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ABSTRACT One of the most demanding skills for a mobile robot is to be intelligent enough to know its own
location. The global localization problem consists of obtaining the robot’s pose (position and orientation) in
a known map if the initial location is unknown. This task is addressed applying evolutionary computation
concepts (Differential Evolution). In the current approach, the distances obtained from the laser sensors
are combined with the predicted scan (in the known map) from possible locations to implement a cost
function that is optimized by an evolutionary filter. The laser beams (sensor information) are modeled
using a combination of probability distributions to implement a non-symmetric fitness function. The main
contribution of this paper is to apply the probabilistic approach to design three different cost functions
based on known divergences (Jensen–Shannon, Itakura–Saito, and density power). The three metrics have
been tested in different experiments and the localization module performance is exceptional in regions with
occlusions caused by different obstacles. This fact validates that the non-symmetric probabilistic approach
is a suitable technique to be applied to multiple metrics.

INDEX TERMS Jensen-Shannon divergence, Itakura-Saito divergence, density power divergence,
Differential Evolution, global localization, mobile robots.

I. INTRODUCTION
The Global Localization (GL) problem is one of the most
demanding tasks that an autonomous robot needs to accom-
plish in order to improve its capabilities. It is considered that
the environment is known (a map is provided) and the objec-
tive is to develop an algorithm to obtain the robot’s pose (posi-
tion and orientation) if the initial location is unknown.
A common approach is to distinguish between two classes
of GL systems according to the information source. The
positioning systems, where the most typical device is the
Global Positioning System (GPS), use signals emitted from
external sources to localize the robot. This strategy is not
applicable in environments or regions where external signals
are not available. The self-positioning systems rely on the
robot sensor system. For example, an autonomous robot can

estimate its location using laser scans provided by laser range
finders. Information about the map is needed and propriocep-
tive data (odometry from wheel encoders) is very useful. This
approach is more adequate for indoor environments where
it is difficult to receive external signals. In this paper, the
GL module is included in the second option. The sensor data
provided by a laser range finder is the only information that
is required to estimate the robot’s pose in an indoor map.

Our recent work has been focused on the application of
evolutionary optimization techniques to implement GL mod-
ules. The Differential Evolution (DE) method [1] has been
chosen to be the basis of solutions for two-dimensional (2D)
[2] and three-dimensional (3D) [3] environments. DE is
a population-based procedure where each component of
the set represents a candidate (pose) that is weighted by
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a fitness value. The population set evolves in an iterative
way according to the evolutionary principles to optimize the
cost value. If the fitness function is designed to represent the
difference between a real observation vector obtained from
the true location and an estimated one measured in the known
map, the population will converge to the best solution (where
the observation vector and the estimated readings are more
similar), making it possible to apply this type of strategy to the
aforementioned task. The sensor system is used to measure
the observation vectors (laser scans).

A key factor of the optimizer is the cost function. In the
basic versions of our GL module, the mean squared error was
selected to compute the cost value of each candidate. The
Euclidean distances between laser observations and estimates
with the same bearing were calculated to compute the cost
value. In [4], a completely different approach based on the
Kullback-Leibler (KL) divergence [5] was applied to imple-
ment the fitness function. The same metric is applied in [6]
to develop a similar algorithm where the engine is a mixture
between theMarkov chainMonte Carlo (MC)method and the
DE technique.

According to the state of the art, the most common strategy
when developing a cost function for this type of filters is to
choose a symmetricmetric. TheKL divergence, which is non-
symmetric, is included in a wider class of metrics known as
Csiszár-Morimoto (CM) f−divergences [7]. This dissimilar-
ity measure is also classified as a Bregman divergence [8]
because it is non-symmetric and the triangle inequality is not
satisfied. This metric is used to measure differences between
probability distributions. One of the main advantages of using
an asymmetric metric is that it allows to penalize some situa-
tions depending on the sensor information. The cost function
with an asymmetric divergence can be designed to improve
the performance in some unexpected situations. This feature
has been exploited to increase the robustness to occlusions.

A requirement to measure the KL divergence is that prob-
ability distributions have to be defined for the data provided
by sensors. The laser measurements are not only defined by
distances and probability distributions represent the whole
beam. Different types of distributions with different weights
are combined to model different events. These profiles were
selected in [4] with the objective of obtaining a GL algorithm
more robust to occlusions. Cases with possible occlusions are
favored by the weights of the fitness function. In this way,
the probability profiles and the KL-based cost function make
it possible to cause a great improvement in the method perfor-
mance when the robot is in an environment with significant
occlusions [4], [6]. The asymmetry of the metric is exploited
to increase the robustness to occlusions.

After multiple experiments, it was realized that the
improvement was not limited to the KL divergence and the
key factor was the probability profiles approach. Therefore,
we found it necessary to validate the probabilistic technique
by developing different cost functions. In recent years, multi-
ple papers have been published about applications of dissimi-
larity measures in many research fields [9]–[11]. In addition,

different works have been conducted to establish links and
correspondences between metrics. An exhaustive study is
given in [12]. The probability distributions that were success-
fully implemented can be applied to other metrics. In this
paper, the same profiles have been adopted to develop other
cost functions based on different metrics. Three different
divergences have been chosen to implement cost functions:
Jensen-Shannon (JS) [13], Density Power (DP) [14], and
Itakura-Saito (IS) [15]. The objective is to test the perfor-
mance of the GL module with the new cost functions, check-
ing if the capabilities are held and examining advantages and
disadvantages.

The analysis of the experiments carried out in this work
lets us conclude that all metrics have the same advantages
that were reported in our previous publications. In particular,
the great performance in regions with significant occlusions
originated by uniform noise or unmodeled obstacles is main-
tained for all divergences. Therefore, it is validated that the
non-symmetric probabilistic approach is a suitable technique
to be applied to multiple metrics. The type of divergence is
important because it permits to introduce probability distribu-
tions to compare sensor measurements, but the crucial stage
when developing a GL method robust to occlusions is the
definition of the probability profiles.

This paper is structured as follows. Section II contains
the state of the art. In Section III, the main ideas of the
evolutionary GL filter are detailed. After that, the probability
profiles approach and the divergences with the cost functions
are explained in Sections IV and V, respectively. The tests
that have been carried out are analyzed in Section VI and the
most significant results are pointed out in Section VII.

II. STATE OF THE ART
There are multiple classes of GL techniques that can be
categorized depending onmany aspects. A common approach
makes a distinction between Bayesian-based, optimization-
based, and hybrid filters.

The Bayesian-based methods are probabilistic techniques
where the localization problem is solved in two steps. The
Bayesian inference rule is used for that purpose. First,
sensor information (motion and environment perception) is
read and used to build the a posteriori density function.
After that, the robot’s pose is computed according to this
function. Different criteria can be applied to calculate the
pose. Accurate models for the density functions are needed
in order to represent probabilities in the whole map. The
probability distribution converges to the solution when the
problem is successfully solved. Many research groups have
presented interesting approaches that rely on the aforemen-
tioned ideas. For example, it is possible to cite the grid-
based probabilistic filters [16], [17] or the MC localization
strategies [18]–[20]. Different authors have proposed
modifications to reduce the population requirements.
Biswas et al. [21] propose to apply the gradient of the
sensor measurements model to decrease the population size
that is required to solve the problem. Their method is
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called Corrective Gradient Refinement. Other interesting
ideas can be found in the works of Grisetti et al. [22] and
Zhang et al. [23]. Lenser and Veloso [24] have developed a
variation of MC called Sensor Resetting Localization. Their
objectives are to reduce the population requirements and
the impact of unmodeled movements and systematic errors.
Their sensor is a Charge-Coupled Device (CCD) camera.
Ito et al. [25] have proposed a modified version of MC where
Wifi and RGB-D information are applied to localize the robot
in indoor environments. Wang et al. [26] have proposed a
particle filter for mobile robots situated in high-occluded and
dynamic environments.

The optimization filters rely on a fitness function that is
utilized to compute a cost value that shows how good the
solution is. The sensor information has to be updated when
the robot ismoving and the algorithm returns the best estimate
after convergence or a maximum number of iterations. The
candidate with the best fitness value is usually chosen as the
solution of the GL problem. Two different ideas result in two
different strategies. The well-known Kalman filters derive
the cost function to compute the solution. They present good
computational performance, but they cannot deal with multi-
hypotheses distributions. Therefore, they have often been
applied to tracking problems (re-localization), where only
a single hypothesis is needed when computing the robot’s
pose. The second idea is to make a stochastic search over
the space of possible solutions. The evolutionary algorithms,
such as DE or Particle Swarm Optimization (PSO) filters,
rely on this idea. Both methods and MC are compared
in [27]. Lisowski [28] has implemented an hybrid version that
mixes DE and MC. A different evolutionary technique called
Harmony Search algorithm [29] is the basis of the GL filter
designed by Mirkhania et al. [30]. As cited before, the
DE method was applied in our previous work [2], [3].
Ronghua and Bingrong [31] have proposed a mix-
ture between MC and a genetic algorithm optimizer.
Chien et al. [32] have applied PSO to implement a modified
version of MC that avoids premature convergence.

There are different techniques called hybrid methods
or multi-hypotheses Kalman filters [33], [34] where the pos-
sible solution is formed by a set of probability distributions,
but the problem resolution is not only based on Bayesian
rules but on geometric constraints and decision trees. In [35],
the solution is estimated using laser sensors. They join
Gaussian distributions to model the sensor information.
A combination between particle and Kalman filters is pre-
sented by Jochmann et al. [36].

The most common cost function of the GL filters is based
on the quadratic error between estimated measurements and
observations provided by the sensor system. Features of the
map, such as walls, columns or obstacles, are used in the
cost function to distinguish between possible locations. Dif-
ferent ideas have been proposed in our recent work. The
absolute error was chosen in [37] and the KL divergence
was applied in [4] and [6]. Other authors have presented
different techniques. The Hausdorff distance, which can be

Algorithm 1 DE-Based GL Filter
1: function DE_GL(real_dist , pop, known_map)
2: for i = 1 : NP do
3: estim_dist(i)← dist_est(pop_i, known_map)
4: cost(i)← DIV_fitness(estim_dist(i), real_dist)
5: end for
6: while (CONVERGENCE CONDITIONS) do
7: for i = 1 : NP do
8: MUTATION
9: CROSSOVER

10: SELECTION with THRESHOLDING
11: estim_dist(i)← dist_est(pop_i, known_map)
12: cost(i)← DIV_fitness(estim_dist(i), real_dist)
13: end for
14: DISCARDING
15: [solution, error]← min(cost)
16: end while
17: end function F return solution, error, and population

utilized to measure differences between set of points, is min-
imized in [38]. The entropy of future belief distributions is
the variable that is considered by Fox and Burgard [39] to
minimize the expected uncertainty of possible locations. The
Mahalanobis distance is adopted by the feature-based strategy
implemented by Arras et al. [40].

III. DE-BASED GL METHOD DESCRIPTION
The GL strategy is based on evolutionary optimization tech-
niques. The population set contains candidates to be the
correct location of the robot. These candidates are weighted
by a cost value that compares sensor information from the
true pose to sensor estimates from the candidate using the
knownmap. The engine of the filter is theDEmethod that was
first developed by Storn and Price [1]. DE is an evolutionary
filter that has been applied to solve optimization problems in
multiple fields. The main algorithm is detailed in this section.
Since it has also been explained in our previous work, a brief
description is given here. The reader can consult [2], [3] for
a more exhaustive explanation. The method in pseudocode is
presented in Algorithm 1.

The objective is to estimate three coordinates (x̂, ŷ, θ̂ ) that
correspond to the robot’s pose in a known map. There are
NP candidates (pop) that will evolve and converge to the best
solution according to the available information. The required
size can be generated by an initialization method basing on
the information contained in the laser scan [41]. The first
population is generated randomly to cover the whole map.
The laser readings from the robot’s true pose, the knownmap,
and the DE configuration parameters are also needed.

At the beginning, the cost value of each candidate is
computed (lines 2 − 5 of Algorithm 1). Sensor information
from the true location (real_dist) and from the candidate
(estim_dist(i)) have to be compared in order to do that.
The laser sensor has been modeled by an observation vector
formed by 61 readings separated 3◦. The sensor information
is modeled using probability profiles following the same
concepts applied in [4] to generate a GL filter where the
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main advantage is the excellent performance in environments
with unmodeled obstacles that generate occlusions. The
JS, DP, and IS divergences are applied to implement three
different cost functions (DIV_fitness) that will be described
in Section V.

The GL algorithm is executed in an iterative way until
convergence is reached (line 6). In each iteration and for
the whole population set (lines 7 − 13), the evolutionary
filter creates the candidates to replace the current population
members. Two evolutionary operators are applied to generate
the new candidates. First, the mutation combines members of
the population to form mutated vectors. After that, the diver-
sity is increased by the crossover stage. New candidates are
created bymixing (combining parameters) current population
members and mutated ones.

The mutated vector for popki , a candidate at iteration k ,
is computed in line 8:

mutki = popka + F(pop
k
b − pop

k
c ), (1)

where popka, pop
k
b, and popkc are three random population

members and F controls the differential variation.
The next evolutionary operation is the crossover.

croki = (croki,1, cro
k
i,2, . . . , cro

k
i,D)

T is the name chosen for
this vector:

croki,j =

{
mutki,j if pki,j < δ

popki,j otherwise,
(2)

where pki,j is generated randomly in the interval [0, 1] for
each parameter of the population member. The crossover
control variable is the crossover probability (δ), which is in
the interval [0, 1].
The number of chromosomes (D) represents the dimen-

sions of the search space, which is three in this case. More
information about types of evolutionary mechanisms can be
found in [42]. The population set evolves according to a
fitness function that is optimized. After convergence, the can-
didate with the best cost value will be the solution of the
problem.

The selection step consists in comparing the new candidate
to the current one to choose the population member for the
next generation. The element with the best cost value is
selected for the population of the next iteration or generation.
A thresholding mechanism is added to the selection process.
This mechanism introduces a limit to choose new solutions.
When the fitness values are compared, the new candidate
is only accepted if the difference between costs is larger
than a pre-specified threshold. The objective is to avoid the
optimization caused by the sensor noise. This mechanism has
been applied to multiple problems [43].

The thresholding mechanism can cause a degradation
of the convergence properties because less solutions are
accepted in each iteration. In order to increase the speed,
the discarding step is implemented. At the end of each
iteration, the worst population members (according to their
costs) are substituted by solutions which are close to the best

candidates. The percentage of candidates to be discarded has
to be fixed.

When the algorithm converges, the best population mem-
ber is chosen to be the estimate of the robot’s pose in the
known map.

The method cannot be limited to a static robot. The
localization task does not end when the GL problem has
been solved. After that, motion and sensor information can
be integrated for multiple motion-perception cycles fol-
lowing the same ideas proposed in [2]. The best solution
is saved and the population set is displaced according to
the motion model. Since the robot is correctly localized,
the population size could be drastically reduced without a
decrease in the performance, which is an advantage of this
technique.

IV. PROBABILITY PROFILES FOR FITNESS FUNCTIONS
Different divergences are proposed to implement the fitness
function of the GL filter. All of them rely on the assumption
that the sensor measurements are modeled as independent
probability distributions for each laser beam. In this section,
the sensor measurements model that makes it possible to
improve the performance in environments with occlusions is
detailed.

It has been assumed that the map is represented by an occu-
pancy grid map, which is one of the most typical approaches
in GL. In this type of map, the 2D environment is discretized
using cells with a fixed size. A value between zero and one is
computed for each cell to represent the probability of being
occupied. If each cell of the map is denoted by mij, the full
map can be defined by the following set:

m = {mij : 1 ≤ i ≤ n, 1 ≤ j ≤ o}, (3)

where i and j are positive integers that take the map limits into
account (n and o). The occupation probability of each cell
is p(mij).
This notation lets us define the map estimation problem

as the computation of the individual probabilities of each
cell. Since the map and its probabilities are known, this
representation will be very useful.

The information about the environment is given by
the sensor measurements. In this work, the sensor is a
laser scanner that measures the cells crossed by a laser
beam.

The evolutionary-based GL method relies on a cost func-
tion that computes the difference between the observation
vector (information provided by the laser scan) and the sim-
ulated vector from a possible solution (readings from the
estimate, according to the known map). From a statistical
point of view, it is possible to use different metrics to measure
this difference.

The true location at time t is represented by xt = (x, y, θ)T

and the observation vector is zt = (zt,1, zt,2, ..., zt,Ns ). The
estimated vector from a populationmember x̂t is ẑt (according
to the map m).
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A. THE PERCEPTION MODEL
The laser scan contains Ns single measurements. In beam-
based models, each component of the laser vector (zt,i) can be
modeled by probability distributions that consider different
events. Different authors have proposed a Bayesian model to
approximate the behavior of the range sensor beam model
for dynamic environments [44]. These probabilistic models
provide us p(zt |xt ,m) for a laser range finder, which is the
probability of obtaining the laser scan zt for a location xt in
the map m.

There are different research groups studying how to model
the sensors measurements. The simplest approaches con-
sider discrete grid maps [45], [46] or continuous metric
maps [47], [48]. Moravec [46] has ‘‘proposed non-Gaussian
densities over a discrete grid of possible distances measured
by a sonar’’. Fox et al. [45] have suggested to use only the
distance to the closest obstacle along the direction of the
sensor. In this model, the measurement is originated by a
mixture of two physical causes: the laser beam hits an object
modeled in the map or with an object not modeled in the map.
Thrun et al. [47] added twomore causes to this model: people
and the maximum range of the sensor.

In this work, the same ideas presented in [4] are followed.
The probability density function for a single value originated
by a laser beam is

p(zt,k |xt ,m) = khphit (zt,k |xt ,m)+ kopoccl(zt,k |xt ,m)

+ kupunkn(zt,k |xt ,m), (4)

where each probability represents the next events:

• phit : Modeled obstacles. The laser measurement is mod-
eled by a Gaussian distribution that includes the mea-
surement noise. If the true distance is denoted by z∗t,k ,
this distribution can be expressed as

phit (zt,k |xt ,m) =
1√

2πσ 2
hit

e
−

(zt,k−z
∗
t,k )

2

2σ2hit , (5)

where σ 2
hit is the noise variance.

• pocc: Unmodeled obstacles (possible occlusions). The
unmodeled obstacles are modeled by a uniform distribu-
tion which varies between zero and one. This represents
the unexpected objects that can be found in the envi-
ronment and are not included in the map. These objects
originate measurements shorter than the expected one
according to the map. A typical example of that situation
occurs when there are persons that are detected by the
laser readings.

• punkn: Unknown places. The unknown places probability
is also a uniform distribution (between zero and one)
from the measurement up to the sensor range.

kh, ko, and ku are constant numbers used to give different
weights to these probabilities. These constant numbers are
defined in the intervals in which they have influence on the
density function.

Equation 4 can be understood by observing Figure 1. The
laser measurement is 5 m, and phit is a Gaussian distribution
with mean equal to 5 m and standard deviation equal to 0.5 m.
The unmodeled obstacles are possible occlusions, and they
are modeled as a uniform distribution with a low value
(ko = 0.05) when the measurement is shorter than the laser
reading. There is no information about places with distances
larger than five, thus the probability value chosen for these
places is ku = 0.5. The probability is defined up to the sensor
range, which is 10 m in this case.

FIGURE 1. Probability distribution for a single laser beam [4].

The cost function compares the real measurement with the
estimated one. The probability distribution for the estimated
measurement is

p(ẑt,k |x̂t ,m) = k̂hphit (ẑt,k |x̂t ,m)+ k̂opoccl(ẑt,k |x̂t ,m)

+ k̂upunkn(ẑt,k |x̂t ,m), (6)

where equivalent variables have been chosen to represent the
estimate.

The probability densities defined in Equations 4 and 6 are
used to calculate the fitness value in the GL method. The cost
function takes into account different situations in order to deal
with possible occlusions. These situations are explained in the
next section.

B. ROBUSTNESS TO OCCLUSIONS - COEFFICIENTS
SELECTION
An occlusion occurs if an unmodeled obstacle originates an
error when comparing the robot’s true location and the opti-
mum solution in the map. Different cases are defined in order
to deal with possible occlusions. When the real measurement
is shorter than estimated reading, it can correspond to an
occlusion that has to be considered by the cost function.
It is not possible to have measurements from the optimum
solution that are shorter than the true measurements if the
robot is correctly localized. In this case, the fitness value
has to present a higher value to discard this location. The
penalization of its value is done choosing adequate weights
for each situation.

The divergences will compute the distance between two
probability distributions (PS and PŜ , real observation and
estimated one) for each laser measurement (k). The prob-
ability distributions are defined following the concepts that

13926 VOLUME 5, 2017



F. Martín et al.: Using the JS, DP, and IS Divergences to Implement an Evolutionary-Based GL Filter

were detailed in Section IV-A. Different values will be given
to the components of these distributions in order to deal
with possible occlusions. The different options are explained
in Table 1, where the possible values for the variables of
Equations 4 and 6 are represented.

TABLE 1. Coefficients of equations 4 and 6 according to the difference
between the real reading (zt,k ) and the estimate (ẑt,k ).

An occlusion can exist when the real measurement is much
lower than the estimated reading. In this case, the cost func-
tion is not penalized and the probability profiles are similar
to Figure 1. These values are represented in the left column
of the table. Observe that ku = 0.15. This low value does not
penalize the cost function, and the robustness to occlusions is
increased.

When the real measurement is similar but shorter to the
estimated one (zt,k ≤ ẑt,k ), it can be due to an occlusion, but
also the difference can be caused by the sensor noise. In this
situation, the fitness function is penalized by ku = 0.5. Notice
that this factor has no influence when zt,k = ẑt,k .
It is not possible to have zt,k � ẑt,k if the candidate

solution is the true location, which corresponds to the right
column of the table. This is probably a wrong measurement,
thus the fitness function is strongly penalized. ko, kh, and ku
are fixed to a high value (0.95), and k̂h, k̂o, and k̂u are equal to
a lower one (0.05). Therefore, the cost value presents a high
value and this estimate will be discarded.

When the estimated value is slightly higher than the real
distance (zt,k > ẑt,k ), the estimated pose is not the correct
one but it can be close to the optimum value. The penalization
factor is only given to the unknown cells (ku = 0.9).

It has to be said that the previous values have been empir-
ically fixed to deal with occlusions. Different constants will
result in different behaviors. The algorithm is very sensitive
to these values because the probability profiles and, therefore,
the cost values, will be completely different depending on the
weights given to the probability densities. The good perfor-
mance is shown in the experimental results section.

V. DIVERGENCE-BASED FITNESS FUNCTIONS
Although there are multiple divergences that could be applied
to implement the cost function of the GL strategy, three
metrics have been chosen in this work. Each one will be
explained in this section. The KL divergence was adopted
in our previous work [4], [6]. The JS divergence can be
viewed as a symmetric version of the KL divergence. The
DP divergence can be equivalent to a quadratic error ver-
sion when using probability distributions. The IS distance is
similar to the KL divergence when its formula is analyzed.

These divergences belong to different families of metrics with
interesting properties and connections between them.

Different works have been published to establish formal
relations between metrics in information theory [12], [49],
[50]. Among them, Cichocki and Amari [12] have stud-
ied wide families of divergences named Alpha, Beta, and
Gamma. The dissimilarity measures applied in this paper can
be included in the first two categories. The researchers use
power functions to generalize theKL divergence and to obtain
different classes of divergences. They report that the power
functions allow to increase the robustness with respect to
outliers and, therefore, the performance is better or more flex-
ible (an example can be found in [51]). Using this approach,
it is possible to define three families of divergences (Alpha,
Beta, and Gamma) that can be viewed as generalizations of
the KL divergence. All classes are linked and it is possible to
do transformations between them [9].

These families are derived from the well-known
CM f−divergence and the Bregman divergence. The
CM f−divergences are obtained using the following
equation:

dCM (P||Q) =
∑
i

q(i)f (
p(i)
q(i)

), (7)

where f is the generator function and p and q are the densities
of two probability distributions P and Q.

The Bregman divergences are given by

dBR(P||Q) =
∑
i

[8(p(i))−8(q(i))−
δ8

δq(i)
(p(i)− q(i))],

(8)

where 8 is the generator function.
The Alpha divergence [52] is a special case of CM

f−divergence defined by the following formula:

d (α)A (P||Q) =

∑
i[p

α(i)q1−α(i)− αp(i)+(α−1)q(i)]
α(α − 1)

. (9)

This metric depends on the variable parameter α. For exam-
ple, when α → 1, the generalized KL divergence is
obtained (

∑
i[p(i) ln(p(i)/q(i))+ p(i)− q(i)]).

From the CM divergences, it is possible to establish some
basic properties for the Alpha divergences: non-negativity
(d (α)A ≥ 0 and d (α)A = 0 if and only if P = Q), convexity
with respect to both P andQ, continuity (continuous function
of real variable α), duality (d (α)A = d (1−α)A ), etc. The reader
can consult [12] to find more properties and a more detailed
explanation.

The Beta divergence [14], [53] is obtained from the
Bregman divergence:

d (β)B (P||Q) =

∑
i[p

β (i)+ (β − 1)qβ (i)− βp(i)qβ−1]
β(β − 1)

. (10)

This divergence is dependent on β. The connection
between the Bregman and the Beta divergences is strong, and
the properties of the Bregman divergence are also valid for
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the Beta divergence: non-negativity (d (β)B ≥ 0 and d (β)A = 0
if and only if P = Q), convexity with respect to P, linearity
(a positive linear combination of Bregman divergences is also
a Bregman divergence), invariance under affine transforms,
etc. The Beta divergence has a single global minimum equal
to zero for P = Q, and increases with the absolute value of
the difference between p and q.
Since the KL divergence is utilized multiple times in this

paper, a reminder of this metric is given in the next section.
After that, the cost functions are detailed and connected to the
families of divergences. Finally, an illustrative example for a
single laser beam is shown.

A. KULLBACK-LEIBLER
The KL divergence [5] can be defined as ‘‘a non-symmetric
measure of the difference between two probability distribu-
tions P and Q’’. The KL divergence in discrete spaces is
defined as

dKL(P||Q) =
∑
i

p(i) ln
p(i)
q(i)

. (11)

The KL divergence exists for probability distributions in
which the sum of densities is equal to one (

∑
i p(i) =∑

i q(i) = 1). Only cases where both densities present
positive values (q(i) > 0 and p(i) > 0) are computed by
the formula. The quantity 0 ln 0 is assumed to be zero. The
KL divergence from P to Q is not equal to the KL divergence
from Q to P.
If S(x, z) = {mx,zij } is the area (in cells) that is crossed

by an observation z when the robot is located at x, the
KL divergence for a given orientation (k) can be expressed
by

dkKL(PS(xt ,zt,k )||PŜ(x̂t ,ẑt,k ))

=

∑
i,j∈ST

pS(xt ,zt,k )(mij) ln
pS(xt ,zt,k )(mij)

pŜ(x̂t ,ẑt,k )(mij)
, (12)

where ST is the maximum between S(xt , zt,k ) and Ŝ(x̂t , ẑt,k ).
The number of cells crossed by the true observation S(xt , zt,k )
and the area covered by the estimate Ŝ(x̂t , ẑt,k ) are different.
It has been considered that the limit of these areas is the first
unknown cell that is reached. It has been assumed that each
cell is independent from the others and it is possible to apply
the additive property of the KL divergence to independent
random events.

In order to simplify this formula, the following expression
will be considered from now on:

dkKL(PSk ||PŜk ) =
∑
i,j∈ST

pSk (mij) ln
pSk (mij)
pŜk (mij)

. (13)

This formula compares laser readings for a given orien-
tation. The KL divergence for laser scans formed by Ns
observations can be expressed as

dKL(PS ||PŜ ) =
Ns∑
k=1

dkKL(PSk ||PŜk ). (14)

The KL divergence is greater or equal to zero, zero being
the value when the real laser scan is exactly equal to the
estimated reading in the known map (non-negativity property
of the CM f -divergences). In this adaptation of the KLmetric,
the probability densities are not normalized (Section IV) and
the absolute value is used if negative values are obtained
for dKL . The same concept is also applied to the other met-
rics. A correction factor is introduced to distinguish between
places where the same cost value is obtained but the number
of occlusions is different:

KLD = dKL(PS ||PŜ )e
Nocc
Ns , (15)

where Nocc represents the number of occlusions
(zt,k � ẑt,k ). This correction factor has been chosen empir-
ically. KLD represents the cost value that was used in [4] to
solve the GL problem.

A typical problem of the KL divergence has to be consid-
ered. When q(i) is very low for a particular i, the specific
term p(i)/q(i) can dominate the result. This issue has not been
found in the experiments that have been performed in this
paper. Observing Figure 1 and Table 1, PŜ is in the interval
[0.05, 0.95]. In this way, the difference between larger and
lower probabilities is not large enough to cause the cited
problem in the current implementation.

B. JENSEN-SHANNON
The JS divergence [13] is derived from the KL divergence.
Given the KL divergence between two probability distribu-
tions (Equation 14), the JS divergence is

dJS (P||Q) =
1
2
[dKL(P||M )+ dKL(Q||M )], (16)

where M = (P+ Q)/2.
This metric can be classified as a symmetrized Alpha

divergence. In general, there are two ways to symmetrize
divergences. The first option is to use Equation 16. The
JS divergence is a special case of Alpha divergence that is
obtained when Equation 16 is applied to symmetrize the
Alpha divergence (using dA instead of dKL) and the limit for
α→ 0 is computed.

The Jeffreys divergence [54] is obtained with the second
symmetrization option:

dJF (P||Q) =
1
2
[dA(P||Q)+ dA(Q||P)]. (17)

In this case, the limit for α → 1 has to be computed
for Equation 17. Due to its relation with the JS divergence,
some results using the Jeffreys divergence are included in the
experiments.

The next formula is applied to compute the JS divergence
for the whole scan:

dJS (PSk ||PŜk ) =
1
2
[dKL(PSk ||M )+ dKL(PŜk ||M )], (18)

where M = (PSk + PŜk )/2.
This divergence is also called information radius (IRad)

[55] or total divergence to the average [56]. It has important
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differences with respect to the KL divergence. For exam-
ple, a finite value is always obtained and it is a symmetric
metric. The name that is usually given to the square root of
the JS divergence is the JS distance [57]. This dissimilar-
ity measure is a symmetrized and smoothed variant of the
KL divergence. It is bounded between zero and two.

This metric is based on Jensen’s inequality [58] and the
Shannon entropy. Jensen’s inequality ‘‘relates the value of
a convex function of an integral to the integral of the con-
vex function’’. The application of its related theorems to
information theory are used to define both the KL and
the JS divergences. The Shannon entropy, named after the
American mathematician Claude Shannon, is a well-known
measurement used in information theory that is defined as
H = −

∑
i p(i) logb p(i).

The JS divergence has been applied to multiple fields, such
as computer science, machine learning, medicine, history, etc.
Some examples are given in papers about quantum informa-
tion theory [59], machine learning [60], and medicine [61].

Finally, the cost value when the correction factor that con-
siders occlusions is introduced is computed by

JSD = dJS (PS ||PŜ )e
Nocc
Ns . (19)

C. DENSITY POWER
The DP divergence was developed by Basu et al. [14]. Fol-
lowing the same ideas explained in the previous sections to
develop the cost function of the GL filter, the next formula is
applied to compute the DP divergence for a given orientation:

dkDP(PSk ||PŜk ) =
∑

i,j∈ST
[p1+ρSk (mij)+

1
ρ
p1+ρ
Ŝk

(mij)

−

(
1+

1
ρ

)
pŜk (mij)p

ρ
Sk (mij)]. (20)

This dissimilarity measure is a version of the Beta diver-
gence. It has the same properties: single global minimum
for PSk = PŜk , non-negativity, and increment dependent on
the absolute value of the difference between densities. The
authors in [12] believe that the most important motivation to
study this metric from a practical point of view is to increase
the robustness of the learning algorithms with respect to
outliers.

It can be appreciated that this metric is dependent on a
variable factor ρ. It has been reported in [14] that when ρ = 1
the DP divergence is equivalent to the Euclidean L2-norm:

dkDP(PSk ||PŜk ) =
∑
i,j∈ST

[
pSk (mij)− pŜk (mij)

]2
. (21)

The indefinition that appears when ρ = 0 is solved in [14]
using the L’Hôpital’s rule. The generalized KL divergence is
obtained in this case.

Due to the versatility of the current method, this factor
could be set to a fixed value or introduced as an additional
chromosome (parameter in the population set) to be opti-
mized. Both options have been tested. However, in the current
version of the method, ρ will tend to one if Equation 20

is optimized. According to this formula, lower values are
obtained for the cost function when ρ is one. For that reason,
ρ is fixed to one in the experiments carried out in this paper.
A different approach for the optimization problem is needed
in order to exploit ρ as an additional optimization factor.

When the whole scan is considered, the next formula is
computed:

dDP(PS ||PŜ ) =
Ns∑
k=1

dkDPD(PSk ||PŜk ). (22)

Finally, the cost value when the correction factor that con-
siders occlusions is introduced is computed by

DPD = dDPD(PS ||PŜ )e
Nocc
Ns . (23)

It has to be remarked that one advantage of this formula
is that, since ρ is fixed to one, the cost value is equivalent
to a quadratic error version but using the probability profiles
approach.

The DP divergence has been recently applied to point
set registration in computer vision [62], multivariate analy-
sis [63], or active learning [64].

D. ITAKURA-SAITO
The IS divergence was proposed in the sixties by Itakura and
Saito [15]. It is applied to the current problem following the
same ideas described for the other divergences. For a given
orientation of the laser scan, it is expressed as

dkIS (PSk ||PŜk ) =
∑
i,j∈ST

[
pSk (mij)
pŜk (mij)

− ln
pSk (mij)
pŜk (mij)

− 1

]
. (24)

The IS divergence is classified as a Beta divergence. It is
directly derived from Equation 10 when β = 0. Therefore,
the properties of the Beta divergences are inherited.

It can be observed that the Beta divergences connect the
IS divergence (β = 0), the generalized KL divergence
(β = 1), and the Euclidean L2-norm (β = 2). The same can
be concluded using different values of ρ because Equation 20
relies on a different version of the Beta divergence.

Cichocki and Amari [12] explain that the choice of
β is related to the statistical distribution of the data sets. For
example, the optimal choice for the normal distribution is
β = 2 and for the gamma distribution is β = 0. Although
the problem studied here cannot be strictly linked to a known
probability distribution, this analysis suggests that a further
study about the statistical properties of the problem would
help to choose the most suitable metric.

When the whole scan is considered, the divergence is
equal to

dIS (PS ||PŜ ) =
Ns∑
k=1

dkIS (PSk ||PŜk ). (25)

Finally, the cost value when the correction factor that con-
siders occlusions is introduced is computed by

ISD = dIS (PS ||PŜ )e
Nocc
Ns . (26)
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TABLE 2. Probability distributions for the example shown in Figure 2. Values: free space = 0.05, obstacle = 0.95, unknown space = 0.5.
p1(cell ) = pSk

(mij ), p2(cell ) = pŜk
(mij ). pM (cell ) = [p1(cell )+ p2(cell )]/2. Left column: divergence for which the parameters of

each row are needed.

This metric has been applied to multiple fields, such
as matrix factorization in music analysis [65], machine
learning [66], or malware detection [67].

E. ILLUSTRATIVE EXAMPLE
An example where the divergences are computed for a sin-
gle laser orientation can be observed in Figure 2. The first
measurement (k = 1) of the laser scan from the real pose
and the estimate are represented in a grid map. The first step
is to model the probability distributions of the laser beams.
Different options have been defined. The values that have
to be considered to compute the four divergences are shown
in Table 2. This case is only an introductory example to
explain the concepts behind the last sections.

FIGURE 2. First measurement obtained by the laser scanner. True
location (left) and estimate (right). Laser beam in black [4].

Each cell of the laser beam is numbered in increasing order,
starting from the first cell crossed by the ray. Different values
are given to the free space (0.05), the obstacles (0.95), and the
unknown space (0.5). The discrete probability distributions
from the real location (p1) and the estimated solution (p2)
are composed of 13 single values because the longest range
is 13 cells. The probabilities are not normalized.

After adding the terms of the fourth row, the KL divergence
is equal to 0.3475. The average sum of the fifth and sixth
rows is the JS divergence, which is 0.3897 in this case. The
DP divergence is equal to 1.2150. The IS divergence
is 3.6578. It can be observed that the parameter that is used
to measure the difference between probability distributions is
completely different depending on the metric.

VI. EXPERIMENTAL RESULTS
Different trials have been proposed to test different char-
acteristics in simulated and real indoor maps that represent

laboratories, corridors, and offices. The laser scan is formed
by 61 readings separated 3◦ (180 field of view). The objective
is to study the method performance for the cost functions that
have been implemented in the current paper. In addition, it has
to be checked if the same outstanding properties shown by
the KL-based approach in environments with occlusions [4]
are maintained when the new divergences are applied, fact
that would validate the probability profiles used to model the
information provided by the sensing system.

A. ACCURACY
The first experiment examines the localization filter when
the robot is situated at different locations of the simulated
map displayed in Figure 3. The results are registered in
Tables 3 and 4. The same population size is applied in all
cases from a single location. The population requirements
are only shown in the last table for simplicity. Each cell is
a square of 12.1 cm side and the total map has 960× 300 =
288,000 cells (4,200 m2).

The robot’s position and orientation are defined by a vector
of three coordinates (x, y, θ ). The position is defined by the
first two parameters and the orientation is given by the third
coordinate (zero being pointing right, horizontal direction,
increasing clockwise). A Gaussian distribution over the laser
measurement is used to model the sensor noise (σ ). The
standard deviation of this distribution is 1%. The difference
between the robot’s true position and the estimate is the
position error. The orientation error measures differences in
angles. A threshold has been fixed to decide if the robot is
correctly localized.

The percentage of success or success rate is a variable that
has been defined in these experiments to represent the number
of algorithm executions in which the error is lower than a
threshold divided by the total number of trials. This thresh-
old is set to 50 cm in this paper. Failures are not included
when computing errors. Other standard techniques such as the
performance metrics proposed by Olson and Delen [68] are
not applied because they are more suitable for classification
models.

Observing Table 3, the range of the error is [1.15,
19.60] cm. Similar results are presented in [4] and [37].
The localization error is worse in larger offices because the
laser error depends on the distance measured. There are not
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FIGURE 3. GL in a simulated map. All units in cells. Robot’s location in blue square.

TABLE 3. Position error when the robot is in the simulated map of Figure 3. Errors in mean ± standard deviation (cm).

significant differences between metrics. The best accuracy is
obtained with the KL divergence in most cases, but the differ-
ence with respect to the other metrics is not relevant. The ori-
entation error (not included in tables for simplicity) is in the
interval [0.00, 1.37] degrees, which is also a good result. The
Jeffreys divergence has also been tested for comparison. Sim-
ilar errors are obtained with this metric: [1.21, 18.90] cm and
[0.06, 0.78] degrees.

The last variable that is analyzed is the success
rate (Table 4). It has to be remarked that, in this experiment,
motion is not considered. The GL algorithm is run for a single
laser scan. Motion and scans from other locations would
be needed for places with very similar sensor information,
which could happen in indoor maps with symmetric corri-
dors or similar rooms. Analyzing the results, the percentage
of success is maximum in almost all cases for all met-
rics. However, this parameter could be worse. For example,
motion will be needed in order to correctly localize the robot
if it is situated in (120, 25, 0) or in one of the small offices in
the lower part of the map.

Similar trials have been carried out in a real map
(Figure 4), which is a learned map of the Intel Research Lab
provided by Dieter Fox.1 The cell size is 5 cm and the area
is 29× 29 m2. It represents a floor plan with a main hallway
and different offices crowded with furniture.

The results are presented in Tables 5 and 6. The posi-
tion error is in the interval [0.15, 13.50] cm. This error

1http://cres.usc.edu/radishrepository/view-one.php?name=intel_lab

TABLE 4. Success rate (in %) when the robot is in the simulated map
of Figure 3.

is slightly lower when compared to simulated conditions
because the resolution of the real map is better. There are not
significant differences between metrics. The orientation error
is [0.01, 0.61] degrees and the percentages of success
are optimal except in (80,50,90) (location with perceptual
ambiguities).

Other research groups have proposed different localization
methods that can be compared to our technique. The position
error published in [38] by the research group of Donoso
is [8, 15] cm. The average translation error of the technique
proposed by Se et al. [69] is 7 cm. Their average angular
error is one degree. Similar errors have been found when
investigating the results of other research groups in the same
type of environments. Since the other algorithms rely on dif-
ferent concepts and assumptions, it is necessary to study the
configuration parameters and the experiment conditions of
the other techniques to present amore exhaustive comparison.
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TABLE 5. Position error when the robot is in the real map of Figure 4. Errors in mean ± standard deviation (cm).

TABLE 6. Success rate (in %) when the robot is in the real map
of Figure 4.

FIGURE 4. GL in a real map. All units in cells. Robot’s location in blue
square.

The influence of the sensor noise is analyzed in Figure 5.
The simulated map of Figure 6 is used for this experiment.
The localization error and the percentage of success are rep-
resented against the sensor noise (σ is variable). Acceptable
results are obtained with all metrics even with a high noise.
Regarding the error, the KL-based cost function presents the
best values and its performance is closer to a linear behav-
ior. The worst error for higher noises is obtained with the
IS divergence. The percentage of success is the maximum
one (100%) up to 8% of sensor noise, which is above the error
of the commercial sensors. With a 10% of sensor noise, the
KL divergence presents the best error but the worst percent-
age of success. It has to be noticed that wrong cases (when the
filter does not return the correct location) are not considered
when computing errors.

FIGURE 5. Sensor noise influence. Top: position error vs. sensor noise.
Standard deviation in error bars. Bottom: success rate vs. sensor noise.
Robot’s location: (60,50,0) in map of Figure 6.

B. OCCLUSIONS: UNIFORM NOISE
The uniform noise has been chosen to model occlusions
that can be caused by persons or dynamic obstacles that are
not included in the known map. The same procedure was
performed in previous publications to compare two different
fitness functions (L1-norm and L2-norm) [37] and to show
the good properties of the KL divergence [4]. In the current
paper, the behavior when using different metrics in the cost
function has been tested.

The objective is to study the algorithm performance when
the true location is a distinguishable place of the map shown
in Figure 6. The measurement provided by the laser sensor
could be the real one or a random number. A uniform distri-
bution has been defined to model the random measurements
that represent the contamination of the sensor information.
The minimum value is the 25% of the sensor distance and the
maximum value is the 75% of the laser measurement. In this
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FIGURE 6. GL in a medium-size simulated map. All units in cells. Robot’s location in blue square.

FIGURE 7. Laser scan with 50% of contamination. All units in cells. Robot’s location in blue square.

way, the contaminated laser reading can be expressed by

zk,c = (1− γ )N (zk , σ )+ γ U(0.25zk , 0.75zk ), (27)

where the laser measurement (zk,c) can be given by the
real sensor distance (N (zk , σ )) or the uniform distribu-
tion (U(0.25zk , 0.75zk )) depending on the contamination
level (γ ). The mean of the normal distribution is the laser
distance (zk ) and the sensor noise is represented by the stan-
dard deviation (σ = 1% in this experiment). The range of
the uniform distribution is [0.25zk , 0.75zk ]. γ is a random
value that can be zero or one. The percentage of contaminated
measurements is used to generate this value. The notation
used in [37] has been followed. This is a particular case
of occlusions because the contaminated measurements can-
not be recognized in the map. The real pose is (60, 50, 0).
An example with a 50% of contamination is shown in
Figure 7. It can be appreciated that the uniform noise causes
significant changes in the laser scan.

The study of the influence of the contamination level is
presented in Figure 8. The horizontal axis corresponds to the
percentage of contaminated measurements (contamination
level). The vertical axis is used for the position error (top).
The percentage of success is in the right part.

The results are outstanding in all cases if the localization
error is considered. Therefore, the probability profiles that
are defined to model the different metrics cause a great
improvement in the method behavior when uniform noise
is included. The errors are lower than 5 cm even with a
50% of contamination. This means that the 50% of the laser
readings are wrong measurements originated by the uniform
noise. As reported in [4], the same error is obtained with
5% of contamination when the quadratic error cost func-
tion is used. Besides, when using the quadratic error, it is
not possible to obtain the solution when the contaminated
noise is greater or equal to 28%. For a higher noise (80%),
the lowest error is obtained when the IS divergence is
applied (13 cm) and theworst performance is presented by the
DP divergence (43 cm) when the four metrics are compared.

FIGURE 8. Top: GL error vs. uniform noise in a simulated map
(percentage of contaminated measurements). Standard deviation
in error bars. Bottom: success vs. uniform noise.

When compared to the Jeffreys divergence, this metric shows
an error equal to 8.82 cm and 100% success with a 50% of
contamination.

In [4], the evolution of the success rate with respect to the
uniform noise was excellent when compared to traditional
quadratic errors. The success rate started to decrease with
a 50% of contamination. It was believed that this was the best
behavior of the algorithm. However, the population size was
not optimal. The population size has been increased to 250 in
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this experiment, and the percentage is 100% with a 68% of
contamination in all cases. Therefore, the method success is
even better than the previously reported one. The best results
are obtained by the IS divergence and the worst option is the
JS-based fitness function.

Wang et al. [26] have published a particle-based local-
ization filter for high-occluded and dynamic environments.
They have tested their technique in a 0.1 m resolution map.
Their lower errors are 5 cm and 1.1 degrees with 2 moving
people and 10 cm and 1.5 degrees with 8 moving people.
The authors have defined a variable called occlusion ratio,
which is similar to the percentage of uniform noise presented
here. Although they do not present exact values depend-
ing on the occlusion ratio, they obtain an error of several
meters when the occlusion ratio is approximately 30%. Their
experiments are focused on the tracking problem in a real
scenario.

According to the results presented in this section, it can be
concluded that the probability profiles that are defined to deal
with occlusions produce a great improvement of the method
capabilities in this type of situation.

C. OCCLUSIONS: UNMODELED OBSTACLES
In this section, the GL filter is examined when obstacles
which are not modeled in the available floor plan are added.
Two different experiments have been implemented when the
robot is in the map of Figure 6. First, a huge obstacle is
situated in front of the robot and the percentage of success is
computed when the robot is approaching the obstacle. It can
be appreciated that the scan is occluded and the situation is
critical. Figure 9 registers the results. The scan corresponds
to the location where the distance between the robot and the
obstacle is 57 cells (6.9 m). The occlusion caused by the
unmodeled obstacle makes the localization process harder.

The minimum distance with optimum results when using
the quadratic fitness function was 87 cells (10.5 m) [4]. This
distance is now in the interval [31, 37] cells depending on the
divergence. Since all metrics result in a similar performance,
the probability profile is also excellent for this type of situa-
tion. Although no significant differences are found between
metrics, the best results are obtained with the KL divergence.

Tsou and Wu [70] have published a localization method
where feature matching is used to deal with dynamic obsta-
cles. They have performed a similar experiment where a
dynamic obstacle is added to the scanning area. Two different
distances to the obstacle are tested: 434 cm with 2% dynamic
information and 62 cm with 22% dynamic information. The
average errors are 18.6 cm for the first case (2%) and 24.8 cm
for the second one (22%). The success rate is approximately
equal to 90% in both cases. Their algorithm is tested in
a squared map (18.5 m side) where possible locations are
generated using different resolutions. The results with the
highest resolution, which is 49 cm, are reported here.

In the next experiment, the algorithm is tested when
different small objects are added when the robot is situ-
ated in a distinguishable place. These obstacles increase the

FIGURE 9. Occlusions originated by a big obstacle. Top: occlusion caused
by obstacle in front of the robot. Units in cells. Bottom: percentage of
success vs. distance to obstacle.

number of occluded measurements. The results are displayed
in Figure 10 and Table 7.

The true pose with the real measurements (including obsta-
cles) is in the top row of Figure 10. The estimate in the
known map (without obstacles) is in the bottom row. The
number of occlusions is equal to 5, 17, and 45 cells in the left,
middle, and right columns of the figure, respectively (more
cases are included in the table). This number is equal to
the number of measurements originated by the unmodeled
obstacles. The GL errors and the percentages of success are
shown in the table. The limit to consider successful cases has
been increased to 1 m in this experiment.

When 37 laser readings out of 61 are wrong measure-
ments caused by occlusions, the correct location is obtained
in all cases and the worst error is 7.55 cm. The error
that was reported with the quadratic cost function in the
same circumstances (with occlusions) was in the interval
[10.57, 11.76] cm [4]. The errors of the current metrics are
significantly lower in all cases. When the number of occluded
measurements was greater or equal to 17, the quadratic-based
method failed to reach the solution and the success rate was
0%. After this analysis, it is clear that the probability profiles
technique is the optimum option in situations with unmodeled
obstacles.

Comparing the results when using different metrics,
the error without obstacles is similar to the error with unmod-
eled obstacles up to 37 occluded measurements. The accu-
racy is maintained when there are occlusions. Although the
error with the DP divergence is slightly higher when there
are 17 occluded readings, it still presents an acceptable
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FIGURE 10. Occlusions originated by small obstacles. Different obstacles in each column. All units in cells. Top: real laser scan from the true pose.
Robot’s true pose in blue square. Bottom: estimated pose in the known map. Estimate marked with a blue diamond.

TABLE 7. GL error with different unmodeled obstacles. True location:
(55, 55, 0). Number of occlusions in the left column. Type of
divergence in the upper left corner. Errors in mean
± standard deviation. Sensor noise: 1%.

value. No significant differences are observed between met-
rics. For higher levels (43 and 45 measurements), the errors
are worse and the success rate decreases. The IS and the

TABLE 8. Optimum population size (top) and position error (bottom)
when the robot is in the simulated map of Figure 3. Errors in
mean ± standard deviation (cm).

JS divergences show better errors ([12.22, 13.54] cm and
[0.36, 0.83] degrees). If the success rate is examined,
the worst performance is obtained with the DP divergence.
The other three metrics present similar values.

D. POPULATION REQUIREMENTS AND
COMPUTATIONAL COST
The study of the population requirements of the GLmethod is
relevant because this parameter has an important influence on
the computational cost. The population size that is required
has been examined for different locations in the simulated
map (Figure 3). The experiment consists of measuring the
minimum set that is needed to obtain the maximum percent-
age of success. Only cases with 100% of success are shown.
The aim is to check if any divergence needs lower particles
than the other ones. The position errors and the required
number of particles are displayed in Table 8. The orientation
error is omitted for simplicity.

Although some differences can be appreciated, there is no
evidence to choose one metric among the others. In addi-
tion, this parameter is highly dependent on different vari-
ables such as the location (larger rooms need less particles
because it is easier to reach the minimum) or the perceptual
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TABLE 9. Times per iteration for different locations and maps. Results in mean ± standard deviation.

ambiguities (symmetries). Therefore, more experiments are
needed to present a more exhaustive study of the population
requirements, which is a challenging work to be accom-
plished in the future. This section is intended to be an intro-
duction to the study of this parameter.

The time complexity of the filter is O(DE_GL) = Niter ×
NP×Ns, where Niter is the number of iterations. This param-
eter depends on the number of iterations, the population
size, and the number of measurements of the laser scan. The
computational complexity is dependent on the number of iter-
ations when the algorithm is executed for a fixed number of
particles and a laser scan with a constant resolution (NP×Ns
is constant). The time complexity of other evolutionary-based
methods is similar. The MC technique has to be viewed from
a different perspective because it integrates the motion infor-
mation to compute the robot’s pose. Many motion-perception
cycles are needed to converge. Anyway, the time complex-
ity of the MC-based algorithms is highly dependent on the
number of particles. The whole search space (in GL without
motion) must be covered to assure convergence to the true
solution. Therefore, the population size that is required is
larger. Several comparisons between DE and variants of
MC are presented in [28] and [71]. In both papers, the
MC-based method needs more particles to succeed.

An experiment has been carried out to study the parame-
ters that influence the computational cost. The objective is
to compare the times per iteration depending on the pop-
ulation size for different locations and maps. The number
of iterations that are needed to converge is also presented.
Table 9 illustrates the results. The success rate is 100% in
all cases. The algorithm is implemented in MATLAB in a
computer with a 2.7 GHz Intel Core i5 processor.

Different conclusions can be drawn from the table. No sig-
nificant differences are found when comparing metrics. The
cost highly depends on the number of particles. For 50 parti-
cles, the time per iteration is in the interval [26, 27] ms. For
100 candidates, the time is [47, 66] ms. For 200 members,
the cost is [88, 112] ms.

The iterations to converge depend on the map. In gen-
eral, larger maps require more iterations. The method
needs [362.4, 405.5] iterations for the map of Figure 3
(288,000 cells). When the robot is in the map of Figure 6

(120,000 cells), it needs [188.9, 216.3] iterations. In Figure 4
(360,000 cells), [350.1, 438.3] iterations are required. All
metrics show similar numbers. However, a more exhaustive
study is necessary to compare the convergence properties.

E. TRACKING PERFORMANCE
The last experiment shows the robot’s capabilities when it
is executing a path. The typical scenario of a mobile robot
involves the continuous reception of laser scans. The robot
is navigating and, at the same time, the information provided
by sensors is received. The previous experiments have to be
considered as a more difficult problem to solve because a
single laser scan is the only source of information. In addition,
when a single scan is used, it is possible to find places where
the laser readings are very similar. For example, this situation
happens in environments with symmetric offices. In order to
be successful in these cases, motion and more laser scans
from different locations are required.

An advantage of the current approach is that some param-
eters can be relaxed after convergence if the robot’s pose has
been correctly estimated. The objective of this operation is
to improve the computational cost. The population is limited
to 20 candidates and the number of iterations is 100 in this
experiment (only after convergence, these parameters are not
reduced in the first execution). The computational cost in
this conditions is in the interval [1.21, 1.32] s. In tracking,
the algorithm can be focused on the obtention of a faster
response because the GL problem has already been solved.
However, the population size and the number of iterations can
be modified if the objective is to increase the accuracy.

The path that is followed is displayed in Figure 11. The
histograms of the position and orientation errors while the
robot is navigating are plotted in Figure 12.

The mobile robot begins situated in (100, 500, 0). The first
part of the path covers the hallway that can be seen in the
lower part of the image. Then, the aisle on the right side is tra-
versed. The final location, with coordinates (402, 206, 185),
and the laser scan that is received from this point are shown
in the figure.

In Figure 12, it can be appreciated that the filter obtains
the correct location even after the first laser reading (all
errors lower than 10 cm). This result has to be viewed as
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FIGURE 11. Robot’s path and laser scan from the final location. Starting
point: bottom left corner. Units in cells.

FIGURE 12. Histograms of the errors for the path displayed in Figure 11.
Top: position error. Bottom: orientation error. Number of points of the
path with an error in the interval defined by each bin in the vertical axis.

an advantage when compared to other techniques. For exam-
ple, the MC-based approaches need more motion-perception
cycles to return an accurate solution because the sensor infor-
mation has to be integrated in the motion model.

If the position error is checked, it remains lower than 10 cm
for all divergences. This error depends on different factors.
Since the sensor noise is dependent on the distance to the
obstacles, the error is larger when the robot is situated in
larger rooms. The variation of the laser measurements is more

significant when the robot is turning. Therefore, the error
could be worse in sharp turns. As said before, an easy adjust-
ment that can be easily applied to improve the accuracy
(if necessary) is to increase the population size and the max-
imum number of iterations. The orientation errors are lower
than 0.7 degrees for all divergences. If the cost functions are
compared, satisfactory results are obtained with all of them
and all the errors are in the same interval. Most errors are
lower than 6 cm and 0.5 degrees. No significant differences
are found between them.

If other methods are analyzed, a similar experiment is
presented by Zhang et al. [23]. The authors have imple-
mented an algorithm called SAMCL. One of the objectives
of their tests is to make a comparison between their technique
and MC. The idea is to measure the pose tracking error in an
indoor corridor. The authors have reported that their errors
are better than the errors of the MC basic version in pose
tracking and GL. If their method is compared to the filter
presented in the current paper, the main difference can be
found when the error of the first motion-perception cycle
is analyzed. First, their error is around 80 cm and, after
that, it decreases to 20 cm when more scans are received.
As can be observed, the performance is worse in the first
execution.

VII. CONCLUSIONS
In this paper, three different cost functions have been imple-
mented for an evolutionary-based GL filter. The main objec-
tives are to validate that the non-symmetric probabilistic
approach presented in our previous work is a suitable tech-
nique to be applied to multiple metrics, and to examine
the advantages when compared to the classic symmetric
quadratic fitness functions. In particular, the most important
improvement is the exceptional behavior in environments
with different types of occlusions.

Although many different metrics could be selected,
the chosen ones present interesting properties. The JS diver-
gence can be viewed as a symmetric version of the KL
divergence. The DP divergence is promising because it can be
equivalent to a quadratic error version when using probability
distributions. The IS distance is similar to the KL divergence
when its formula is analyzed. These divergences belong to
different families of metrics with interesting properties and
connections between them.

The non-symmetric function that is enabled by the prob-
ability profiles approach makes it possible to give different
weights to the components of the cost function depending on
different situations. This property is exploited to increase the
robustness to occlusions.

Multiple trials have been carried out in different maps.
The GL task is efficiently accomplished by the DE-based
algorithm with all metrics. It does not show any partic-
ular shortcoming with respect to previous versions with
quadratic or KL-based cost values.

The accuracy and the sensor noise have been analyzed in
the first tests. The accuracy is similar to the accuracy obtained
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by our previous method with a quadratic cost function.
The level of sensor noise that still allows an optimum percent-
age of success is worse than the typical noise that is presented
by the laser range finders.When comparingmetrics, a slightly
better behavior is found with the KL divergence when the
sensor noise is increased.

The next experiments study the algorithm behavior when
there are occlusions originated by different factors. The
localization results are strongly improved when there is a
contaminated noise. This situation occurs when there are
dynamic objects, people, or outliers. It has to be remarked
that Cichocki and Amari [12] highlight that the power func-
tions (used to define the families of divergences) allow to
increase the robustness with respect to outliers. Although the
best results are obtained when the IS divergence is applied,
no significant differences are observed between metrics. The
GL performance is also improved when there are different
types of unmodeled obstacles, such as small obstacles or a
big obstacle in front of the robot. In all cases, the results
are improved when there are occlusions. The IS and the
JS divergences are the best choices for this situation. It can be
concluded that the probability profiles that are defined to deal
with occlusions produce a great improvement of the method
capabilities in these situations.

The GL algorithm has also been examined when the
robot is moving. Analyzing the results, the localization fil-
ter presents flexibility (variable number of iterations per
perception cycle) and promising results. A clear advantage
of our technique when is applied to the GL and tracking
problem is that the robot can be successfully localized even
with a single scan. All metrics are successfully applied to
this task and no significant differences are found between
them.

An interesting work to be accomplished in the future is to
make an exhaustive study of the convergence properties of
each divergence. In addition, experiments with different types
of noises could be useful to model other phenomena that can
influence the localization process.
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