container candidate u, when the crane is the origin
position i, is given by the following formula:

ηcij (t) =
γ cj

Tij
, where γ cj ∈ [1, 3] (8)

The parameter γ cj varies with the zone in which the container
is situated and where it will be deposited. The possible values
of γ cj are reported in Table 2. The further away the job is from
the private area of the crane, the more its visibility decreases.
This allows the left- and right-hand cranes to handle the
containers in the left- and right-hand zones, respectively.
The pheromone coefficient τiu (t) saves the intensity of the
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FIGURE 8. Simulation model.

next target, u, while a crane is in the origin position, i. This
coefficient is built up from one iteration to the next using the
previous crane’s agents (ants), as shown in formulas 9 and
10 below.
Adjustment of zones: the crane areas are determined for

each container movement, and we therefore distinguish two
cases: (1)Pcorigin < Pctarget and (2)Pcorigin > Pctarget . In the first
case, changes are applied only according to the target point
for both movements (pick-up and drop-off) since the origin
position lies between the target position and the separator.
In the second case, the origin position is used to adjust the
zones during the pick-up and the target position during the
drop-off. To extend or reduce an operating zone, the agent
crane calculates the new location of the each delimiter (D)
usingPD = Pc±d . Then, all elements affected by this change
are adjusted.

C. UPDATING PHEROMONES ON PATHS
The pheromone quantity deposed by each crane agent within
iteration t is calculated as follows:

1τ cij (t) =
q1
Lc
+
q2
Ac
+
q3
S
+
q4
D

(9)

Such as:
Lc: is the workload of crane c.
Ac: is the waiting time of crane c.
S: is the sum of the workloads of the two cranes.
D: is the absolute value of the difference in workload

between the two cranes.
qi/i ∈ {1, 2, 3, 4}: are coefficients in the interval [0, 1].

At the end of each iteration, the pheromones on the graph
are updated using the equation below:

τ cij (t + 1) = (1− ρ) τ cij (t)+1τ
c
ij (t) (10)

VI. IMPLEMENTATION AND VALIDATION OF THE MODEL
A. SIMULATION MODEL PROCESSES
The simulation model is a planning distribution-driven
model, in which the tactical planner agent (TPA) makes
medium-term decisions (all-day intra-port container transfer
activities) and the operational planner agent (OPA) makes
short-term decisions (Fig. 8). This distribution is motivated
by the plurality of handling operations and by all decisions to
be taken. In addition, it aims to build a modular and robust
system. Planners interact with each other and cooperate col-
lectively to achieve specific goals. For example, when "serv-
ing rail shuttles", the TPA agent sends an arrival notification
for a rail shuttle to the OPA agent, which will then plan the
handling operations for this incoming shuttle.

Fig. 8 shows all the processes making up the simulation
model. Firstly, the TSPA agent creates long trains from the
Excel file provided by Le Havre Port Authority and the data
given in Table 3. Secondly, it informs the OPA about the
arrival time of each train. From this data, the TPA generates
rail shuttles and their schedule (Table 4). Both TPA and TSPA
record the generated dataset in detail (long trains and rail
shuttle) inXMLfiles. These files are used to feed all iterations
of the model with the same dataset (see the last part of this
section).

When a transportation mode arrives at the MMT,
the receipt operations process is triggered. Typically, freight
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FIGURE 9. 3D simulation screenshot.

TABLE 3. Simulation settings.

TABLE 4. Deployed rail shuttles at GPMH terminals.

trains begin arriving at 6:00 am. Then, the incoming mode
moves to its assigned position in the MMT to deliver its
containers and to receive others. Long trains spent more than

45 minutes before being transferred to the rail yard, whereas
shuttles take around 15 minutes and remain at the rail yard
for a maximum of 90 minutes. This time is due to the travel
time and certain operations such as coupling, decoupling and
rail switching. During their travel time, cranes receive the
operating plan (planning handling operations) and use the
manipulation process to choose a feasible job (handling con-
tainers). The job may be from a given area on the incoming
transport vector or from other freight trains the rail yard. Note
that a job may take three minutes at most; this includes pick-
up and drop-off time (two minutes, as shown in Table 3)
with an additional one minute for the crane’s moving time
for a job. When the handling operations are ended, the trans-
portation mode waits for its traction unit and then leaves the
MMT (departure operations). The service period ends with
the departure of the last freight train.

B. IMPLEMENTATION PROCESS AND VERIFICATION
The AnyLogic [27] simulation tool was used to imple-
ment the designed simulation model (Fig. 9). AnyLogic
was developed using Java; it supports various simula-
tion approaches (agent-based simulation, discrete-event sim-
ulation, and system dynamics) and allows the user to
combine these. In addition, it provides several modeling ele-
ments (state diagram, activity diagram, flow diagram and
libraries). The simulation model was run on a PC Intel(R)
Core(TM) i5-3337U CPU @ 1.80 Ghz with a memory
of 8 GB.
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FIGURE 10. MMT infrastructure model.

TABLE 5. Organizational indicators for day 1.

Firstly, the infrastructure of the MMT was designed,
as shown in Fig. 10. We used the Rail Library, space markup
elements, geometric shapes, and 3D objects. Secondly, agents
and simulation processes were implemented using the Agent
Library, State Chart, Rail Library and Process Modeling
Library. Finally, the Anylogic debugger tool was employed
to detect possible errors in the code.

Model verification is a necessary step in order to ensure
that the model is reasonable, correctly implemented and
reflects the desired behavior. In this work, we carried out two
forms of verification: graphic output verification (Fig. 9) and
simulation output verification. Graphic output provides visu-
alized data in order to locate and correct any dysfunction. The
simulation output verification was performed by comparing
two performance indicators calculated from the simulation
model to tolerated indicator values, as shown in Table 5. Note
that a container can be handled at most twice, i.e., unloaded
from a shuttle and then put in a stack. Later, it is picked up
from the stack and loaded onto a long train.

C. VALIDATION OF THE ENGINEERING STRATEGY
To validate the developed engineering strategy, all executed
jobs were tested using a time-space formula (formula 11).
This formula proves that the safety distance is respectedwhile
the model is running. All tasks were performed in collision-
free spaces if and only if the following formula was valid,
as shown in Fig. 11:

∀k, j ∈ T , and I j 6= Ik ,

if Z−j ∩ Z
−

k 6= ∅ −→
[
Sj,Fj

]
∩ [Sk ,Fk ] = ∅ (11)

FIGURE 11. Validation method.

T = {1, 2, 3, . . . , n}: the set of all executed tasks. A job is
two tasks.
Ij: the crane that ensures the execution of task j.
Z−j : the private zone designed by the crane to execute task

j.
Ej: the task execution time. Ej > 0.
Sj: the task starting date. Sj ≥ 0.
Fj: the task finishing date. Fj ≥ 0, such that Fj = Sj + Ej.

D. ITERATIONS AND PARAMETER CALIBRATION
To calibrate the model, a number of iterations for each simu-
lation were carried out using a dataset recorded in XML files;
this is illustrated in Fig. 12. AnyLogic provides a Parameter
Variation Experiment that stops the iteration loop after a
minimum number of iterations, when the confidence level
is reached [28]–[30]. If the confidence level is not met, the
Parameter Variation Experiment ends when the maximum
number of iterations has been exceeded. For each parame-
ter setting run, the results of the iteration with the lowest
completion time for operations were captured for parameter
calibration.

The confidence level was fixed at 95%, constructed around
the mean of the completion time of operations, and the error
percentage was set as 0.5. The minimum and maximum
number of iterations were set as 10 and 500, respectively (we
used a limited version of AnyLogic ‘‘University Researcher
Edition’’; this version enabled us to use a memory of only
1 GB and that way the number of iterations cannot surpass
500).

Another important point is parameter calibration. We used
the Design of Experiment (DoE) method and the best iter-
ations (results) to find the suitable value for each parame-
ter used. Thus, the factorial experiment implemented in the
Minitab [31] tool was employed to calibrate the parameters;
see Table 6 for the parameter settings of the engineering
strategy model.

VII. EXPERIMENTAL RESULTS AND DISCUSSION
In a prior study by Leriche et al. [15], the authors dis-
cussed three handling rules with a non-crossing constraint to

13152 VOLUME 5, 2017



M. N. Abourraja et al.: Multi-Agent Based Simulation Model for Rail–Rail Transshipment

FIGURE 12. Parameter Variation Experiment loop.

TABLE 6. Optimal parameters values after tuning.

determine the nextmovements of gantry cranes at the rail yard
of MMT, namely the ‘less distance’ rule, the ‘less distance
without comeback’ rule and the ‘left-to-left’ rule. However,
these rules give rise to several waiting situations for cranes
and thus reduce their productivity and extend container pro-
cessing time.

The effectiveness and capability of the engineering strategy
are investigated with regard to the rules described above, and
the experimental results of a typical day (Day 1) are reported
in Figs. 13-15, the results of all three simulation days (see,
Table 4) are summarized in Table 8 below. Figs. 13-15
show simulation outputs for the engineering strategy model,
the less distance rule model (Rule 1), the less distance with-
out comeback rule model (Rule 2), and the left-to-left rule
model (Rule 3), respectively. In Table 7, we report gap values
(difference in percentage) between each rule model and the
engineering strategy model in day 1. The gap value is calcu-

TABLE 7. Gap values between each rule model and the engineering
strategy model.

TABLE 8. Results of all involved simulation days.

lated as follows:

max−min
max

× 100

Fig. 13 displays the movements of gantry cranes (crane A
+ crane B) and Fig. 14 shows the times spent by cranes in
handling operations (crane A + crane B) during the whole
day (Day 1). The first bar in Fig. 13 represents the overall
distance traveled by cranes, and the last bar shows the total
distance traveled without a container. In Fig. 14, the time
between the beginning and end of handling operations is
called the service time, and the time during which cranes
stop working in order to avoid collisions, is the waiting time.
In Fig. 15, crane utilization is reported (the average values of
both cranes). The first two bars indicate the proportion of time
during which cranes were busy and not in use, respectively.
Not in use means that cranes were in their initial positions,
waiting for upcoming jobs. The last bar highlights the differ-
ence in the workload between gantry cranes.

As can be seen from the figures and tables given above,
the designed engineering strategy is advantageous at all
levels. It improves the productivity of the cranes and accel-
erates the freight train’s processing time. From Fig. 14, it is
clear that the waiting time is reduced by more than half.
In addition, the waiting time in our approach does not exceed
1% of the service time, while in other models waiting time
represents 2.58 %, 2.62 %, 2.27 %, respectively for Rule 1,
Rule 2 and Rule 3. This finding proves that the dynamic
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FIGURE 13. Distance traveled by cranes.

FIGURE 14. Times spent by cranes.

FIGURE 15. Gantry cranes utilization.

behavior of the proposed system architecture components
plays a significant role in reducing situations in which cranes
stop working. Moreover, the distance traveled by cranes is
minimized (Fig. 13), because their moves are restricted by
Constraint 5; thus, they move if and only if allowed, and they
look for a sequence of tasks that can diminish unproductive
times and moves, (formulas 7 and 9), that is, the best path on
the graph. This better usage of cranes is confirmed by Fig. 15,

particularly with regard to the idle time and workload balanc-
ing. In our model, cranes have almost the same workload and
are able to perform more tasks during the working day, i.e.
they have more idle time.

Additionally, the simulation showed that the gantry cranes
subjected to our rules were faster during the first half of
the working day (between 8 and 14 h), performing 63% of
their assigned workload. In the other models only 50% of the
workload was completed. Thus, the faster a crane worked,
the faster it finished its workload. In addition, cost and energy
savings can be achieved, since container processing in both
areas is done without the need for reach stackers (see the
first paragraph of Section V) due to the new configuration
of operating areas. Cranes move along the rail yard simply
by redesigning the dynamic components. The following table
summarizes the simulation results of all involved simulation
days (see, Table 4).

VIII. CONCLUSION AND FUTURE WORK
This paper focused on minimizing waiting situations and
unproductive movements in order to improve the productivity
of gantry cranes and to speed up container processing at the
rail yard of the multimodal terminal of Le Havre seaport.
In the Section IV, the proposed multi-agent based simula-
tion model was detailed. In the section V, problems under
focus was introduced and an improving solution for gantry
cranes scheduling was designed. This solution is a novel
approach that allows cranes to adapt the working area to
their needs. Following this, the implementation and verifi-
cation of the model were described, and description of the
drawbacks of the existing handling rules [15] and a discus-
sion of the simulation results were presented. We reported
that the proposed system architecture has a strong effect on
minimizing the occurrence of waiting situations. The results
obtained show that using this improved rail yard partition
mechanism, containers can be evacuated more rapidly to their
destinations.

The authors’ future research will try to address some of the
limitations of this research: disturbance events are not taken
into consideration, and the arrival date of import containers at
theMMT is ignored, thus causing a poor scheduling of all-day
intra-port container transfer.
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