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ABSTRACT NAND flash memory has many advantages, including a small form factor, non-volatility, and
high reliability. However, problems caused by physical limitations, such as asymmetric I/O latencies and out-
of-place updates, still need to be resolved. By using a probability of reference (PR) to select a candidate page
as the victim page, this paper presents a novel buffer replacement algorithm called PR least recently used
to enhance the flash memory performance. To predict whether a page may be referenced in the future, three
variables are used to calculate a page’s PR. In addition, we improve the performance overhead of the number
of write operations, the hit ratio, and the runtime using a novel PR strategy. The algorithm is implemented
and tested on the flash simulation platform Flash-DBSim. The results indicate that our algorithm provides
improvements of up to 7% for the hit ratio with an improvement of up to 36.7% for the overall runtime
compared with other approaches.

INDEX TERMS Buffer replacement algorithm, flash memory, flash-based DBMS, probability of reference.

I. INTRODUCTION
During the past decades, flash memory has been used
extensively because of its high reliability, small size, light
weight, shock resistance, and power economy. Due to its
advantageous features and decreasing price, NAND flash
memory has been used to save the setting information in
various devices, including in computers, personal digital
assistants (PDA), and the BIOS of digital cameras. Flash
memory does not lose the data when the device is pow-
ered down which has been used in the system’s memory
hierarchy [1]–[3]. Based on the advantages of flash memory,
solid state disk (SSD) has become a popular choice in an
enterprise computing environment. Flash memory is a type
of bulk erase and out-of-place update media [4]–[7]. These
characteristics provide improvements for the buffer replace-
ment algorithm in the flash memory [8], [9].

Traditional buffer replacement algorithms are designed for
disk and are not suitable for NANDflashmemory [10]. These
disk-oriented buffer replacement algorithms are based on
the same latency as for read and write operations. Applying
these traditional disk-oriented buffer replacement algorithms

directly to flash memory does not result in the advantages
of flash memory and is not conducive to the capability of
NAND flash memory. When using flash memory, it is very
important to redesign the flash-oriented buffer replacement
algorithm [11]–[14].

Many current NAND flash-based buffer replacement
algorithms have focused on decreasing the number of write
operations, improving the hit ratio. These algorithms modify
the Least Recently Used (LRU) algorithm [15]. When a page
has recently been referenced, LRU has a higher likelihood
of being referenced in the future. This is the base of the
LRU algorithm. However, these algorithms ignore certain
information, such as the reference locality and the reference
times of the pages. This information can be used to further
improve the flash performance [16].

In this study, a novel flash-based buffer replacement algo-
rithm called PR-LRU (Probability of Reference LRU) has
been presented to solve the asymmetric I/O cost. We use a
reference probability to predict the possibility that a page
is referenced in the future. A page’s reference probability is
calculated using three variables, namely the reference times,
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the number of reference pages from the last to the penultimate
references, and the number of reference pages from the first
to the last reference. Moreover, a victim LRU list provides
an additional chance for the page to be stored in the flash
memory.

The remainder of this article is structured as follows.
The related works in this field is introduced in Section 2
prior to describing the proposed buffer replacement algorithm
PR-LRU in Section 3. In section 4, the detailed analysis of
the simulation experiment and the results are described using
various traces while Section 5 provides the conclusion and
outlines our future work.

II. RELATED WORKS
Flash memory has many disadvantages including asymmetric
I/O latencies, not-in-place updates, and a slow erase opera-
tion. Table 1 shows the latency of DRAM and NAND flash
memory in I/O operations. This shows that the flash write
operation requires more time than the read operation and that
DRAM does not require the erase operation. In addition, due
to the physical features of the NAND flash, the number of
erase operations is limited to within the range of 10,000 to
1,000,000 [17]–[19].

TABLE 1. The I/O performance for DRAM and NAND flash.

The erase operation in the flashmemory does not consist of
a single byte but a fixed block and the write operation must
be performed in a blank area. If the target area has already
been used, it must be erased before it can be re-written. The
read operations require less latency than the write/erase oper-
ations. Due to the flash memory’s asymmetric I/O latencies,
current algorithms have focused on reducing the number of
write operations.

Several algorithms have been presented for reducing the
number of write operations to enhance the I/O performance.
Many algorithms will delay the process for evicting dirty
pages from the buffer [20]–[23]. Park et al. [20] presented
a Clean-First LRU (CF-LRU) algorithm to solve the asym-
metric I/O latencies. The main concept of the CF-LRU is
replacing the clean pages and retaining the dirty pages as long
as possible. Designed by Jung, the LRU-WSR algorithm uses
a Write Sequence Reordering (WSR) strategy [21]. It assigns
a cold flag to every dirty page to determine if a dirty page
is cold or not. Based on the CF-LRU, the Cold-Clean-First
LRU (CCF-LRU) algorithm was published by Li et al. [22].
This algorithm will evict the cold clean pages first. When
buffer is full of hot and dirty page, other pages will be evicted
with the help of a cold-detection mechanism. The CCF-LRU
algorithm always gives priority to replacing the clean pages,

which results in the immediate replacement of the page that
was just read in the buffer, thus reducing the hit ratio. Using a
modification of the CCF-LRU, Jin et al. introduced the Adap-
tive Double LRU (AD-LRU) algorithm to further improve
the runtime efficiency [23]. The AD-LRU sets the minimum
length of the cold queue, so it can dynamically adjust the
length of the hot and cold queues.

To guarantee a good flash memory performance
during flash I/O operations, previous algorithms were pre-
sented to redesign the flash-based buffer replacement algo-
rithm [13], [20]–[23]. Current works research has given
priority to the replacement of cold clean pages and does
not take the reference times and other information into
account [24]–[27]. Therefore, the existing buffer replace-
ment algorithm can still be optimized.

III. THE PROPOSED PR-LRU ALGORITHM
A. THE STRUCTURE DESIGN OF THE PROPOSED
PR-LRU ALGORITHM
A novel buffer replacement algorithm for NAND flash called
PR-LRU (Probability of Reference LRU) is proposed to
increase the buffer hit ratio by using a probability of reference
to choose a candidate page as the victim. Fig. 1 illustrates the
structure of the presented PR-LRU algorithm, which contains
the hot LRU list, the cold LRU list, and the victim LRU list.
The length of the hot LRU list is L1. It maintains the hot pages.
Regardless of whether the page is dirty or clean, the cold LRU
list contains L2 pages. The victim LRU list contains L3 pages
and only stores the pages that are replaced from the hot or
cold LRU list. Moreover, L1, L2 and L3 add up to the buffer
size.

FIGURE 1. The structure of the proposed PR-LRU algorithm.

B. BUFFER REPLACEMENT STRATEGY
Three variables are used to calculate the probability of ref-
erence, namely the reference times, the number of reference
pages from the last to the penultimate reference, and the
number of reference pages from the first to the last reference.
A page that is referenced twice or more is called a hot page,
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otherwise, it is called a cold page. A page that has been
re-written is called dirty, otherwise, it is called clean. For
the features of flash memory, we designed the algorithm to
retain the dirty pages in the buffer if possible. A clean page
is preferred as a replacement in the buffer. Moreover, for the
sake of overall performance, evicting cold pages are better
than evicting hot pages.

The probability of reference will be calculated using the
following four Theorems. The locality of current reference
page will be considered in Theorem 1. Theorem 2 takes the
lifecycle of the reference page into account. Theorem 3 com-
putes the overall average number of references. The value of
Theorem 1, Theorem 2 and, Theorem 3 are used to calculate
the three parts of the probability of reference in Theorem 4.
Theorem 1: Given that the number of the reference pages

is designated as number and the number of references from
the first reference to the last references is designated as disti,
1 ≤ i ≤ w. log2i ∗ q represents the cost of the write and q is
the weight of the write operation. Then, the probability of the
average reference page can be calculated using Formula (1):

Probability (disti, number)

= log2i ∗ q ∗

(
1−

1

1+ e−
disti

number

)
∼ (0, 1) , 1 ≤ i ≤ w.

(1)

Theorem 2: Let neari be the last reference to the penul-
timate reference pages, 1 ≤ i ≤ w. The probability of the
recently reference interval pages is given by Formula (2):

Probability (neari)

= log2i ∗ q ∗
(
1−

1
1+ e−neari

)
∼ (0, 1) , 1 ≤ i ≤ w.

(2)

Theorem 3: Where X̄ = total_record/number of pages
represent the average number of times each page has been
referenced. total_record represents the sum of reference
request. number represents how many pages have been ref-
erenced in the trace. The probability of reference pages is
subsequently computed as Formula (3):

Probability
(
number, X̄

)
=

1

1+ number
X̄

∼(0, 1) , 1≤ i≤w.

(3)

Theorem 4: Obtain the probability of the average refer-
ence pages, the probability of the recently referenced interval
pages, and the probability of the reference pages together.
The minimum probability of the pages will be selected as the
victim, which can be computed using Formula (4):

Index=min{Probability(disti, number)+Probability(neari)

+Probability
(
number, X̄

)
}, 1 ≤ i ≤ w. (4)

The probability of reference is used to determine which
page to evict. index is the page that is selected as the replace-
ment page. The reference probability has been calculated

in the w pages closest to the hot LRU position. When the
algorithm requires a replacement page, the minimum prob-
ability page will be selected. In order to reduce the number
of unnecessary calculations, a window size w is set in the hot
LRU list to limit the number of calculated pages.

To sum up, the main strategy of the Probability of Refer-
ence (PR) is described as follows:

1. The victim LRU list is used to maintain pages that are
evicted from the cold or hot LRU list. Our method gives a
second chance to each page to retain the pages in the buffer
as long as possible.

2. The probability of reference is used to calculate which
pages may be referenced in the future. Through the proba-
bility of reference, we estimate whether the page should be
removed from the hot LRU list.

FIGURE 2. Workflow of the PR-LRU.

C. THE WORKFLOW OF THE PR-LRU
Fig. 2 shows the workflow of the PR-LRU. If we receive a
page request, the algorithm will determine whether the page
is in the buffer. When the requested page is detected in the
buffer, this page will be moved to the three LRU lists and
will be placed into the MRU location of the hot LRU list.
If there is no free space in the hot LRU list, the page with
the minimum reference probability in the w pages will be
selected. When the algorithm need to select a victim page
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in the hot LRU list, the minimum reference probability in
the w pages will be chosen. The method of calculating the
probability of reference is described in previous section. This
victim LRU list evicts the clean page first unless there is no
clean page.

Algorithm 1 PR-LRU

Input:
Lcold : the cold LRU list, Lhot : the hot LRU list,
Lvicitm: the victim LRU list

Output: the victim page for replace
1. if page is in Lhot // p is in the hot LRU list
2. Move page to MRU location of Lhot

3.
else if page in Lcold then // page
is in the cold LRU list

4. if there is no free space in Lhot
5. victim =SelectVictim () in Lhot
6. if there is no free space in Lvictim
7. victim2 =SelectVictim () in Lvictim
8. Write victim2 to flash memory
9. end if
10. Move victim to MRU location of Lvictim
11. end if
12. Move page to the MRU location in Lhot

13.
else if page in Lvictim then // page
is in the victim LRU list

14. if there is no free space in Lhot
15. Move page to MRU location of Lhot
16. victim =SelectVictim () in Lhot
17. Insert victim to MRU location of Lvictim
18. else Insert page to MRU location of Lhot
19. end if
20. else // page is not in the buffer
21. if there is no free space in Lcold
22. victim =SelectVictim () in Lcold
23. if there is no free space in Lvictim
24. victim2 =SelectVictim () in Lvictim
25. Write victim2 to flash memory
26. end if
27. Insert victim to MRU location of Lvictim
28. end if
29. end if
30. Insert page to MRU location of Lcold
31. return a reference of page

D. DETAILED DESIGN OF THE ALGORITHM
Algorithm 1 shows the specific implementation of the
PR-LRU. When the required page is detected, this requested
page will be put into the MRU position (lines 1-2). If the
required page is matched in the cold LRU list and there is no
free space in the hot LRU list, the victim page will be selected
and placed into the victim LRU list (lines 3-5). When the
victim LRU list has no free space, the algorithm 1 will evict a
page to the flashmemory tomake additional space (lines 6-9).
The reference page would be put into theMRU position of the

hot LRU list (lines 10-18). If the page is found in the victim
LRU list, this page will be moved to the hot LRU list. If there
is no free space in the hot LRU list, the victim page will be
chosen as a replacement (lines 13-19). If the requested page
is not found, this requested page will be put into the cold LRU
list (lines 20-31). When the cold LRU list has no free space,
the page in the LRU position will be selected to move to the
victim LRU list (lines 20-29). Then this reference page will
be inserted into the cold LRU list (line 30).

Algorithm 2 shows the algorithm SelectVictim of the
PR-LRU. If we need to select a victim page in the cold LRU
list, the page in the LRU location will be selected directly
(lines 1-2). When algorithm 2 selects a victim page from the
victim LRU list, it is more prone to choose a clean page for
replacement. Dirty pages will be evicted if the victim LRU
list is fulled with dirty pages (lines 3-13). When algorithm 2
chooses the victim page in the hot LRU list, the minimum
probability page will be selected in the w pages closest to the
LRU location (lines 14-16). The method of calculating the
probability of reference described previously is used.

Algorithm 2 SelectVictim

Input: A LRU list L
Output: the victim page for replace
1. if L is Lcold
2. select the LRU page in Lcold as victim
3. else if L is Lvictim
4. for sit = LRU to MRU
5. Select the sit page in Lcold as q
6. if (q is clean)
7. victim = q
8 . break
9. end if
10. end for
11. if (victim is null)
12. Select the LRU page in Lvictim as victim
13. end if
14. else

15.
Select minimum probability in
[LRU, LRU-w] as victim

16. end if
17. return a reference to the victim

IV. PERFORMANCE EVALUATION
The experiments are implemented using the simulation plat-
form Flash-DBSim. Synthetic traces are used to analyze the
hit ratio, runtime, and the write count. The simulation results
are summarized and compared with the other three buffer
replacement algorithms, namely LRU [13], LRU-WSR [21],
and AD-LRU [23] respectively.

A. EXPERIMENT SETUP
Our experiments are implemented using a 3.35 GHz
Intel CPU with 16 GB RAM. The operating system is
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FIGURE 3. Comparison of the hit ratio on different traces. (a) T1. (b) T2. (c) T3. (d) T4.

TABLE 2. Characteristics of the NAND flash.

Windows 10 Pro SP1 with 64-bits. The Flash-DBSim is a
simulated flash memory platform, which provides a simula-
tion environment for validating the performance of various
algorithms. Flash-DBSim is designed for comprehensive
experiments and simulates the various experimental con-
ditions that have developed in flash memory technology
research. FlashDBSim uses a modular design approach,
which includes Virtual FlashDeviceModule (VFD),Memory
Technology Device Module (MTD), and Flash Translation
Layer Module (FTL). Researchers can modify the contents
of each module according to their actual research needs.

The characteristics of the NAND flash are described
in Table 2. We simulated a 128MB NAND flash. The
flash data page size is 2KB, and each data block contains
64 data pages. We assumed that write latency is 200µs per

TABLE 3. Details of the simulated traces.

page, erase latency is 25µs per page, and read latency is
25µs per page. The number of erase operations is limited
to 100,000.

The details of the four types of traces are listed in Table 3.
Each trace has 200,000 buffer requests and 10,000 different
pages. For instance, 18,000 (90%) indicates that this trace
has 2,000 write operations and 18,000 read operations. The
reference locality ‘‘60%/40%’’ represents that 60% of the
total references are densely performed in 40% of the pages.
The size of the page is 2 KB in this experiment.

Three performance metrics, write count, hit ratio, and run-
time were used in our simulation experiments to evaluate the
results. The erase operations were not considered because
they are always conducted prior to the write operations and
are equal in number to the write operations. Because the
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FIGURE 4. Comparison of the write count on different traces. (a) T1. (b) T2. (c) T3. (d) T4.

TABLE 4. Details of the simulated traces.

latency of the read operation is much faster than that of the
write operation in the flash memory, we did not compare
the number of read operations with those of other buffer
replacement algorithms.

B. PERFORMANCE EVALUATION OF
THE SYNTHESIZED TRACES
The experimental results are representative of the results
for trace T4. Therefore, the results of trace T4 are listed in
Table 4, which shows the write count, hit ratio, and overall
runtime of the four buffer replacement algorithms. As the
memory increases, the trend in the performance improvement
gradually stabilizes for the write count, hit ratio, and run-
time. It is also evident that the PR-LRU redesign is highly
appropriate for the flash memory. An appropriate increase
in the buffer size is conducive to the performance of the

replacement algorithm. However, simply increasing the
buffer size will waste resources.

Fig. 3 illustrates the comparison of the hit ratio for the
different traces and for various buffer sizes. Among the four
traces, PR-LRU has a better hit ratio than the other algo-
rithms. Because the PR-LRU takes the locality of the pages
into account based on the LRU algorithm, it has a higher hit
ratio. As a consequence, the increase in the hit ratio for the
PR-LRU and trace T4 compared to LRU [13], LRU-WSR [21]
and AD-LRU [23] was 7%, 5%, and 2% respectively.
PR-LRU not only improves the performance of the flash
memory but it also enhances the performance of the buffer
replacement algorithm.

Fig. 4 shows a comparison of the write count for the
different traces. When the buffer size is particularly large
or small, we observe that the write count is similar for the
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FIGURE 5. Comparison of the runtime on different traces. (a) T1. (b) T2. (c) T3. (d) T4.

four algorithms. If the buffer size is particularly small, the hit
ratio is very low and the number of physical write operations
is small. This occurs because the PR-LRU will evict clean
pages in the victim LRU list first. When the PR-LRU selects
a replacement page from the hot LRU list, it will calculate
the probability of reference and select the minimum page as
a replacement. Due to the PR strategy, the number of write
operations for trace T4 is reduced by 44.1%, 32.4%, and 7.6%
comparedwith LRU [13], LRU-WSR [21] andAD-LRU [23].

Fig. 5 shows the runtime of the four algorithms for dif-
ferent buffer sizes. The PR-LRU algorithm has the lowest
runtime. This differences in the number of flash memory
write operations are not particularly large as the result of
the asymmetric I/O latencies. Therefore, the general design
of the buffer replacement algorithms is focused on decreas-
ing the write count. When the buffer size is large, the run-
time decreases slower than the memory time increases. As a
consequence, PR-LRU reduces the runtime for trace T4 by
36.7%, 28.3%, and 5.1%, respectively compared to LRU [13],
LRU-WSR [21] and AD-LRU [23].

V. CONCLUSION AND FUTURE WORK
In this paper, a novel buffer replacement algorithm called
PR-LRU is presented to enhance the performance of the flash
memory and decrease the write count. We divide the buffer

into a hot, cold, and victim LRU list. Pages from the hot or
cold LRU list are inserted into the victim LRU list. The victim
LRU list is preferred to replace clean pages than replace dirty
pages. The PR-LRU provides an additional chance for pages
to remain in the buffer. The probability of reference can be
used to determine whether each page may be referenced.
By using this method, we retain the pages that are more likely
to be referenced in the future.

The proposed PR-LRU algorithm was tested on the flash
simulation platform Flash-DBSim. The results show that the
PR-LRU reduces the write count compared with other flash-
based replacement buffer algorithms. Our algorithm provides
up to 7% improvements for the hit ratio. Compared with
other approaches, PR-LRU increases 36.7% in the overall
runtime.

In future studies, we will attempt to adjust the lengths of
three LRU lists dynamically to improve the performance of
flash memory and enhance the flash memory’s hit ratio.
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